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A ADDITIONAL MATERIAL

A.1 UNBIASED IMPORTANCE WEIGHTING BY OUTPUT PERTURBATION

A simple approach to ensure DP of an algorithm is to add noise (Dwork et al., 2006) to its output, that is the estimated
importance weights of the synthetic data. We establish general results under which such a noise perturbation of an unbiased
non-private weights algorithm ŵ(x) preserves the unbiasedness of IS estimation.

Theorem 1. Let σ2(h)/N denote the variance of the IS estimate IN (h|w) defined in Equation (2). Then the IS estimator
IN (h|w∗) using noise perturbed importance weights w∗(xi) = ŵ(xi) + ζi, where ζi are i.i.d. and E[exp(ζi)] = 1, is
unbiased and has variance σ∗2(h)/N where

σ∗2(h) = σ2(h) + Var [exp(ζ)]EpG
[(ŵ(x)h(x))2]. (1)

We refer the reader to Supplement B.3 for the proof. In the following we will analyse how the noise ζ has to be chosen to
ensure DP.

Corollary 1. The IS estimator with importance weights defined by

logw∗(xi) = β̂Txi + ζi (2)

for ζi ∼ Laplace(log(1− ρ2), ρ) and ρ =
2
√
d

NDλϵ
< 1

is (NSϵ, 0)-differentially private. It is further unbiased and for ρ < 1
2 has variance as defined in equation 1:

Var [exp(ζ)] = exp(2 log(1− ρ2))

(
1

1− 4λ2
− 1

(1− λ2)
2

)
.

Note that privacy budget is additive. If we want to release NS DP weights, we thus have to scale the noise proportional to
NS . Although this approach increases the variance of the estimator, it remains unbiased.

A limitation of this approach is that ρ < 1/2. Alternatively, Blum et al. (2005) show that adding Gaussian noise ζ ′ ∼
N(0, 2

ϵ2S(f)
2 log 2

δ ) to an algorithm f ensures (ϵ, δ)-DP for δ > 0. From our analysis it follows that we could adjust
Corollary 1 as follows.
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Corollary 2. The IS estimator with importance weights defined by

logw∗(xi) = β̂Txi + ζ ′i

for ζ ′i ∼ N(−γ2

2
, γ2) and γ =

√
8d

(NDλϵ)2
log

2

δ

is (NSϵ, δ)-differentially private with δ > 0 and ϵ < 1. It is further unbiased and has variance as defined in equation 1 with
Var [exp(ζ ′)] = γ2.

This result trivially extends to the case of ϵ ≥ 1 with accordingly adjusted noise scales following results from Balle and
Wang (2018).

Sources of Bias and Variance. This analysis gives us insights on two sources of bias and variance. The first one is the
bias and/or variance introduced by privatising the weights. The estimator of Ji and Elkan (2013) is biased but as a result
adds noise with a smaller variance, whereas to be unbiased by noising the weights we have to pay a price of increasing the
variance, e.g., by adding more noise or by releasing fewer samples. The second source is the bias and variance introduced by
estimating the weights through the classifier. The importance weighting procedure is only unbiased when we know exactly
how to estimate the true weights. Using a logistic regression to estimate these cannot reasonably be considered as unbiased
for any complicated data. However, using an arbitrarily complex classifier such as a classification neural network could
arguably be considered as less biased at estimating the density ratio if it converges, but possibly increases the variance of the
estimators due to the increased number of parameters to learn.

A.2 POST-PROCESSING OF LIKELIHOOD RATIOS

The performance of importance weighting can suffer from a heavy right tailed distribution of the likelihood ratio estimates
which increases the variance of downstream estimators. A simple remedy is tempering: for a τ ∈ [0, 1] the weights
{ŵ(xi)

τ}i∈{1,...,NG} are less extreme.

Alternatively, Vehtari et al. (2015) propose Pareto smoothed IS (PSIS). This procedure requires to fit a generalised Pareto
distribution to the upper tail of the distribution of the simulated importance ratios. Their algorithm does not only post-hoc
stabilise IS, but also reports a warning when the estimated shape parameter of the Pareto distribution exceeds a certain
threshold. Similarly, Koopman et al. (2009) propose a test to detect whether importance weights have finite variance. In both
warnings, there are certain characteristics of the DGP which are not captured by the SDGP and the resulting IS estimates are
likely to be unstable. This warning can thus be understood as a general indicator for unsuitable proposal distributions. For
large shape parameters the data owner should not release the SDGP. It is also computationally more efficient than comparable
distribution divergences such as maximum mean discrepancy or Wasserstein distance. We must also consider that unlike
traditional IS where the importance weights are known (at least up to normalisation), here they are being estimated from
data, providing further motivation for regularisation.

Aside from unstable likelihood ratios, the computed importance weights can suffer from the inability of the classification
method to correctly capture the density ratios. To mitigate this problematic, Turner et al. (2019) propose post-calibration of
the likelihood ratios in a non-private setting. If we can assume that the data analyst has access to a small dataset of the DGP,
as e.g. in Wilde et al. (2020), we can make use of post-calibration methods, such as beta calibration (Kull et al., 2017).

B PROOFS

B.1 PROPOSITION 1: BIAS AND VARIANCE OF ALGORITHM 1 OF JI & ELKAN (2013)

Consider Ji and Elkan (2013) Algorithm 1, where under the assumption that p(y=1)
p(y=0) ≈

ND

NS
= 1, the unprivatised importance

weights are estimated using logistic regression

ŵ(xi) =
p∗(y = 1|xi)

p∗(y = 0|xi)
= exp

(
β̂Txi

)
,



and then the privacy preserving process adds noise to the β̂ coefficients of this logistic regression β∗ = β̂ + ζ with
ζ ∼ Laplace(2

√
d/(NDλϵ)), a vector of length d, to generate privatised estimates of the importance weights

w(xi) = exp
(
β∗T

xi

)
= exp

(
β̂Txi

)
· exp (ζxi) . (3)

The following proposition proves that w(xi) is a biased estimate of ŵ(xi), the consequences being that if the ‘true’
importance weight really is given by a logistic regression then the procedure of Ji and Elkan (2013) will be biased.

Proposition 1. Let w denote the importance weights computed by noise perturbing the regression coefficients as in Equation
(3) (Ji and Elkan, 2013, Algorithm 1). The importance sampling estimator IN (h|w) is biased.

Proof. Firstly, we show that w(xi) is not an unbiased estimate of ŵ(xi)

Eζ [w(xi)] = Eζ

[
exp

(
β̂Txi

)
· exp (ζxi)

]
= Eζ [ŵ(xi) · exp (ζxi)]

̸= ŵ(xi).

As a consequence, we show that even if the true density ratio can be captured by a logistic regression, i.e. there exists β0

such that pD(x)
pG(x) = exp

(
βT
0 x
)
, then the importance sampling estimator

IN (h|w) = 1

N

N∑
i=1

w(xi)h(xi), xi ∼ pG(·),

with w(·) calculated using ‘privatised’ β∗ = β0 + ζ, ζ distributed as above, is a biased estimate of EpD
[h(x)]. Indeed, we

have

Ex1:N∼pG

[
1

N

N∑
i=1

w(xi)h(xi)

]
= Ex1:N∼pG

[
1

N

N∑
i=1

exp
(
βT
0 xi

)
· exp (ζxi)h(xi)

]

=
1

N

N∑
i=1

Exi∼pG
[w (xi) · exp (ζxi)h(xi)]

=
1

N

N∑
i=1

Exi∼pD
[exp (ζxi)h(xi)]

̸= Exi∼pD
[h(xi)] .

The proof of Proposition 1 provides several insights on what is required for an unbiased estimator. The fact that the bias
depends explicitly on the observation suggests either 1) asking the data curator to debias the noise given the synthetic data
they are about to release or 2) adding noise to the weights themselves rather to the process of how they are calculated.

Ji and Elkan (2013) compute the variance of the estimator β∗ = β̂ + ζ where ζ ∼ Laplace( 4(d+1)d
(NDλϵ)2 ) as

Var(β∗) = Var(β̂) + Var(ζ) = Var(β̂) +
4(d+ 1)d

(NDλϵ)2
.

They show that the asymptotic variance of importance sampling with the unperturbed weights obtained from the logistic
regression wlogreg can be upper bounded by

Var(IN (h,wlogreg)) = αT Var(β̂)α = αT dId
NDλ2

α

with

α =

∑
xi,xj∈D eβ

T
0 (xi+xj) (h (xi)− h (xj)) (xi − xj)∑

xi,xj∈E eβ
T
0 (xi+xj)

,

where β0 optimises the loss function of a logistic regression on fixed G and the true distribution of D. The asymptotic
variance of the importance sampling estimator with the weights w∗

logreg from the logistic regression with parameter β∗ is
then

Var(IN (h,w∗
logreg)) = αT Var(β∗)α = αT (

dId
NDλ2

+
4(d+ 1)d

(NDλϵ)2
)α.



B.2 PROPOSITION 2: DEBIASING OF JI & ELKAN (2013)

As prescribed by Ji and Elkan (2013) Algorithm 1, consider importance weights

w(xi) = exp
(
β∗T

xi

)
= exp

(
β̂Txi

)
· exp

(
ζTxi

)
. (4)

for privacy preserved β̂ coefficients of this logistic regression β∗ = β̂ + ζ with ζ ∼ Laplace(2
√
d/(NDλϵ)), a vector of

length d. Proposition 1 proved that using w(·) resulted in biased expectation estimation. However, Proposition 2 demonstrates
that we can debias this in closed form.

Proposition 2. Let w denote the importance weights computed by noise perturbing the regression coefficients as in Equation
(4) (Ji and Elkan, 2013, Algorithm 1) with ζ ∼ pζ . Define

b(xi) := 1/Eζ∼pζ
[exp

(
ζTxi

)
],

and adjusted importance weight

w∗(xi) = w(xi) · b(xi) = ŵ(xi) · exp
(
ζTxi

)
· b(xi).

The importance sampling estimator IN (h|w∗) is unbiased and (ϵ, 0)-differentially private. The variance of estimator
IN (h|w∗) has the following decomposition

Varp∗
G
[IN (h|w∗)] =

σ∗2(h)

N
+

(
1− 1

N

)
c∗(h).

with

σ∗2(h) = σ2(h) + Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[b(x) exp(ζx)]
]
,

σ2(h) = Varx∼pG
[h(x)ŵ(x)] , (5)

c∗(h) = Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Proof. Consider (x1, . . . , xN , ζ)
i.i.d∼ p∗G, i.e. xi

i.i.d∼ pG, i = 1, . . . , N and ζ ∼ pζ and

IN (h|w∗) =
1

N

N∑
i=1

h(xi)ŵ(xi) exp
(
ζTxi

)
b(xi),

then

Ep∗
G
[IN (h|w∗)] =Ex∼pG(x)Eζ∼pζ

[h(x)ŵ(x) exp
(
ζTx

)
b(x)]

=Ex∼pG(x)[h(x)ŵ(x)b(x)Eζ∼pζ
[exp

(
ζTx

)
]]

=Ex∼pG(x)[h(x)ŵ(x)]

=Ex∼pD(x)[h(x)]

and as a result IN (h|w∗) is an unbiased estimator of Ex∼pD(x)[h(x)]. The variance of estimator IN (h|w∗) is given by

Varp∗
G
[IN (h|w∗)] =

1

N2

N∑
i=1

Varp∗
G
[h(xi)w

∗(xi)] +
2

N2

N∑
i=1

∑
j<i

Covp∗
G
[h(xi)w

∗(xi), h(xj)w
∗(xj)]

=
σ∗2(h)

N
+

(
1− 1

N

)
c∗(h). (6)

where the weights are dependent under p∗G because ζ is not sampled independently for each xi, it is only sampled once. The
terms making up (6) are

σ∗2(h) =Varp∗
G
[h(x)ŵ(x) exp(ζx)b(x)]

=Ep∗
G

[
(h(x)ŵ(x) exp(ζx)b(x))

2
]
− Ep∗

G
[h(x)ŵ(x) exp(ζx)b(x)]

2

=Ex∼pG

[
h(x)2ŵ(x)2Eζ∼pζ

[
b(x)2 exp(ζx)2

]]
− EpG

[h(x)ŵ(x)]
2

=Ex∼pG

[
h(x)2ŵ(x)2

(
Varζ∼pζ

[b(x) exp(ζx)] + 1
)]

− EpG
[h(x)ŵ(x)]

2

=σ2(h) + Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[b(x) exp(ζx)]
]
,



with Eζ∼pζ
[b(x) exp(ζx)] = 1 by construction and σ2(h) defined in (5), and

c∗(h) =Covp∗
G

[
h(x)ŵ(x) exp

(
ζTx

)
b(x), h(x′)ŵ(x′) exp

(
ζTx′) b(x′)

]
=Ex,x′∼pG,ζ∼pζ

[
h(x)ŵ(x) exp

(
ζTx

)
b(x) · h(x′)ŵ(x′) exp

(
ζTx′) b(x′)

]
− Ex,ζ∼p∗

G

[
h(x)ŵ(x) exp

(
ζTx

)
b(x)

]
· Ex′,ζ∼p∗

G

[
h(x′)ŵ(x′) exp

(
ζTx′) b(x′)

]
.

By Eζ

[
exp

(
ζTx

)
b(x)

]
= 1, and x, x′ iid∼ pG the second term simplifies to

Ex∼p∗
G

[
h(x)ŵ(x) exp

(
ζTx

)
b(x)

]
· Ex′∼p∗

G

[
h(x′)ŵ(x′) exp

(
ζTx′) b(x′)

]
= Ex∼pG

[h(x)ŵ(x)]
2
.

The first term can be simplified as

Ex,x′∼pG,ζ∼pζ

[
h(x)ŵ(x) exp

(
ζTx

)
b(x) · h(x′)ŵ(x′) exp

(
ζTx′) b(x′)

]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)b(x)b(x′)Eζ∼pζ

[
exp

(
ζT (x+ x′)

)]]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

b(x)b(x′)

b(x+ x′)

]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
+ Ex∼pG

[h(x)ŵ(x)]Ex′∼pG
[h(x′)ŵ(x′)] (indep.)

= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
+ Ex∼pG

[h(x)ŵ(x)]
2
.

As a result

c∗(h) = Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]

B.2.1 Special Case 1: Laplace Noise

Recall that xi and ζ are d-dimensional vectors with d ≥ 1. For i.i.d. ζj , j = 1, . . . , d

E
[
exp

(
ζTxi

)]
= E

exp
 d∑

j=1

ζjxij


= E

 d∏
j=1

exp (ζjxij)


=

d∏
j=1

E [exp (ζjxij)] , (independence)

which is the moment generating function for random variable ζj evaluated at t = xij . Now for ζj
iid∼ L(µ, ρ)

d∏
j=1

E [exp (ζjxij)] =

d∏
j=1

exp (µxij)

1− ρ2x2
ij

, for |xij | < 1/ρ ∀j

=
exp

(
µ
∑d

j=1 xij

)
∏d

j=1

(
1− ρ2x2

ij

) , for |xij | < 1/ρ ∀j.

as a result

b(xi) =

∏d
j=1

(
1− ρ2x2

ij

)
exp

(
µ
∑d

j=1 xij

) , with |xij | < 1/ρ ∀j (7)



The variance Of interest to the performance of such an approach are the terms

Varζ∼pζ

[
b(xi) exp(ζ

Txi)
]
= b(xi)

2Varζ∼pζ

[
exp(ζTxi)

]
= b(xi)

2
(
Eζ∼pζ

[
exp(ζTxi)

2
]
− Eζ∼pζ

[
exp(ζTxi)

]2)
= b(xi)

2
(
Eζ∼pζ

[
exp(2ζTxi)

]
− Eζ∼gpζ

[
exp(ζTxi)

]2)
=

∏d
j=1

(
1− ρ2x2

ij

)2
exp

(
2µ
∑d

j=1 xij

)
exp

(
2µ
∑d

j=1 xij

)
∏d

j=1

(
1− 4b2x2

ij

) −
exp

(
2µ
∑d

j=1 xij

)
∏d

j=1

(
1− ρ2x2

ij

)2


=

d∏
j=1

(
1− ρ2x2

ij

)2(
1− 4b2x2

ij

) − 1

with |xij | < 1/2ρ ∀j, and

(
b(x)b(x′)

b(x+ x′)
− 1

)
=

∏d
j=1(1−ρ2x2

j)
exp(µ

∑d
j=1 xj)

∏d
j=1

(
1−ρ2x

′2
j

)
exp(µ

∑d
j=1 x′

j)∏d
j=1(1−ρ2(xj+x′

j)
2)

exp(µ
∑d

j=1(xj+x′
j))

− 1, with |xj |, |x′
j | and |xj + x′

j | < 1/ρ ∀j

=

∏d
j=1

(
1− ρ2x2

j

) (
1− ρ2x

′2
j

)
∏d

j=1

(
1− ρ2(xj + x′

j)
2
) − 1.

B.2.2 Special Case 2: Gaussian Noise

Recall that xi and ζ are d-dimensional vectors with d ≥ 1. The reciprocal of the bias correction

1

b(xi)
= Eζ [exp

(
ζTxi

)
],

is the moment generating function of random variable ζTxi evaluated at t = 1. Now if ζj
iid∼ N (µ, σ2), j = 1, . . . , d, then

ζTxi =

d∑
j=1

ζjxij ∼ N (µ

d∑
j=1

xij , σ
2

d∑
j=1

x2
ij)

and therefore

Eζ

[
exp

(
ζTxi

)]
= exp

µ

d∑
j=1

xij +
1

2
σ2

d∑
j=1

x2
ij

 .

The variance Of interest to the performance of such an approach are the terms

Varζ∼pζ

[
b(xi) exp(ζ

Txi)
]
= b(xi)

2Varζ∼pζ

[
exp(ζTxi)

]
= b(xi)

2
(
Eζ∼pζ

[
exp(2ζTxi)

]
− Eζ∼pζ

[
exp(ζTxi)

]2)
= exp

−2µ

d∑
j=1

xij − σ2
d∑

j=1

x2
ij

exp

2µ

d∑
j=1

xij + 2σ2
d∑

j=1

x2
ij


− exp

2µ

d∑
j=1

xij + σ2
d∑

j=1

x2
ij


= exp

σ2
d∑

j=1

x2
ij

− 1



and (
b(x)b(x′)

b(x+ x′)
− 1

)
=

exp
(
−µ
∑d

j=1 xj − 1
2σ

2
∑d

j=1 x
2
j

)
exp

(
−µ
∑d

j=1 x
′
j − 1

2σ
2
∑d

j=1 x
′2
j

)
exp

(
−µ
∑d

j=1(xj + x′
j)− 1

2σ
2
∑d

j=1(xj + x′
j)

2
) − 1

= exp

1

2
σ2

d∑
j=1

{
(xj + x′

j)
2 − x2

j − x
′2
j

}− 1

= exp

σ2
d∑

j=1

xjx
′
j

− 1

B.2.3 Differential Privacy

The differential privacy of the approach follows from the post-processing theorem: since the synthetic data x1, . . . , xNG
is

already privatised, the corresponding weights w̄(x1), ..., w̄(xNG
) are (ϵ, δ) differentially private, and the adversary can be

assumed to know which differential privacy mechanism is used (Balle and Wang, 2018), the data curator can debias the
weights without any additional privacy budget.

B.2.4 Variance Comparison of Debiasing Ji & Elkan (2013)

Ji and Elkan (2013) provide bounds for the asymptotic variance of their privatised estimator. Here, we investigate the finite
sample variance of their (biased) method and compare it with the finite variance of our unbiased estimator form Proposition
2. Note that we do not consider self-normalised IW while this is an implicit assumption made by Ji and Elkan (2013).

The variance of estimator IN (h|w), where w is defined in Equation (4), is given by

Varp∗
G
[IN (h|w)] = 1

N2

N∑
i=1

Varp∗
G
[h(xi)w(xi)] +

2

N2

N∑
i=1

∑
j<i

Covp∗
G
[h(xi)w(xi), h(xj)w(xj)]

=
σ2(h)

N
+

(
1− 1

N

)
c(h).

where, x, x′ ∼ p∗G. The term σ2(h) is

σ2(h) =Varp∗
G

[
h(x)ŵ(x) exp(ζTx)

]
=Ep∗

G

[(
h(x)ŵ(x) exp(ζTx)

)2]− Ep∗
G

[
h(x)ŵ(x) exp(ζTx)

]2
=Ex∼pG

[
h(x)2ŵ(x)2Eζ∼pζ

[
exp(ζTx)2

]]
− Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
=Ex∼pG

[
h(x)2ŵ(x)2

(
Varζ∼pζ

[
exp(ζTx)

]
+

1

b(x)2

)]
− Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
=Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[
exp(ζTx)

]]
+ Varx∼pG(x)

[
h(x)ŵ(x)

b(x)

]
.

Further, c(h) is

c(h) =Covp∗
G

[
h(x)ŵ(x) exp

(
ζTx

)
, h(x′)ŵ(x′) exp

(
ζTx′)]

=Ex,x′∼p∗
G

[
h(x)ŵ(x) exp

(
ζTx

)
· h(x′)ŵ(x′) exp

(
ζTx′)]

− Ex∼p∗
G

[
h(x)ŵ(x) exp

(
ζTx

)]
· Ex′∼p∗

G

[
h(x′)ŵ(x′) exp

(
ζTx′)] ,

where firstly,

Ex∼p∗
G

[
h(x)ŵ(x) exp

(
ζTx

)]
· Ex′∼p∗

G

[
h(x′)ŵ(x′) exp

(
ζTx′)] = Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
,



and

Ex,x′∼p∗
G

[
h(x)ŵ(x) exp

(
ζTx

)
· h(x′)ŵ(x′) exp

(
ζTx′)]

=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)Eζ∼pζ

[
exp

(
ζT (x+ x′)

)]]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

1

b(x+ x′)

]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex∼pG

[
h(x)ŵ(x)

b(x)

]
Ex′∼pG

[
h(x′)ŵ(x′)

b(x′)

]
(indep.)

=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex∼pG

[
h(x)ŵ(x)

b(x)

]2
as a result

c(h) = Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
= Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Comparisons after debiasing: We can compare the variance of IN (h|w) with the previously evaluated variance of
IN (h|w∗) as follows

Varp∗
G
[IN (h|w∗)] =

σ∗2(h)

N
+

(
1− 1

N

)
c∗(h).

Varp∗
G
[IN (h|w)] =σ2(h)

N
+

(
1− 1

N

)
c(h).

with

σ∗2(h) =Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[b(x) exp(ζx)]
]
+ Varx∼pG(x) [h(x)ŵ(x)]

σ2(h) =Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[
exp(ζTx)

]]
+ Varx∼pG(x)

[
h(x)ŵ(x)

b(x)

]
and

c∗(h) = Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
c(h) = Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Comparison for the introduction of Laplace noise: From Equation (7), under ζj ∼ L(0, ρ) we have that

b(xi) =

p∏
j=1

(
1− ρ2x2

ij

)
, with |xij | < 1/ρ ∀j.



The condition that |xij | < 1/ρ ensures that

0 ≤
(
1− ρ2x2

ij

)
≤ 1, ∀j

⇒ 0 ≤ b(x) =

p∏
j=1

(
1− ρ2x2

j

)
≤ 1

As a result,

Varζ∼g

[
b(x) exp(ζTx)

]
≤ Varζ∼g

[
exp(ζTx)

]
, ∀x

and h(x)ŵ(x) ≤ h(x)ŵ(x)

b(x)
, ∀x

which provides that

σ∗2(h) ≤ σ2(h)

and c∗(h) ≤ c(h)

⇒ Varp∗
G
[IN (h|w∗)] ≤ Varp∗

G
[IN (h|w)] . (8)

Not only does debiasing remove bias, it also makes the estimator’s variance smaller.

B.3 THEOREM 1: NOISY IMPORTANCE SAMPLING

For privacy purposes, we want to be able to noise the importance weights as in

logw∗(x) = log ŵ(x) + ζ, for ζ ∼ g drawn from a noise distribution (9)

but we would like to still preserve the consistency properties of importance sampling estimates.

To achieve this, we expand the original target in importance sampling as follows

p∗D(x, ζ) = pD(x) exp(ζ)g(ζ)

where ζ ∈ R will correspond to some additive noise on the log weights, and g(ζ) is a probability density on R such that by
assumption ∫

exp(ζ)g(ζ)dζ = 1,

So, in particular, this implies that ∫
p∗D(x, ζ)dζ = pD(x).

Now, we can use a proposal density p∗G(x, ζ) = pG(x)g(ζ) targeting p∗D(x, ζ) and the resulting importance weight is indeed

w∗(x, ζ) =
p∗D(x, ζ)

p∗G(x, ζ)
= ŵ(x) exp(ζ),

i.e. the importance weight in this extended space is a noisy version of the original weight ŵ(x). We thus have

EpD
[h(x)] = EpG

[h(x)ŵ(x)]

= Ep∗
G
[h(x)w∗(x, ζ)]

= Ep∗
G
[h(x)ŵ(x) exp(ζ)].

It follows that for i.i.d. (xi, ζi) ∼ p∗G, i.e. xi ∼ pG and ζi ∼ g, then

IN (h|w∗) =
1

N

N∑
i=1

h(xi)ŵ(xi) exp(ζi)



is an unbiased and consistent estimator of EpD
[h(x)]. Its variance is

Var [IN (h|w∗)] =
1

N
Varp∗

D
[h(x)ŵ(x) exp(ζ)] =

σ∗2(h)

N
.

By the variance decomposition formula, we have

σ∗2(h) =Varp∗
D
[h(x)ŵ(x) exp(ζ)]

=Eg [exp(ζ)]
2 VarpG

[h(x)ŵ(x)]

+ Varg [exp(ζ)]EpG

[
(h(x)ŵ(x))2

]
(variance decomposition formula)

=σ2(h) + Varg [exp(ζ)]EpG
[(h(x)ŵ(x))2],

as Eg [exp(ζ)] = 1 by assumption and Var [IN (h|w)] = 1
N VarpG

[h(x)ŵ(x)]. The variance of our estimator is inflated as
expected by the introduction of noise.

B.4 COROLLARY 1 AND 2: DIFFERENTIAL PRIVACY OF LOG-LAPLACE NOISED IMPORTANCE
WEIGHTS

Following Kozubowski and Podgórski (2003), the (symmetric) log-Laplace distribution is the distribution of random variable
x such that y = log(x) has a Laplace density with location parameter µ and scale λ. The density of a log-Laplace(µ, λ)
random variable is

fX(x|µ, λ) = 1

2λ

1

x
exp

(
− 1

λ
|log x− µ|

)
.

Note this is recovered from the asymmetric log-Laplace in Kozubowski and Podgórski (2003) with α = β = 1
λ . Kozubowski

and Podgórski (2003) further provide forms for the expectation and variance of the log-Laplace distribution as

E [X] =
exp(µ)

1− λ2
for λ < 1, (10)

Var[X] = exp(2µ)

(
1

1− 4λ2
− 1

(1− λ2)
2

)
for λ <

1

2
.

Next we wish to investigate the differential privacy provided by using the Laplace mechanism (Dwork et al., 2006) to noise
importance weights. Adding Laplace noise to the log-weights, as in Equation (9), is equivalent to multiplying the importance
weights by log-Laplace noise. In order for the importance sampling to remain unbiased, the log-Laplace noise must have
expectation 1. From Equation (10) this will be the case for all λ < 1 if we set µ = log

(
1− λ2

)
.

A binary logistic-regression classifier specifies class probabilities

p̂(y = 1|x, β̂) = 1

1 + exp
(
−xβ̂

) , p̂(y = 0|x, β̂) =
exp

(
−xβ̂

)
1 + exp

(
−xβ̂

) .
We denote by z1:NG

the private data sampled from the DGP, and by x1:ND the synthetic data sampled from the SDGP. Let z′1:NG

be the neighboring data set of z1:NG . The importance weights estimated by such a classifier become

ŵ(xi|x1:NG , z1:ND ) =
p̃(yi = 1|xi, β̂(x1:NG , z1:ND ))

p̃(yi = 0|xi, β̂(x1:NG , z1:ND ))

ND

NG

=
1

1 + exp
(
−xiβ̂(x1:NG , z1:ND )

) 1 + exp
(
−xiβ̂(x1:NG , z1:ND )

)
exp

(
−xiβ̂(x1:NG , z1:ND )

) ND

NG

=exp
(
xiβ̂(x1:NG , z1:ND )

) ND

NG
,



and as a result ∣∣log ŵ(xi|x1:NG , z1:ND )− log ŵ(xi|x1:NG , z′1:ND
)
∣∣

=

∣∣∣∣xiβ̂(x1:NG , z1:ND ) + log
ND

NG
−
(
xiβ̂(x1:NG , z′1:ND

) + log
ND

NG

)∣∣∣∣
=
∣∣∣xiβ̂(x1:NG , z1:ND )− xiβ̂(x1:NG , z′1:ND

)
∣∣∣

=

∣∣∣∣∣
p∑

j=1

xij

(
β̂(x1:NG , z1:ND )j − β̂(x1:NG , z′1:ND

)j
)∣∣∣∣∣

≤ |xi|
d∑

j=1

∣∣∣(β̂(x1:NG , z1:ND )j − β̂(x1:NG , z′1:ND
)j
)∣∣∣

≤ 2
√
d

NDλ

if the features are minmax scaled using the sensitivity computed by Chaudhuri et al. (2011).

B.5 REMARK 1: THE IMPORTANCE-WEIGHTED LIKELIHOOD AND M-ESTIMATION

Remark 1. Minimisation of the importance weight adjusted log-likelihood, −w(xi) log f(xi|θ), can be viewed as an M -estimator with
clear relations to the standard MLE.

Remark 1 of the paper points out the the connection between the Minimisation of the importance weight adjusted log-likelihood,
ℓIW (x, θ) := −w(xi) log f(xi|θ) and the standard maximum likelihood estimator which can be seen through the lens of M-estimation.
We exemplify this below.

Following Van der Vaart (2000), the M -estimate of parameter

β∗
h := argmax

β
Ex∼pD [h(β, x)]

is given by

β̂
(n)
h := argmax

β

n∑
i=1

h(β, xi).

The estimator β̂(n)
h is consistent and is asymptotically normal, i.e.

√
n
(
β̂
(n)
h − β∗

h

)
D−→ N

(
0, Ṽ (β∗

h)
)

where

Ṽ (β) :=
(
E
[
∇2

βh(β, x)
])−1 · Var [∇βh(β, x)] ·

(
E
[
∇2

βh(β, x)
])−1

.

M-estimators generalises the case of MLE under model misspecification and the variance calculation collapses to the standard inverse
Fisher’s information if the likelihood is correctly specified for the DGP.

The minimiser of the importance weight adjusted log-likelihood can be considered an M-estimate with the following form

θ̂
(n)
IW = argmax {−ℓIW (x; θ)} = argmax {w(x) log f(x; θ)} .

As a result, given x1:n ∼ PG the covariance of the asymptotic Gaussian distribution for θ̂(n)
IW simplifies to,

ṼIW (θ∗IW ) =
(
EpG

[
−∇2

θℓIW (x, θ∗IW )
])−1 · VarpG [−∇θℓIW (x, θ∗IW )] ·

(
EpG

[
−∇2

θℓIW (x, θ∗IW )
])−1

=
(
EpD

[
−∇2

θℓ0(x, θ
∗
0)
])−1 · VarpG [−∇θℓIW (x, θ∗IW )] ·

(
EpD

[
−∇2

θℓ0(x, θ
∗
0)
])−1

=
(
EpD

[
−∇2

θℓ0(x, θ
∗
0)
])−1 · EpG

[
(−∇θℓIW (x, θ∗IW )) (−∇θℓIW (x, θ∗IW ))

T
]
·
(
EpD

[
−∇2

θℓ0(x, θ
∗
0)
])−1

where VarpG [−∇θℓIW (x, θ∗IW )] = EpG

[
(−∇θℓIW (x, θ∗IW )) (−∇θℓIW (x, θ∗IW ))T

]
because at the maximiser θ∗IW

EpG [−∇θℓIW (x, θ∗IW )] = 0



Further we can write the variance of the minimiser of the importance weight adjusted log-likelihood in terms of the variance of the
standard MLE given the same number of observations x1:n ∼ PD as follows:

ṼIW (θ∗IW )

Ṽ0 (θ∗0)
=

EpG

[
(∇θℓIW (x, θ∗IW )) (∇θℓIW (x, θ∗IW ))T

]
EpD

[
(∇θℓ0(x, θ∗0)) (∇θℓ0(x, θ∗0))

T
] =

EpD

[
w(x) (∇θℓ0(x, θ

∗
IW )) (∇θℓ0(x, θ

∗
IW ))T

]
EpD

[
(∇θℓ0(x, θ∗0)) (∇θℓ0(x, θ∗0))

T
] .

We can then use such notions to produce an idea of the effective sample size of synthetic data.

B.5.1 The Effective Sample Size of Synthetic Data

When constructing traditional Importance Sampling estimates it is typical to talk about the ‘effective sample’ size of the sample from the
proposal density. The effective sample size is the number of independent samples from the true target that gives an unbiased estimator with
the same variance as the importance sampling estimator using NG samples from the proposal density. When using importance weights to
adjust the likelihood for Bayesian updating we are not directly seeking to estimate an expectation, but minimize an (expected) loss to
produce a parameter estimate.

Analogously, in this scenario we define the effective sample size of the synthetic data as the number of samples, N (e)
G , from true DGP

PD that would provide an unbiased maximum likelihood estimate (MLE) with the same variance as the Importance-Weighted MLE
(IW-MLE), i.e.

N
(e)
G :=

{
n :
∣∣∣V [θ̂(NG)

IW

]∣∣∣ = ∣∣∣V [θ̂(n)
0

]∣∣∣} ,

where the function V corresponds to the asymptotic variance of that estimator, and |·| is a norm summary of the matrix values covariance
of the estimator. Given the asymptotic analysis presented above for the importance-weighted likelihood we have that

N
(e)
G =

√
NG

∣∣∣Ṽ (θ̂(n)
0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣
2

(11)

where ∣∣∣Ṽ (θ̂(n)
0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣ =
∣∣∣EpD

[
ŵ(x) (∇θℓ0(x, θ

∗
IW )) (∇θℓ0(x, θ

∗
IW ))T

]∣∣∣∣∣∣EpD

[
(∇θℓ0(x, θ∗0)) (∇θℓ0(x, θ∗0))

T
]∣∣∣

=

∣∣∣EpG

[
(∇θℓIW (x, θ∗IW )) (∇θℓIW (x, θ∗IW ))T

]∣∣∣∣∣∣EpG

[
ŵ(x) (∇θℓ0(x, θ∗0)) (∇θℓ0(x, θ∗0))

T
]∣∣∣ .

We note that for multidimensional parameter vectors the V ’s are covariance matrices and therefore we need to take a scalar summary
using the norm | · | of these matrices in order to provide an integer effective sample size N

(e)
G . Faced with a similar problem Lyddon et al.

(2018) consider the matrix trace for example.

Lastly, given a sample x1:NG ∼ PG the effective sample size can be estimated by using empirical expectations∣∣∣Ṽ (θ̂(n)
0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣ ≈
∣∣∣∣ 1
NG

∑NG
i=1

(
∇θℓIW (xi, θ̂

(n)
IW )

)(
∇θℓIW (xi, θ̂

(n)
IW )

)T ∣∣∣∣∣∣∣∣ 1
NG

∑NG
i=1 ŵ(xi)

(
∇θℓ0(xi, θ̂

(n)
IW )

)(
∇θℓ0(xi, θ̂

(n)
IW )

)T ∣∣∣∣ .

B.6 THEOREM 1: ASYMPTOTIC POSTERIOR DISTRIBUTION OF IMPORTANCE WEIGHTED BAYESIAN UPDATING

Section 3.1 of the paper considers the importance weighted Bayesian updating as a special case of general Bayesian updating where the
loss function is specifically chosen to account for the fact that inference is being done with samples from pG while trying to approximate
pD . We henceforth write

πIW (θ|{xi}i∈{1,...,NG}) ∝π(θ) exp

(
−

NG∑
i=1

−ŵ(xi) log f(xi|θ)

)

=π(θ) exp

(
−

NG∑
i=1

ℓIW (xi; θ)

)
,



for ℓIW (xi; θ) := −ŵ(xi) log f(xi|θ) and ŵ(xi) = pD(xi)/pG(xi). The next theorem shows that such a posterior given observations
from pG has the same asymptotic distribution as the standard Bayes posterior given samples from pD would have, and therefore we
consider this posterior to be asymptotically calibrated.

We give here the formal statement of Theorem 1. Below D−→ denotes convergence in distribution.

Theorem 1. Let the regular conditions in (Chernozhukov and Hong, 2003; Lyddon et al., 2018) hold. Consider θ̂
(N)
IW :=

argminθ∈Θ

∑N
i=1 ℓIW (xi; θ), xi

i.i.d.∼ pG and θ̂
(N)
0 := argminθ∈Θ

∑N
i=1 ℓ0(xi; θ), xi

i.i.d.∼ pD where ℓ0(x; θ) := − log f(x; θ).
Then both θ̂

(N)
0 and θ̂

(N)
IW are consistent estimates of θ∗0 := argminθ∈Θ

∫
ℓ0(x; θ)dPD(x). Moreover there exists a non-singular matrix

J−1 such that we have under the importance weighted Bayesian posterior πIW (θ|x1:N )

√
N
(
θ − θ̂

(N)
IW

)
D−→ N

(
0, J−1) ,

almost surely w.r.t. x1:∞
1 while under the standard Bayesian posterior π(θ|x1:N )

√
N
(
θ − θ̂

(N)
0

)
D−→ N

(
0, J−1) ,

almost surely w.r.t. x1:∞.

Proof. Firstly, define

θ∗IW := argmin
θ∈Θ

∫
ℓIW (x;θ)dPG(x), JIW (θ) :=

∫
∇2

θℓIW (x; θ)dPG(x).

Then Chernozhukov and Hong (2003); Lyddon et al. (2018) show that under regularity conditions the following asymptotic result holds

√
N
(
θ − θ̂

(N)
IW

)
D−→ N

(
0, JIW (θ∗IW )

−1
)

as N → ∞ when θ is distributed according to the general Bayesian posterior almost surely w.r.t. x1:∞. Similarly, if we define

J0(θ) :=

∫
∇2

θℓ0(x; θ)dPD(x),

then we have that under the standard Bayesian posterior (Chernozhukov and Hong, 2003; Kleijn et al., 2012; Lyddon et al., 2018)

√
N
(
θ − θ̂

(N)
0

)
D−→ N

(
0, J0 (θ

∗
0)

−1
)

almost surely w.r.t. x1:∞. Now it follows from the importance sampling identity that

θ∗IW = argmin
θ∈Θ

∫
ℓIW (x; θ)dPG(x) = argmin

θ∈Θ

∫
ℓ0(x; θ)dPD(x) = θ∗0 ,

JIW (θ) =

∫
∇2

θℓIW (x; θ)dPG(x) =

∫
ŵ(x)∇2

θℓ0(x; θ)dPG(x) =

∫
∇2

θℓ0(x; θ)dPD(x) = J0(θ)

Moreover θ̂(N)
0 and θ̂

(N)
IW are also consistent estimates of θ∗0 under the same regularity conditions. This establishes the result.

B.6.1 Finite Sample Importance-Weighted Bayesian posterior

To complement the asymptotic results connecting the importance weighted general Bayesian posterior given data from pG and the standard
Bayesian pD we can consider the difference between these two for finite n = m. This is formulated in the following proposition.

Proposition 1. The expected KLD beween standard Bayesian posterior π(θ|x1:n) and its importance weighted approximation
πIW (θ|z1:m) in expectation over the generating distributions for x1:n ∼ PD and z1:m ∼ PG, for n = m is

Ex∼pD [Ez∼pG [KLD(π(θ|x1:n)||πIW (θ|z1:m)]]

=nEx∼pD

[
Eθ∼π(·|x1:n)

[(
log f(x; θ)− Ex′∼pD

[
log f(x′; θ)

])]]

1πIW (θ|x1:N ) and π(θ|x1:N ) are here interpreted as random probability measures, and functions of the random observations x1:N .



Proof. We have

Ex∼pD [Ez∼pG [KLD(π(θ|x1:n)||πIW (θ|z1:m)]]

=Ex∼pD

[
Ez∼pG

[∫
π(θ|x1:n) log

π(θ|x1:n)

πIW (θ|z1:m)
dθ

]]
=Ex∼pD

[
Ez∼pG

[
Eπ(θ|x1:n)

[
n∑

i=1

log f(xi; θ)−
m∑

j=1

ŵ(zi) log f(zi; θ)

]]]
.

Now by Fubini we can reorder these integrals assuming that they all exist

=Ex∼pD

[
Eθ∼π(·|x1:n)

[(
n∑

i=1

log f(xi; θ)−
m∑

j=1

Ez∼pG [ŵ(zi) log f(zi; θ)]

)]]

=Ex∼pD

[
Eθ∼π(·|x1:n)

[(
n∑

i=1

log f(xi; θ)−mEx′∼pD

[
log f(x′; θ)

])]]
.

Now assuming n = m, we have

=Ex∼pD

[
Eθ∼π(·|x1:n)

[
n∑

i=1

(
log f(xi; θ)− Ex′∼pD

[
log f(x′; θ)

])]]
=nEx∼pD

[
Eθ∼π(·|x1:n)

[(
log f(x; θ)− Ex′∼pD

[
log f(x′; θ)

])]]
.

C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Please refer to Table 1 for an overview of the data sets used. We considered a random 80/20 train test split for all data sets except for
MNIST for which the default split was used.

Data # training observations # features prediction problem
Iris 150 4 3-class classification
tgfb 262 7 regression
Boston 506 10 regression
Breast 569 30 binary classification
Banknote 1372 4 binary classification
MNIST 60000 784 10-class classification

Table 1: Characteristics of the analysed data sets

We obtained the code for PrivBayes from https://github.com/DataResponsibly/DataSynthesizer, and the code for
DPCGAN from https://github.com/ricardocarvalhods/dpcgan. This code was used and changed to write the code for
DPGAN. For the logistic regression alternatives we use an adaption of the sklearn implementation. DPGAN was trained on labelled
data by concatenating the features with the one hot encoding of the labels. Our implementation will be made available online. We train
different downstream tasks on the synthetic data and test them on test data to ensure their utility for the setting of supervised learning. The
downstream algorithms were trained using sklearn with default parameters.

Hyperparameter tuning is a non-private operation as it queries private data to evaluate the model at validation time. To ensure that we do
not undermine the performance of the baselines we tuned them for ϵ = 1., and chose default parameters for our method. PrivBayes is
trained in correlated attribute mode, and with optimal bandwidth computation. For the GAN alternatives, we tuned the norm clip (1.0, 0.5),
the batch size (32, 64), and number of epochs (50, 100) with grid search on a validation set (10% split of training). The noise multiplier
was chosen such that the desired privacy budget was reached. The models were then retrained on the full training data set. Note that
these hyperparameters are chosen smaller than in a non-private setting as the noise to be added would otherwise explode. The optimal
hyperparameters can be found in the GitHub repository. Further we chose learning rate of the discriminator and generator as 0.15, and the

https://github.com/DataResponsibly/DataSynthesizer
https://github.com/ricardocarvalhods/dpcgan


number of hidden dimensions as d following Jordon et al. (2019). For the MNIST experiment, we chose to use the hyperparameters found
by Torkzadehmahani et al. (2019). The regularisation parameter of the logistic regression for weight estimation was chosen from 0.1, 1, 2.

The MLP for likelihood ratio estimation was computed based on the tensorflow and tensorflow_privacy package. To ensure
the privacy of the MLP, we started with a configuration of one epoch, a batch size of 1, an L2 norm clip of 1, a noise multiplier of 5.2, 20
microbatches and a learning rate of 0.1. We computed the ϵ using built-in functions and increased/decreased the noise multiplier and
the number of epochs until the desired privacy level was reached. We chose NS = ND unless otherwise mentioned. To compute the
output-noised weights we computed the largest NS such that the scale restriction was satisfied and conducted the downstream analysis on
this smaller dataset.

C.2 COMPUTATIONAL TIME OF IMPORTANCE WEIGHT ESTIMATION

Please refer to Table 2 for an overview of the additional time needed to compute the importance weights. All experimental results were
computed by training on a single Tesla V100 GPU. We observe that the estimation of the importance weights comes with negligible
computational overhead.

weighting Iris Banknote Housing Breast MNIST
BetaNoised 0.0064±0.0002 0.0084±0.0002 0.0133±0.0011 0.0824±0.0206 51.5605±9.0042

BetaDebiased 0.0237±0.0125 0.0112±0.0003 0.0742±0.0083 0.1856±0.0858 59.0723±10.5120

DP-MLP 0.8338±0.0964 5.4649±0.0654 1.7303±0.1104 2.9363±0.1208 87.2693±4.7303

Discriminator 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001

LogReg 0.0071±0.0004 0.0099±0.0003 0.0143±0.0012 0.0910±0.0210 52.0331±9.1285

MLP 0.7741±0.1436 1.5895±0.0261 1.7491±0.1414 1.4480±0.1441 30.1968±6.3155

Table 2: Additional computational time in seconds needed for the computation of importance weights averaged over 10
seeds and SDGP for ϵ = 1.

C.3 CHOICE OF PRIVACY SPLIT

In Figure 1, we plot the change in evaluation metrics for different values of privacy budget splits. We notice that the impact of the split
parameter decreases the larger ϵ is. Similarly, the variability in the metrics for different δ splits decreases, the larger ϵIW is, where ϵIW
denotes the privacy budget dedicated to the importance weight estimation. While a larger δ split of 30-50% seems beneficial for DP-MLP,
the fraction of ϵ dedicated to the importance weighting model should be chosen relatively small, i.e. 10%. Note that we chose these default
values based on their performance on the Adult, Credit and Spam data set. Tuning them to the underlying data and task characteristics will
be able to improve their results. As hyperparameter tuning is an unsolved problem in DP, we leave the procedure for choosing the optimal
privacy split per data set for future work. We note that an additional intricacy appears in DP because of the noise injection which increases
the variability of the model’s performances.

C.4 MSE OF IMPORTANCE WEIGHT ESTIMATION

For each of our experiments, we compute the mean squared error between the privatised parameters of the logistic regression for
importance weight estimation and the parameters of an unperturbed logistic regression trained on the private data. Please refer to Table 3
for the results. We observe that debiasing almost always decreases the MSE in the low-privacy regimes. For large privacy budgets, the
scale of the perturbations can be negligible for low-dimensional data sets which is why both approaches perform similarly on Iris and
Banknote, but debiasing still helps with larger data sets such as Breast.

C.5 BAYESIAN UPDATING EXPERIMENTAL DETAILS

In addition to the logistic regression ROC-AUC score distributions presented in the main body of the paper, we applied importance
weighted posteriors to updating and learning the parameters of linear regression and multinomial logistic regression models applied to the
TGFB and Iris datasets respectively, see Figures 2a and 2b. It can be seen that in the case of linear regression, the DP-MLP and MLP IW
methods are again very effective, with the performance improving across all SDGPs. Other methods again tend to reduce variance in
the results whilst not damaging performance and so can be seen to be effective in at least ensuring greater robustness and consistency
when learning under synthetic data. In the case of the Iris data, we calculated 1 vs all ROC-AUC scores for each class separately, then
averaged these per-class ROC-AUCs to get a single multi-class average ROC-AUC. Again, MLP and DP-MLP are stand-out in their
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Figure 1: Multiple metrics measured across a range of privacy splits on Breast and Boston averaged over 10 seeds, and
displayed with standard errors. The maximum mean discrepancy (MMD) was included as a measure of divergence between
the weighted SDGP and the test distribution.



ϵ = 1 ϵ = 6SDGP data BetaNoised BetaDebiased BetaNoised BetaDebiased
CGAN Breast 1.4833±0.9603 0.0775±0.0197 0.0024±0.0006 0.0020±0.0004

Banknote 0.0420±0.0211 0.0413±0.0196 0.0014±0.0007 0.0014±0.0007

Iris 8.7522±4.9893 3.4687±1.3044 0.1160±0.0240 0.1290±0.0311

GAN Housing 8.2081±7.7702 1.4406±0.8314 3.7916±3.3246 1.5479±1.0430

DPCGAN Breast 0.0582±0.0165 0.0445±0.0162 0.0015±0.0003 0.0014±0.0003

Banknote 0.0420±0.0211 0.0413±0.0196 0.0022±0.0013 0.0021±0.0012

Iris 0.7834±0.2341 1.2300±0.7050 0.2502±0.1627 0.2806±0.1760

DPGAN Breast 6.0487±3.7927 3.7629±2.2881 0.0251±0.0245 0.0238±0.0234

Banknote 0.0582±0.0353 0.0610±0.0397 0.0062±0.0057 0.0061±0.0056

Iris 2.6486±1.3518 1.3698±1.1554 0.0741±0.0228 0.0864±0.0274

Housing 5.9175±2.8546 0.8398±0.6328 1.9044±1.1426 2.1111±1.3450

Table 3: Mean squared error of the privatised log importance weights logw resp. logw∗ averaged over 10 runs with standard
errors reported in brackets for (ϵ = 1, δ = 10−5) and (ϵ = 6, δ = 10−5) where ϵIW = 0.1ϵ.

performance, significantly improving the performance measured by this metric, especially under synthetic data from the CGAN, DPCGAN
and PrivBayes generators. Similar gains can be seen across the majority of the methods for the DPCGAN, especially at the higher ϵ = 6.

All of these models were implemented in the Turing.jl PPL Ge et al. (2018). We then ran an experiment for each model and dataset
on a defined grid across all seeds, synthetic generators and ϵ values. For each combination, we generated 10,000 samples across 4 chains
(not counting 1,000 discarded warm-up samples per chain) for each of the importance weighting methods, as well as once for a model fit
on the synthetic data with its standard non-weighted posterior, and once for the real data. We used Turing’s implementation of the NUTS
sampling algorithm with a target acceptance ratio of 0.65 for sampling the linear regression models’ parameters, and for the logistic and
multinomial logistic regression models we used HMC with a leapfrog step size of 0.05 and 10 leapfrog steps per iteration. The logistic
and multinomial logistic regression models’ coefficients (including intercepts) were given centred Normal priors with σ = 1. The linear
regression models’ coefficient priors were given the same centred Normal priors with σ = 1; its variance was given a non-informative
prior via a truncated Normal distribution ensuring positivity with σ = 10.

We then took all 10,000 samples and calculated our evaluation metrics on the test set for each sample, storing all of these. We then present
the distributions of metric scores that arise in the included box-plot figures.

C.6 ILLUSTRATIVE EXAMPLE OF THE IMPLICATIONS OF BIAS MITIGATION

Figure 3: Illustrative example of debiasing with
IW on PrivBayes synthesised Banknote data.

In Figure 3, we visualise the benefit of debiasing: We fitted a logistic regression
as a downstream classifier on the private data to get the true β coefficients. The
predicted β coefficients are estimated by training the logistic classifier on the
importance weighted synthetic data. Each dot in the figure plots one dimension
of the predicted β coefficients against its true counterpart for one training run
(out of ten). An optimal classifier would reconstruct the true coefficients. In
this case all lines would be on the diagonal. An unbiased estimator would on
average reconstruct the true coefficients: For each true β coefficient, the predicted
coefficients would be centred around the true value. We observe that coefficients
learned without importance weighting exhibit the largest distance to the diagonal
line, while the importance weighting alternatives push the dots closer to the
diagonal line. Our method, DP-MLP, is particularly successful in decreasing the
bias in the β coefficients.

C.7 COMPLETE UCI RESULTS

The complete experimental results on the UCI data sets can be found in Tables 4 to 7. Each table displays the performance of the different
weight estimators for private and non-private synthetic data generative models for ϵ ∈ {1, 6}, ϵIW = 0.1ϵ and δIW = 0.3δ. We observe
that importance weighting brings significant gains especially in low privacy regimes. For high privacy regimes this effect is reduced as the
SDGP gets closer to the DGP.
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SDGP CGAN DPCGAN DPGAN PrivBayes

ϵ
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.4619±0.1010 0.4717±0.1103 0.5357±0.0752 0.5243±0.1299

BetaNoised 0.5824±0.0931 0.5841±0.0831 0.5487±0.0803 0.6651±0.0884

BetaDebiased 0.5669±0.1237 0.5913±0.1136 0.5998±0.1141 0.5005±0.0793

DP-MLP 0.6299±0.0984 0.5725±0.0859 0.5448±0.0912 0.6143±0.0374

Discriminator 0.5809±0.0840 0.5995±0.0982 0.6475±0.0701 -
LogReg 0.4980±0.0780 0.4908±0.0950 0.4806±0.0806 0.6245±0.1235

MLP 0.7230±0.0791 0.6273±0.0988 0.5770±0.1199 0.6778±0.0923

β
M

SE
↓

None 1.3594±0.3789 1.0460±0.2457 3.8955±0.9764 0.3511±0.0753

BetaNoised 1.4944±0.2321 1.1133±0.1911 4.1565±1.0469 0.4739±0.0469

BetaDebiased 1.3682±0.3080 1.3347±0.2830 4.1694±0.9246 0.8147±0.1690

DP-MLP 0.6109±0.0481 1.0663±0.1411 4.4986±1.2881 0.1962±0.0413

Discriminator 1.0454±0.3012 0.9404±0.1024 3.9049±0.6010 -
LogReg 1.3345±0.2725 0.9557±0.1356 4.1971±1.1035 0.3659±0.0660

MLP 0.6091±0.0546 0.8316±0.1630 4.5109±1.3057 0.1551±0.0162

W
ST

↓

None 0.7226±0.0543 0.7448±0.0423 0.7919±0.0458 0.5055±0.0111

BetaNoised 0.2771±0.0490 0.1014±0.0519 0.1893±0.0266 0.1412±0.0493

BetaDebiased 0.2340±0.0210 0.0989±0.0062 0.1457±0.0143 0.1059±0.0032

DP-MLP 0.3960±0.0561 0.2376±0.0196 0.2613±0.0627 0.3451±0.0253

Discriminator 0.2698±0.0383 0.1696±0.0371 0.1003±0.0003 -
LogReg 0.2341±0.0687 0.1444±0.0406 0.1611±0.0178 0.3531±0.0357

MLP 0.2677±0.0693 0.0967±0.0287 0.0752±0.0261 0.1396±0.0139

ϵ
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.4662±0.1039 0.5202±0.0928 0.5252±0.0844 0.4875±0.1139

BetaNoised 0.5842±0.0900 0.5531±0.1093 0.5603±0.0980 0.6218±0.1304

BetaDebiased 0.6029±0.1100 0.6992±0.0801 0.6445±0.0906 0.5388±0.1258

DP-MLP 0.6007±0.1060 0.6054±0.0951 0.5181±0.0957 0.5639±0.0483

Discriminator 0.5894±0.0829 0.5806±0.1014 0.5909±0.0903 -
LogReg 0.5073±0.0852 0.5353±0.0793 0.4934±0.1051 0.7088±0.0843

MLP 0.7206±0.0774 0.7118±0.0774 0.5923±0.1130 0.6734±0.0881

β
M

SE
↓

None 1.4111±0.3882 1.0262±0.1866 2.0710±0.3284 0.2650±0.0610

BetaNoised 1.2894±0.2726 0.9507±0.3017 2.8284±1.0195 0.3338±0.0701

BetaDebiased 1.2679±0.2854 0.9511±0.3113 2.8256±1.0359 0.3492±0.0719

DP-MLP 0.5928±0.0682 0.7773±0.2286 4.1112±1.1372 0.2559±0.0527

Discriminator 1.0434±0.3014 0.9449±0.2838 2.1203±0.5427 -
LogReg 1.2606±0.2771 0.9604±0.3155 2.8409±1.0311 0.3603±0.0806

MLP 0.6174±0.0523 0.5102±0.1630 3.9403±1.1462 0.1283±0.0252

W
ST

↓

None 0.7399±0.0445 0.6598±0.1077 0.6770±0.0379 0.4255±0.0208

BetaNoised 0.2703±0.0492 0.3032±0.0697 0.2622±0.0229 0.4467±0.0200

BetaDebiased 0.3035±0.0601 0.3171±0.0746 0.2770±0.0332 0.3383±0.0070

DP-MLP 0.4507±0.0722 0.5374±0.0654 0.4445±0.0635 0.4850±0.0160

Discriminator 0.2134±0.0419 0.2168±0.0032 0.2178±0.0037 -
LogReg 0.3090±0.0612 0.2836±0.0742 0.2601±0.0262 0.4591±0.0121

MLP 0.2064±0.0819 0.1343±0.0299 0.2711±0.0235 0.1981±0.0192

Table 4: Results on Iris averaged over 10 seeds.



SDGP CGAN DPCGAN DPGAN PrivBayes

ϵ
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.7408±0.0522 0.8546±0.0213 0.6863±0.0436 0.7630±0.0495

BetaNoised 0.7469±0.0522 0.8495±0.0274 0.6063±0.0510 0.8943±0.0173

BetaDebiased 0.7864±0.0888 0.8729±0.0310 0.5868±0.1005 0.7632±0.0517

DP-MLP 0.7313±0.0613 0.7697±0.0419 0.5657±0.0570 0.8953±0.0299

Discriminator 0.7511±0.0523 0.8695±0.0167 0.7114±0.0424 -
LogReg 0.7986±0.0391 0.8172±0.0327 0.6034±0.0534 0.9102±0.0129

MLP 0.7253±0.0521 0.8291±0.0333 0.5974±0.0627 0.8594±0.0231

β
M

SE
↓

None 15.3278±2.5238 11.0215±1.8377 39.3243±3.7708 8.1724±0.3987

BetaNoised 11.7636±2.1960 8.4298±1.0383 35.2862±4.0365 5.7001±0.1885

BetaDebiased 8.4946±1.7858 8.3508±2.3127 32.9909±5.9024 6.6862±0.1458

DP-MLP 14.6644±2.9599 17.1597±2.5448 36.4618±4.1011 3.5519±0.2895

Discriminator 14.9537±2.5553 12.5471±2.3124 30.9282±5.4283 -
LogReg 11.7777±2.2000 8.4760±1.0406 35.2964±4.0396 5.6751±0.1785

MLP 15.4584±3.0826 17.9390±2.4926 35.5211±4.2147 2.6286±0.3761

W
ST

↓

None 0.6702±0.0282 0.4746±0.0214 0.7442±0.0333 0.3237±0.0162

BetaNoised 0.3106±0.0475 0.2509±0.0436 0.4355±0.0456 0.2318±0.0035

BetaDebiased 0.3837±0.0990 0.4015±0.0766 0.4618±0.0832 0.2369±0.0061

DP-MLP 0.1418±0.0283 0.2035±0.0427 0.4298±0.0433 0.0456±0.0061

Discriminator 0.6366±0.0273 0.3382±0.0399 0.1087±0.0415 -
LogReg 0.3092±0.0470 0.2508±0.0432 0.4348±0.0460 0.2348±0.0034

MLP 0.0494±0.0141 0.0913±0.0259 0.3860±0.0452 0.0021±0.0004

ϵ
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.7212±0.0491 0.8958±0.0179 0.8323±0.0301 0.8357±0.0354

BetaNoised 0.7811±0.0423 0.8771±0.0227 0.8216±0.0320 0.8588±0.0295

BetaDebiased 0.6951±0.0958 0.8992±0.0334 0.7061±0.1083 0.8136±0.0648

DP-MLP 0.6879±0.0547 0.8582±0.0330 0.7445±0.0511 0.8899±0.0148

Discriminator 0.7332±0.0529 0.8976±0.0148 0.8071±0.0362 -
LogReg 0.7953±0.0421 0.8867±0.0207 0.7871±0.0351 0.8668±0.0336

MLP 0.6960±0.0456 0.8599±0.0291 0.8025±0.0212 0.8404±0.0400

β
M

SE
↓

None 19.2959±4.0480 8.3074±1.6718 18.0835±2.5051 7.9052±0.3837

BetaNoised 14.4350±2.3116 6.4683±0.9572 23.0590±3.2307 5.4736±0.1792

BetaDebiased 13.1578±2.9727 5.6890±1.0695 19.1627±6.1430 6.4776±0.1134

DP-MLP 18.7059±3.0658 8.8820±1.4421 24.0433±3.4451 3.0883±0.2703

Discriminator 18.9194±4.0483 8.0682±1.5928 13.6267±1.9313 -
LogReg 14.4464±2.3126 6.4701±0.9581 23.0696±3.2327 5.4706±0.1781

MLP 18.2400±3.1143 9.7111±1.4901 23.0268±3.2550 2.4589±0.3184

W
ST

↓

None 0.6642±0.0270 0.4723±0.0294 0.5645±0.0219 0.2928±0.0118

BetaNoised 0.2507±0.0384 0.3078±0.0231 0.2608±0.0370 0.2269±0.0036

BetaDebiased 0.2316±0.0670 0.2892±0.0442 0.3029±0.0883 0.2176±0.0076

DP-MLP 0.1395±0.0262 0.0957±0.0183 0.1730±0.0413 0.1142±0.0017

Discriminator 0.6303±0.0278 0.3596±0.0470 0.0436±0.0100 -
LogReg 0.2504±0.0384 0.3083±0.0231 0.2607±0.0370 0.2272±0.0035

MLP 0.0658±0.0208 0.0409±0.0104 0.0787±0.0325 0.2025±0.0004

Table 5: Results on Banknote averaged over 10 seeds.



SDGP GAN DPGAN PrivBayes
ϵ
=

1

M
L

P
M

SE
↓

None 1.4464±0.1591 1.8851±0.5262 0.1973±0.0108

BetaNoised 0.6455±0.0942 1.0057±0.1973 0.2200±0.0154

BetaDebiased 0.6421±0.1290 0.9024±0.1244 0.2139±0.0122

DP-MLP 0.8279±0.0974 0.9462±0.1702 0.1877±0.0174

Discriminator 1.5126±0.1639 1.6256±0.2394 -
LogReg 0.6292±0.0909 1.0606±0.2648 0.2515±0.0305

MLP 0.6266±0.1273 1.0979±0.2225 0.1697±0.0079

β
M

SE
↓

None 0.1017±0.0118 0.1867±0.0434 0.0011±0.0002

BetaNoised 0.0601±0.0172 0.1761±0.0948 0.0088±0.0028

BetaDebiased 0.0608±0.0190 0.0667±0.0188 0.0077±0.0022

DP-MLP 0.0363±0.0192 0.1530±0.0812 0.0048±0.0024

Discriminator 0.0940±0.0100 0.1567±0.1825 -
LogReg 0.0707±0.0194 0.0749±0.0279 0.0037±0.0016

MLP 0.0058±0.0007 0.1476±0.0804 0.0008±0.0002

W
ST

↓

None 1.3060±0.0319 2.2013±0.0945 1.3938±0.0231

BetaNoised 1.0060±0.0023 2.0922±0.0419 1.3009±0.0338

BetaDebiased 1.0023±0.0009 2.0930±0.0393 1.2705±0.0290

DP-MLP 1.0036±0.0015 2.0542±0.0184 1.0265±0.0035

Discriminator 0.9472±0.0764 2.0145±0.0141 -
LogReg 1.0070±0.0042 2.2051±0.0819 1.4078±0.0492

MLP 1.0001±0.0001 2.0350±0.0158 1.0072±0.0009

ϵ
=

6

M
L

P
M

SE
↓

None 1.8218±0.1514 1.8016±0.1771 0.1633±0.0074

BetaNoised 0.5318±0.0806 0.6529±0.0814 0.1940±0.0156

BetaDebiased 0.5647±0.1065 0.9025±0.1462 0.1810±0.0131

DP-MLP 0.9737±0.1178 1.0902±0.1486 0.1428±0.0068

Discriminator 1.8398±0.1446 1.8631±0.1986 -
LogReg 0.5501±0.0540 0.9050±0.1553 0.1934±0.0224

MLP 0.4725±0.0736 0.7464±0.1185 0.1581±0.0076

β
M

SE
↓

None 0.1230±0.0110 0.1450±0.0174 0.0009±0.0002

BetaNoised 0.0695±0.0203 0.0608±0.0231 0.0022±0.0006

BetaDebiased 0.0693±0.0207 0.0613±0.0240 0.0018±0.0004

DP-MLP 0.0030±0.0006 0.0354±0.0112 0.0008±0.0002

Discriminator 0.1135±0.0098 0.2274±0.0375 -
LogReg 0.0697±0.0207 0.0606±0.0237 0.0018±0.0004

MLP 0.0063±0.0011 0.0212±0.0060 0.0008±0.0001

W
ST

↓

None 1.3727±0.0249 1.5681±0.0368 1.3306±0.0271

BetaNoised 1.0031±0.0012 1.0615±0.0304 1.3906±0.0410

BetaDebiased 1.0031±0.0012 1.0598±0.0286 1.4106±0.0432

DP-MLP 1.0140±0.0032 1.0338±0.0126 1.2405±0.0133

Discriminator 1.0481±0.0752 1.3844±0.0654 -
LogReg 1.0031±0.0012 1.0623±0.0298 1.4033±0.0406

MLP 1.0001±0.0000 1.0081±0.0045 1.0097±0.0010

Table 6: Results on Boston averaged over 10 seeds.



SDGP CGAN DPCGAN DPGAN PrivBayes

ϵ
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.6801±0.0655 0.6374±0.0421 0.6791±0.0966 0.8366±0.0579

BetaNoised 0.7732±0.0589 0.6110±0.0477 0.6546±0.0727 0.7076±0.0983

BetaDebiased 0.7151±0.1146 0.6820±0.0510 0.7173±0.0842 0.8557±0.0765

DP-MLP 0.7166±0.1038 0.7942±0.0404 0.5686±0.0823 0.7353±0.0887

Discriminator 0.8607±0.0485 0.6992±0.0839 0.7290±0.0720 -
LogReg 0.7141±0.0755 0.6631±0.0469 0.6484±0.1081 0.7618±0.1019

MLP 0.6942±0.1262 0.7730±0.0412 0.7358±0.1017 0.7573±0.0738

β
M

SE
↓

None 2.3646±0.2983 2.0643±0.2012 4.9828±1.5701 2.3904±0.1050

BetaNoised 1.4900±0.1807 2.7532±0.2650 2.5025±0.3763 2.1144±0.2400

BetaDebiased 1.5413±0.2378 2.8337±0.3842 2.2324±1.0446 1.8266±0.2392

DP-MLP 0.9977±0.1617 2.3965±0.2083 3.8865±0.6043 2.3130±0.2195

Discriminator 1.8554±0.3263 1.4591±0.1837 4.0612±0.9523 -
LogReg 1.1940±0.1610 2.6934±0.2667 2.2156±0.3366 1.5333±0.2138

MLP 1.0120±0.1383 2.3999±0.2040 3.8343±0.7032 1.6581±0.2020

W
ST

↓

None 1.8426±0.1329 2.3665±0.0982 1.5853±0.1333 2.1117±0.1740

BetaNoised 1.3109±0.0507 1.4337±0.1114 2.2232±0.2325 1.2322±0.0823

BetaDebiased 1.0649±0.0120 1.8922±0.1237 1.9913±0.3507 1.1825±0.0933

DP-MLP 1.4737±0.1027 1.4570±0.1492 1.0315±0.1415 1.2190±0.0795

Discriminator 1.8814±0.1682 1.0007±0.0004 1.0001±0.0001 -
LogReg 1.4374±0.0467 1.6451±0.1168 2.2953±0.2121 1.4663±0.1152

MLP 1.3056±0.0524 1.6129±0.1404 1.0709±0.1579 1.4141±0.1216

ϵ
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.6177±0.0737 0.9790±0.0058 0.9756±0.0042 0.9435±0.0152

BetaNoised 0.7185±0.0898 0.9715±0.0031 0.9710±0.0065 0.9699±0.0121

BetaDebiased 0.9070±0.0434 0.9723±0.0033 0.9724±0.0066 0.9820±0.0064

DP-MLP 0.7203±0.1028 0.9703±0.0040 0.9728±0.0059 0.9754±0.0063

Discriminator 0.8712±0.0471 0.9763±0.0071 0.9737±0.0065 -
LogReg 0.6869±0.0760 0.9706±0.0033 0.9719±0.0049 0.9825±0.0061

MLP 0.6899±0.1290 0.9584±0.0080 0.9767±0.0043 0.9506±0.0250

β
M

SE
↓

None 2.3602±0.4035 0.9886±0.2287 1.0653±0.1229 0.9142±0.1575

BetaNoised 1.2400±0.1637 1.0329±0.0732 1.1586±0.1312 1.0465±0.1358

BetaDebiased 0.9388±0.0802 1.0150±0.0783 1.1617±0.1936 0.9843±0.1766

DP-MLP 0.9949±0.1486 1.0119±0.0698 0.8969±0.0837 1.3442±0.0900

Discriminator 1.7588±0.3421 0.8539±0.2323 0.5423±0.0457 -
LogReg 1.2221±0.1598 1.0310±0.0719 1.1484±0.1276 1.0234±0.1274

MLP 1.0845±0.1210 1.0953±0.0844 0.9275±0.0938 1.5354±0.1343

W
ST

↓

None 1.8436±0.1257 1.3378±0.0282 1.6449±0.0849 2.0437±0.2188

BetaNoised 1.4164±0.0483 0.6526±0.0463 1.5485±0.0635 1.4808±0.0943

BetaDebiased 1.3314±0.0459 0.6641±0.0482 1.5156±0.0935 1.4133±0.1346

DP-MLP 1.7176±0.1206 0.7931±0.0380 1.5551±0.0826 1.4923±0.0685

Discriminator 1.8523±0.1553 0.2363±0.0425 1.1020±0.0158 -
LogReg 1.4140±0.0493 0.6597±0.0470 1.5281±0.0622 1.4824±0.0952

MLP 1.3487±0.0591 0.3762±0.0383 1.2309±0.0387 1.3406±0.0792

Table 7: Results on Breast averaged over 10 seeds.



C.8 COMPARISON TO EXPERIMENTAL RESULTS REPORTED BY RELATED WORK

We compare our results to PATE-GAN and DPGAN as DP synthetic data generators (Jordon et al., 2019; Xie et al., 2018). The PATEGAN
implementation is taken from https://github.com/vanderschaarlab/mlforhealthlabpub. For DPGAN we chose the
code from the DataSynthesizer package. In the implementation of the PATE-GAN method, Jordon et al. (2019) generate 50 independent
synthetic data sets for each function call, returning the best synthetic data set as defined by a comparison with non-private validation data.
The relative level of privacy violation in these situations is unknown, making interpretation of results and comparison between methods
in tables and figures challenging. On re-implementing the methods to generate DP synthetic data, we find a substantial and significant
drop in performance, which nonetheless is improved through bias mitigation. Please see the GitHub repository for further results and an
illustration why PATE GAN underperforms.
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