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ADDITIONAL NUMERICAL RESULTS

Figure 1 compares the warm-start (called NP-WS) version
with the damped-guidance, or imitation-learning-type expert
guidance (called NP). Both versions perform far better than
the RL policy.

Figure 1: Performance comparison of two versions of the
algorithm: warm start (κ1 = 1, ı̂ = 1) vs. imitation learning
(κi = (1 + i)−2, ı̂ = 20, in this example).

Figure 2 illustrates the episodic constraint violation cost for
two benchmark constrained RL algorithms, CPO of Achiam
et al. [2017], and PPO-Lagrangian of Ray et al. [2019].
Each episode duration is 30 time steps and in each time
step t, we enforce a cost of 1 if the amount available in
the liquid instrument is less than the cumulative account
payable up through time t. Observe that CPO fails to learn
the constraints during training. The PPO-Lagrangian method
is able to bring down the episodic cost to 0 during training
(the limit of the episodic cost is set to 0), but as shown in
the main paper (see Figure 2(c)), the learned PPO-L policy
is not able to satisfy the constraints during execution.

IMPLEMENTATION DETAILS

Discretization of the stochastic program scenario tree
Consider a finite scenario tree formulation of a stochastic
programming problem, such that the set of nodes in the

scenario tree at time stage t are denoted Nt. A node denotes
a point in time when a realisation of the random process
becomes known and a decision is taken. Each node repli-
cates the data of the optimization problem, conditioned on
the probability of visiting that node from its parent node.
A path from the root to each leaf node is referred to as a
scenario; its probability of occurrence, ps, is the product of
the conditional probabilities of visiting each of the nodes on
that scenario path. The discretized model-based stochastic
program is thus:

max
∑

s=1...S

Fs(x, ξ) :=
∑

s=1...S

ps
∑

t=1...T

ft(xs(t)). (1)

The non-anticipativity constraints are critical for the im-
plementability of the policy but they couple the scenario
sub-problems by requiring that the action xt at time t is
the same across scenarios (i.e., sample paths) sharing the
sample path up to and including time t. For each ξ ∈ Ξ,
these coupling constraints are expressed as:

x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . xT (ξ1 . . . ξT−1). (2)

Using the discretized formulation of (1), and following Rosa
and Ruszczyński [1996] we can rewrite (2) in a manner that
facilitates relaxation of those constraints: Define the last
common stage of two scenarios s1 and s2 as

tmax(s1, s2) := max{t̂ : s1(t) = s2(t), t = 1, . . . t̂}, (3)

and then re-order the scenarios s = 1 . . . S, so that at every
s, the scenario s + 1 has the largest common stage with
scenario i for all scenarios s′ > s, that is tmax(s, s+ 1) :=
max{tmax(u, v) : v > u}. Then, define the sibling of sce-
nario s at time stage t as a permutation ν(s, t) := s+ 1 if
tmax(s, s + 1) ≥ t and ν(s, t) := min{t′ : tmax(s, t′) ≥
t} otherwise. The inverse permutation shall be denoted
ν−1(s, t). Note that the sibling of a scenario depends upon
the time stage, and that a scenario with no shared deci-
sions at a time stage has by definition itself as sibling. Us-
ing the above, Rosa and Ruszczyński [1996] re-define the
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Figure 2: Episodic (episode length = 30) constraint violation cost during training for (a) CPO; and (b) PPO-Lagrangian.

constraints enforcing measurability in terms of the sibling
function as follows:

xs(t) = xν(s,t)(t) ∀(s, t), s 6= ν(s, t). (4)

Equation (4) is convenient in the primal-dual formulation
in terms of discrete scenarios, presented next. We are in-
terested in maintaining the separability of the subproblems
which depend only on individual scenarios of the random
variable to facilitate handling large problems via scenario-
based decomposition. To do so, we relax the constraints
using the following formulation

M := {x : M1x1(ξ) + . . .+MSxS(ξ) = 0}, (5)

where the matrices in (5) are defined so that each Ms is
a matrix of -1, 0 and 1 such that at the root node x11 =
x12, x12 = x23 = · · ·x1,s−1 = x1,s, at the stage t = 2,
there are as many such sets of equalities as children nodes
emanating from the root node, and so on up to stage T−1. At
stage T , all nodes are leaves and no such linking constraints
are required. The projection of a point xi onto the subspace
M, PM[xi(·)] can be computed by taking the conditional
expectation of xi, Eξ | ξ1,...ξi−1

. Lagrange relaxation of the
measurability constraints (4) gives rise to the following
Lagrange function, in terms of the discrete scenarios s =
1 . . . S:

L(x, λ) =
∑

s=1...S

ps
∑

t=1...T

ft(xs(t))+∑
s=1...S

∑
t=1...T−1

λs(t)(xs(t)− xν(s,t)(t)). (6)

The scenario subproblems are re-defined as a function of
the inverse permutation of the sibling function:

min
xs∈G′s

Ls(xs, λs) = ps
∑

t=1...T

ft(xs(t))+∑
t=1...T−1

(λs(t)− λν−1(s,t)(t))xs(t) (7)

for each s = 1 . . . S. The dual problem is given by

max
λ

D(λ) := min
x∈G′

L(x, λ). (8)

It is possible to further speed up convergence of our NP
algorithm in practice using the approach of Zehtabian and
Bastin [2016]. This approach monitors the primal and dual
gap terms in convergence criteria separately to update the
penalty parameters so as to reduce the convergence gap
quickly.
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