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In the supplementary materials for the paper, the following are provided:

• The detailed experimental setup section

• The description and experimental setup of Bayesian and Ensembling training techniques

• Additional results, including:

– The natural accuracy of target Neural Networks;
– The proportions of vanishing gradients of cSGLD surrogate compared to DNN surrogate;
– The intra-architecture transfer success rates on cSGLD and Deep Ensemble of 1, 2, 5 and 15 DNNs surrogates;
– The inter-architecture transfer success rates of single architecture surrogates;
– The intra-architecture transfer success rate of six Bayesian and Ensemble training methods attacked by L2

I-FGSM;
– The intra-architecture transfer success rate combined with test-time transformations on CIFAR-10;
– The transfer rate of cSGLD with respect to the number of cycles and samples per cycle;

• An illustration of the cSGLD cyclical learning rate schedule;

• A diagram of the relationships between gradient-based attacks;

• The algorithm applied to perform approximate Bayesian model averaging efficiently;

• Details on hyperparameters, including:

– The transfer success rate of iterative attacks with respect to the number of iterations;
– The tuning of the hyperparameter of the Skip Gradient Method technique to extend it to PreResNet110;
– The hyperparameters used to train and attack models.

A EXPERIMENTAL SETUP

Datasets. We consider ImageNet (ILSVRC2012; Russakovsky et al. 2015), CIFAR-10 [Krizhevsky, 2009] and MNIST. In
all cases, we train the surrogate and target models on the entire training set. For each CIFAR-10 and MNIST target model,
we select all the examples from the test set that are correctly predicted by it. In the case of ImageNet, we use a random
subset of 5000 correctly predicted test images.

Architectures. We cover a diverse set of architectures in terms of heterogeneity (similar and different families of architecture),
computation cost, and release date. For ImageNet, we select five architectures with 3× 224× 244 input size. Three classical
architectures: ResNet-50 He et al. [2016a]1, ResNeXt-50 32x4d Xie et al. [2017] and Densenet-121 Xie et al. [2017]; and
two mobile architectures: MNASNet 1.0 Tan et al. [2018] and EfficientNet-B0 Tan and Le [2019]. Following the work
of Ashukha et al. [2020], we consider the following five architectures for CIFAR-10: PreResNet110 He et al. [2016b],

1Ashukha et al. [2020] study ResNet-50 only on ImageNet. We used their shared trained models as surrogate DNNs.
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Figure 1: Illustration of the cSGLD cyclical learning rate schedule (red) and the traditional decreasing learning rate
schedule (blue). Each cSGLD cycle is composed of an exploration phase (burn-in period of MCMC algorithms — red doted)
and of a sampling phase (red plain). Figure taken from Zhang et al. (2020).

PreResNet164, VGG16BN, VGG19BN Simonyan and Zisserman [2015], and WideResNet28x10 Zagoruyko and Komodakis
[2016]. We study three architectures on MNIST: “FC” a fully connected neural network with two hidden layers 1200-1200,
“Small FC” with a single fully connected hidden layer of size 512, and “CNN” a convolutional neural network composed of
two convolutional layers with 32 filters each followed by two fully connected hidden layers 200-200.

Target models. The target models are deterministic DNNs. For ImageNet, we use the pre-trained models provided by
PyTorch Paszke et al. [2019] and the pre-trained EfficientNet-B0 provided by PyTorch Image Models (timm). In the case of
CIFAR-10, they are trained using Adam optimizer for 300 epochs with step-wise learning rate decay that divides it by 10
every 75 epochs (MNIST: 50 epochs in total, learning rate divided by 10 every 20 epochs). The benign accuracy of all target
models exceeds 73% (ImageNet), 83% (CIFAR-10) and 98% (MNIST); see Table 1 below exact values.

Table 1: Top-1 natural test accuracy of target DNNs.

Dataset Target DNN Benign Test
Accuracy

CIFAR-10

PreResNet110 93.26 %
PreResNet164 93.03 %
VGG16bn 83.68 %
VGG19bn 83.62 %
WideResNet28x10 92.13 %

ImageNet

ResNet50 76.15 %
ResNeXt50 32x4d 77.62 %
Densenet121 74.65 %
MNASNet 1.0 73.51 %
EfficientNet-B0 77.70 %

MNIST
CNN 99.33 %
FC 98.65 %
Small FC 98.41 %

Surrogate models (Deep Ensemble). For CIFAR-10 and MNIST, the DNNs used to form surrogate ensembles are trained
using the same process as the target models. Therefore, the comparison between deterministic DNNs and cSGLD is fair,
since one can expect the deterministic DNNs surrogate to be “close” to the target. As for ImageNet, we retrieve an ensemble
of 15 ResNet-50 models trained independently by Ashukha et al. [2020] using SGD with momentum during 130 epochs. For
the RQ2 experiments, we train similarly one model for every 4 other ImageNet architectures.

Surrogate models (cSGLD). Following the work of Ashukha et al. [2020] and Zhang et al. [2020], we train models with
cSGLD on CIFAR-10 for 6 learning rate cycles (which, as our RQ4 experiments reveal, is where the transfer rate starts
plateauing). cSGLD performs 5 cycles on ImageNet, and 10 on MNIST. The learning rate is set with cosine annealing
schedule for fast convergence. Each cycle lasts 45 on ImageNet, 50 epochs on CIFAR-10 and 10 on MNIST. The last epochs



Algorithm 1 Variant of I-FGSM attack to perform approximate Bayesian Model Averaging efficiently on numerous models
from several architectures

Input: original example (x, y), SA ordered sets of model parameters (θ1s)
S
s=1, . . . , (θ

SA
s )Ss=1 sampled from the corres-

ponding posterior distribution θis ∼ p(θs|D), number of iterations niter, perturbation p-norm ε, step-size α
Output: adversarial example xadv
Shuffle each ordered set of model samples (θ1s)

S
s=1, . . . , (θ

SA
s )Ss=1

xadv ← x
for i = 1 to niter do
xadv ← xadv +

α
SA

∑SA

a=1∇L(xadv; y, θ
a
i mod S)

xadv ← project(xadv, Bε[x])
xadv ← clip(xadv)

end for

of every cycle form the sampling phase: noise is added and one sample is drawn at the end of each epoch. On CIFAR-10, we
obtain 5 samples per cycle (resp. 3 on ImageNet and 4 MNIST), so 30 samples in total (resp. 15 and 20). An illustration of a
cSGLD cyclical learning rate schedule is in supplementary materials. To train ResNet-50 models on ImageNet, we re-use
the original cSGLD hyperparameters.

Surrogate models (other training methods). Additionally, to Deep Ensemble cSGLD and following Ashukha et al. [2020],
we consider 2 Bayesian Deep Learning techniques (SWAG and VI) and 2 Ensemble ones (SSE and FGE). We train every
technique on CIFAR-10 and cSGLD and SWAG on ImageNet. We retrieve trained Deep Ensemble, SSE, FGE and VI
ImageNet models from Ashukha et al. [2020]. Technique descriptions and experimental setup of surrogates trained with
SWAG, VI, FGE, or SSE are detailed below in the Bayesian and Ensemble Training Techniques section.
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Figure 2: Relationships between gradient-based attacks.

Adversarial attacks. We applied our variant of 4 gradient-based attacks as described in the approach section. The attacker’s
goal is misclassification (untargeted adversarial examples). We perform both 2-norm and∞-norm bounded adversarial
attacks, and report means and standard deviations computed on 3 random seeds. In accordance to values commonly used in
the literature Croce and Hein [2020], the maximum perturbation norm ε is set respectively to 0.5 and 4

255 on CIFAR-10, and
respectively to 3 and 4

255 on ImageNet. MNIST ones are respectively 3 and 0.1. The step-size α is set to ε
10 . We choose to

perform 50 iterations such that the transferability rates plateaus for all iterative attacks (I-FGSM, MI-FGSM and PGD) on
both norms and both datasets (see Figures 4 and 5 below). PGD runs with 5 random restarts. FGSM aside, every iteration
computes the gradient of 1 model per architecture. Therefore, the attack computation cost and volatile memory are not
multiplied by the size of the surrogate, except for FGSM which computes its unique gradient against all available models.
cSGLD samples are attacked in random order. The MI-FGSM decay factor is set to 0.9.

Test-time transformations. In the dedicated section, we consider three test-time transformations applied during attack
designed for transferability (see related work section): Ghost Networks Li et al. [2018], Input Diversity Xie et al. [2019] and
Skip Gradient Method Wu et al. [2020]. We implemented the first two in PyTorch with their original hyperparameters. To
extend Input Diversity to the smaller input sizes of CIFAR-10, we keep the same maximum resize ratio of 0.9. We reuse
the original implementation of the third one on ResNet50, and extend it to PreResNet110 (we set its hyperparameter via
grid-search, see Figure 8 below).



Implementation. The source code of the experiments are publicly available on GitHub2. Our attack is built on top of the
Python ART library Nicolae et al. [2018]. cSGLD, VI, SSE, and FGE models were trained thanks to the implementation of
Ashukha et al. [2020] available on GitHub3. All models were trained with PyTorch Paszke et al. [2019]. We use EfficientNet-
B0 from timm4. We train SWAG on ImageNet with the original implementation Maddox et al. [2019]. We use the following
software versions: Python 3.8.8, Pytorch 1.7.1 (1.9.0 for Flops measurement), torchvision 0.8.2, Adversarial Robustness
Toolbox 1.6.0, and timm 0.3.2.

Flops. We measure the training computational complexity in Flops using the PyTorch profiler. The computation overhead of
one epoch with cSGLD compared to one with SGD/Adam is negligible. The main difference is the addition of noise to the
weights during the sampling phase. On CIFAR-10, the overhead of 1 cSGLD epoch of PreResNet110 with added noise
compared to one of a DNN trained with Adam (SGD) is 0.0187% Flops (respectively 0.0146% for ResNet50 on ImageNet).

Infrastructure. Experiments were run on Tesla V100-DGXS-32GB GPUs. The server has the following specifications:
256GB RDIMM DDR4, CUDA version 10.1, Linux (Ubuntu) operating system.

B BAYESIAN AND ENSEMBLE TRAINING TECHNIQUES

Following the work of Ashukha et al. [2020], we consider the following training techniques: Deep Ensemble Lakshminaray-
anan et al. [2016], cSGLD Zhang et al. [2020], SWAG Maddox et al. [2019], VI, SSE Huang et al. [2017], and FGE Garipov
et al. [2018]. For computational limitations, we evaluate them on a single attack run (one random seed) of 5000 images.
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Figure 3: Intra-architecture L∞ I-FGSM success rate with respect to the training computational complexity of six Bayesian
and Ensemble methods. Every curve starts with one model, and each successive point is obtained by forming an ensemble
with one more model.

Deep Ensemble. Deep Ensemble Lakshminarayanan et al. [2016] simply trains several DNNs independently with random
initialization and random subsampling (mini-batch on shuffled data in practice). All DNNs have the same standard
hyperparameters for training. For classification, predictions of individual DNNs are averaged. We train 15 PreResNet110, 4
PreResNet164, 4 VGG16bn, 4 VGG19bn, and 4 WideResNet28x10 DNNs on CIFAR-10. We retrieve 15 ResNet50 DNNs
trained by Ashukha et al. [2020] on ImageNet, and trained on our own 1 DNN for each of the remaining studied architectures
(ResNeXt50 32x4d, DenseNet121, MNASNet 1.0, and EfficientNet-B0).

cSGLD. We refer the reader to the approach section for a detailed description of cyclical Stochastic Gradient Langevin
Dynamics. Figure 1 illustrates both the cyclical cosine annealing learning rate schedule and the separation of each cycle into
an exploration phase (called the burn-in period of MCMC algorithm) and a sampling phase.

SWAG. Stochastic Weight Averaging-Gaussian (SWAG) Maddox et al. [2019] is a Bayesian Deep Learning method that fits
a Gaussian onto SGD iterates to approximate the posterior distribution over weights. Its first moment is the SWA solution,

2https://github.com/Framartin/transferable-bnn-adv-ex
3https://github.com/bayesgroup/pytorch-ensembles
4https://github.com/rwightman/pytorch-image-models
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and its second moment a diagonal plus low-rank covariance matrix. Both are estimated from SGD iterates with constant
learning rate (0.001 on ImageNet and 0.01 on CIFAR-10). On ImageNet, SWAG performs 10 additional epochs to collect
SGD iterates from one of the Deep Ensemble DNNs. On CIFAR-10, a regular pre-training phase of 160 epochs precedes
140 epochs to collect checkpoints. Once fitted, models are sampled from the Gaussian distribution. For every sample, batch
normalization statistics are updated in a forward pass over the entire CIFAR-10 train set and over a random subset of 10%
on ImageNet. Apart from the fixed initial cost, the marginal computational cost to obtain a sample is very low. We sample
a maximum of 50 models because iterative attacks perform 50 iterations of one model per iteration, and further samples
would be discarded. Thus, the line corresponding to SWAG in Figure 3 is shorter than the ones of other methods. The rank
of the estimated covariance matrix is 20. Batch-size is 128 on CIFAR-10, and 256 on ImageNet.

VI. Variational Inference (VI) approximates the true posterior distribution with a variational approximation, here a fully-
factorized Gaussian distribution, and maximizes a corresponding lower bound. A Gaussian prior is chosen. Once trained,
the variational approximation is used as the posterior. There is no additional sampling phase to perform Bayesian model
averaging. Therefore, we cannot tune the number of samples and a single VI point is plotted in Figure 3. We follow the
solutions of Ashukha et al. [2020] to avoid underfitting: pre-training and annealing of β. The first moment of the Gaussian
variational approximation is initially set to a DNN pre-trained similarly to Deep Ensemble (300 epochs on CIFAR-10 with
initial learning rate of 10−4, and 130 epochs on ImageNet starting at 10−3). The log of its second moment is initially set to
−5 on CIFAR-10 and −6 on ImageNet, and further optimized for 100 epochs (45 on ImageNet) with Adam and a learning
rate of 10−4. β is set to 10−5 on CIFAR-10 and 10−4 on ImageNet. Batch-size is 128 on CIFAR-10, and 256 on ImageNet.
On MNIST, we train VI using the code and the hyperparameters of Carbone et al. [2020].

SSE. Snapshot ensembles technique Huang et al. [2017] is the foundation of cSGLD. The learning rate is cyclical with a
cosine annealing schedule. Contrary to cSGLD, SSE saves a single snapshot per cycle and does not add gradient noise. The
cycles are 40 epochs long on CIFAR-10, 45 on ImageNet. The maximum learning rate is 0.2, batch size is 64 on CIFAR-10,
respectively 0.1 and 256 on ImageNet.

FGE. Fast Geometric Ensembling Garipov et al. [2018] is a method developed after the empirical observation of Mode
Connectivity on CIFAR-10 and CIFAR-100: it’s possible to find a path in the parameters space that connects two independ-
ently trained DNNs such that the models along the path have low loss and high test accuracy. In practice, it uses a cyclical
triangular learning rate and collects one model during each cycle. It is quite similar to SSE, except for the learning rate
schedule, the much shorter cycles (4 epochs on CIFAR-10, 2 epochs on ImageNet), and a pre-training phase. Pre-training
lasts for 160 epochs on CIFAR-10. On ImageNet, FGE is initialized from one Deep Ensemble checkpoint. The learning rate
varies between 5× 10−5 and 5× 10−3 on CIFAR-10 and 10−6 and 10−4 on ImageNet. Batch-size is 128 on CIFAR-10,
and 256 on ImageNet.

HMC. Hamiltonian Monte Carlo (HMC) is considered a golden standard to train BNN. We trained the small FC architecture
on MNIST, using the code and the hyperparameters of Carbone et al. [2020]. Unfortunately, HMC does not scale to larger
DNNs, even on MNIST.



C VANISHING GRADIENTS

Table 2: Proportion of vanished gradients of each 15 individual models and of the ensemble of 15 models (in %). Gradients
disappear before and after averaging in similar proportion (except in one case for VI where there is more gradient vanishing
after averaging). A gradient vanishes if its L2 norm is lower than 10−8, the numerical tolerance of the Adversarial Robustness
Toolbox library. Gradients are on 10 000 original test examples. Means and standard deviations of 15 models are reported
when not ensembled.

Dataset Architecture Surrogate
Vanished

individual
model gradients

Vanished ensemble
gradients (averaging)

ImageNet ResNet50
cSGLD (ours) 0.06 ±0.06 0.00
VI 0.15 ±0.02 0.05
DNN 0.11 ±0.03 0.00

CIFAR-10 PreResNet110
cSGLD (ours) 3.04 ±0.72 2.52
VI 2.79 ±0.11 2.08
DNN 59.15 ±0.73 63.96

MNIST

CNN cSGLD (ours) 30.94 ±2.00 31.67
DNN 91.53 ±2.36 94.20

FC
cSGLD (ours) 11.16 ±0.51 11.31
VI 84.73 ±1.95 91.72
DNN 90.60 ±1.71 92.14

Small FC

cSGLD (ours) 4.63 ±0.48 4.71
VI 60.61 ±4.61 82.00
HMC 85.61 ±0.02 85.62
DNN 77.56 ±2.84 79.88



D INTRA-ARCHITECTURE TRANSFERABILITY

Table 3: Intra-architecture transfer success rates of four attacks on PreResNet110 (CIFAR-10) and ResNet50 (ImageNet), in
%. Bold is best. Higher is better.

Dataset Attack Surrogate L2 Attack L∞ Attack Nb training
epochs

Nb backward
passes

ImageNet

I-FGSM

cSGLD 94.41 ±0.46 90.77 ±0.09 225 50
1 DNN 64.95 ±0.54 57.79 ±0.17 130 50
2 DNNs 80.39 ±0.83 74.25 ±0.71 260 50
5 DNNs 94.53 ±0.43 92.81 ±0.45 650 50
15 DNNs 98.51 ±0.11 98.28 ±0.16 1950 50

MI-FGSM

cSGLD 93.42 ±0.73 93.61 ±0.41 225 50
1 DNN 61.11 ±0.35 63.70 ±0.21 130 50
2 DNNs 77.93 ±0.44 79.27 ±0.76 260 50
5 DNNs 94.41 ±0.47 95.32 ±0.25 650 50
15 DNNs 98.89 ±0.13 99.19 ±0.13 1950 50

PGD (5 restarts)

cSGLD 91.81 ±0.38 88.76 ±0.24 225 250
1 DNN 57.47 ±0.52 53.79 ±0.45 130 250
2 DNNs 74.04 ±0.47 70.90 ±0.41 260 250
5 DNNs 91.99 ±0.41 91.27 ±0.59 650 250
15 DNNs 97.83 ±0.20 97.65 ±0.21 1950 250

FGSM

cSGLD 58.91 ±0.11 67.17 ±0.26 225 15
1 DNN 37.37 ±0.19 44.55 ±0.72 130 1
2 DNNs 46.73 ±0.34 53.91 ±0.60 260 2
5 DNNs 58.17 ±0.18 65.53 ±0.10 650 5
15 DNNs 68.48 ±0.52 76.57 ±0.62 1950 15

CIFAR-10

I-FGSM

cSGLD 92.38 ±0.23 92.74 ±0.33 300 50
1 DNN 43.17 ±0.97 77.59 ±0.01 300 50
2 DNNs 52.08 ±1.03 84.75 ±0.20 600 50
5 DNNs 58.74 ±0.98 94.81 ±0.17 1500 50
15 DNNs 62.08 ±0.92 97.83 ±0.03 4500 50

MI-FGSM

cSGLD 92.29 ±0.25 94.20 ±0.14 300 50
1 DNN 72.34 ±0.23 80.43 ±0.04 300 50
2 DNNs 84.10 ±0.33 90.70 ±0.07 600 50
5 DNNs 91.66 ±0.26 97.04 ±0.07 1500 50
15 DNNs 93.87 ±0.30 98.30 ±0.11 4500 50

PGD (5 restarts)

cSGLD 91.65 ±0.33 92.10 ±0.25 300 250
1 DNN 51.08 ±0.10 77.58 ±0.38 300 250
2 DNNs 60.60 ±0.06 83.67 ±0.27 600 250
5 DNNs 67.55 ±0.21 94.19 ±0.07 1500 250
15 DNNs 70.42 ±0.23 97.37 ±0.06 4500 250

FGSM

cSGLD 43.13 ±0.00 58.85 ±0.01 300 30
1 DNN 20.92 ±0.00 38.89 ±0.01 300 1
2 DNNs 23.75 ±0.00 45.83 ±0.01 600 2
5 DNNs 25.60 ±0.00 54.62 ±0.01 1500 5
15 DNNs 26.71 ±0.00 61.81 ±0.00 4500 15



Table 4: Intra-architecture transfer success rates of four attacks on the FC architecture (MNIST), in %. Bold is best. Higher
is better.

Dataset Attack Surrogate L2 Attack L∞ Attack Nb training
epochs

Nb backward
passes

MNIST

I-FGSM

cSGLD 97.65% ±0.02 41.49% ±0.02 50 50
1 DNN 17.17% ±0.00 34.53% ±0.00 50 50
2 DNNs 18.52% ±0.01 36.44% ±0.01 100 50
5 DNNs 26.21% ±0.10 43.12% ±0.16 250 50
15 DNNs 26.46% ±0.19 45.22% ±0.27 750 50

MI-FGSM

cSGLD 97.62% ±0.05 42.07% ±0.09 50 50
1 DNN 80.72% ±0.00 34.52% ±0.00 50 50
2 DNNs 82.63% ±0.05 39.83% ±0.06 100 50
5 DNNs 91.83% ±0.12 44.74% ±0.23 250 50
15 DNNs 92.08% ±0.09 46.99% ±0.37 750 50

PGD (5 restarts)

cSGLD 97.78% ±0.04 41.64% ±0.18 50 250
1 DNN 31.99% ±0.08 34.80% ±0.07 50 250
2 DNNs 33.61% ±0.07 37.26% ±0.17 100 250
5 DNNs 43.27% ±0.37 43.61% ±0.29 250 250
15 DNNs 44.56% ±0.29 45.50% ±0.29 750 250

FGSM

cSGLD 75.09% ±0.00 34.90% ±0.00 50 20
1 DNN 8.62% ±0.00 22.52% ±0.00 50 1
2 DNNs 7.42% ±0.00 25.76% ±0.00 100 2
5 DNNs 7.95% ±0.00 29.52% ±0.00 250 5
15 DNNs 7.52% ±0.00 31.08% ±0.00 750 15



E INTER-ARCHITECTURE TRANSFERABILITY

Table 5: Inter-architecture transfer success rates of I-FGSM of single architecture surrogate on ImageNet (in %). All
combinations of surrogate and targeted architectures are evaluated. Diagonals are intra-architecture. 1 DNN and cSGLD
have similar computation budget (135 epochs). Bold is best. Higher is better.

Target Architecture

Norm Surrogate
Architecture Surrogate ResNet50 ResNeXt50 DenseNet121 MNASNet EfficientNetB0

L2

ResNet50 cSGLD 84.93 ±0.59 74.70 ±0.91 71.32 ±0.63 60.09 ±0.60 39.70 ±0.29

1 DNN 56.98 ±0.62 41.13 ±0.97 29.81 ±0.33 27.90 ±0.43 16.39 ±0.46

ResNeXt50 cSGLD 79.25 ±0.24 77.34 ±0.39 68.53 ±0.19 62.16 ±0.19 43.51 ±0.62

1 DNN 37.48 ±0.52 36.35 ±0.22 23.77 ±0.41 23.69 ±0.21 14.32 ±0.24

DenseNet121 cSGLD 63.23 ±1.16 59.89 ±1.12 73.28 ±0.45 60.84 ±0.33 40.27 ±0.44

1 DNN 32.61 ±0.29 32.06 ±0.61 39.18 ±0.47 32.01 ±0.44 17.72 ±0.49

MNASNet cSGLD 7.81 ±0.19 5.97 ±0.37 9.81 ±0.31 30.41 ±1.45 15.46 ±0.44

1 DNN 7.04 ±0.51 5.29 ±0.36 8.41 ±0.20 32.65 ±0.22 13.13 ±0.06

EfficientNetB0 cSGLD 18.93 ±2.17 14.16 ±1.69 19.89 ±1.21 65.97 ±3.60 49.41 ±3.64

1 DNN 15.15 ±0.30 13.33 ±0.33 16.12 ±0.71 58.73 ±0.25 48.85 ±0.56

L∞

ResNet50 cSGLD 78.67 ±1.19 65.21 ±1.48 61.54 ±0.83 51.75 ±1.39 31.11 ±1.13

1 DNN 48.03 ±0.94 32.17 ±0.43 23.37 ±0.34 22.60 ±0.40 12.59 ±0.21

ResNeXt50 cSGLD 71.67 ±1.00 69.33 ±0.85 59.18 ±1.14 54.75 ±1.33 35.13 ±0.71

1 DNN 31.19 ±0.42 28.68 ±0.76 19.12 ±0.07 19.53 ±0.51 11.20 ±0.33

DenseNet121 cSGLD 54.13 ±1.70 50.66 ±1.62 65.80 ±0.66 53.43 ±1.30 32.49 ±0.36

1 DNN 25.49 ±0.81 23.73 ±0.59 30.78 ±0.21 26.05 ±0.66 13.41 ±0.20

MNASNet cSGLD 6.77 ±0.29 4.72 ±0.27 8.26 ±0.36 25.27 ±1.83 12.21 ±0.84

1 DNN 6.52 ±0.23 5.06 ±0.12 7.83 ±0.13 29.19 ±0.05 11.13 ±0.16

EfficientNetB0 cSGLD 17.81 ±1.58 13.91 ±1.45 19.71 ±1.29 63.67 ±3.16 46.91 ±3.44

1 DNN 15.83 ±0.32 13.51 ±0.52 16.78 ±0.38 60.14 ±0.37 50.16 ±0.64



Table 6: Inter-architecture transfer success rates of I-FGSM of single architecture surrogate on CIFAR-10 (in %). All
combinations of surrogate and targeted architectures are evaluated. Diagonals are intra-architecture. Symbols ⋆ indicate 1
DNN having higher transferability than cSGLD. 1 DNN and cSGLD have similar computation budget (300 epochs). Bold is
best. Higher is better.

Target Architecture

Norm Surrogate
Architecture Surrogate PreResNet110 PreResNet164 VGG16bn VGG19bn WideResNet

L2

PreResNet110
cSGLD 88.96 ±0.02 88.57 ±0.00 26.18 ±0.02 24.38 ±0.00 63.35 ±0.01

1 DNN 34.42 ±0.00 34.39 ±0.01 12.66 ±0.01 12.54 ±0.00 26.29 ±0.00

4 DNNs 50.50 ±0.00 50.49 ±0.00 27.45 ±0.01 27.30 ±0.00 46.10 ±0.00

PreResNet164
cSGLD 88.28 ±0.01 87.52 ±0.01 25.83 ±0.01 23.64 ±0.01 62.79 ±0.01

1 DNN 33.89 ±0.00 34.36 ±0.01 11.93 ±0.00 12.07 ±0.01 25.95 ±0.01

4 DNNs 50.36 ±0.01 50.45 ±0.00 26.79 ±0.01 27.13 ±0.00 45.94 ±0.00

VGG16bn
cSGLD 69.22 ±0.06 69.03 ±0.03 43.70 ±0.04 38.54 ±0.02 55.62 ±0.07

1 DNN 27.22 ±0.04 27.23 ±0.05 29.28 ±0.08 28.73 ±0.02 22.22 ±0.00

4 DNNs 55.14 ±0.06 54.96 ±0.04 73.65 ±0.00 71.24 ±0.04 44.89 ±0.09

VGG19bn
cSGLD 69.82 ±0.05 68.27 ±0.07 44.59 ±0.10 39.76 ±0.13 54.40 ±0.08

1 DNN 18.09 ±0.10 18.09 ±0.06 ⋆44.63 ±0.03 ⋆46.76 ±0.03 14.38 ±0.03

4 DNNs 34.30 ±0.06 33.77 ±0.01 66.20 ±0.03 68.87 ±0.05 27.44 ±0.02

WideResNet
cSGLD 82.25 ±0.03 85.06 ±0.02 26.34 ±0.08 23.81 ±0.03 69.31 ±0.07

1 DNN 22.14 ±0.01 23.00 ±0.00 9.43 ±0.00 9.54 ±0.00 26.85 ±0.00

4 DNNs 41.07 ±0.00 41.75 ±0.04 22.91 ±0.04 22.65 ±0.03 43.00 ±0.01

L∞

PreResNet110
cSGLD 88.70 ±0.00 88.48 ±0.01 26.32 ±0.00 24.27 ±0.01 62.95 ±0.01

1 DNN 72.73 ±0.00 74.57 ±0.00 22.26 ±0.00 20.98 ±0.00 47.59 ±0.01

4 DNNs 91.98 ±0.00 92.25 ±0.00 38.24 ±0.00 35.56 ±0.00 72.64 ±0.01

PreResNet164
cSGLD 87.99 ±0.01 87.74 ±0.00 26.33 ±0.00 23.67 ±0.01 61.83 ±0.02

1 DNN 68.97 ±0.01 71.76 ±0.00 20.29 ±0.00 18.86 ±0.00 45.07 ±0.00

4 DNNs 90.67 ±0.00 92.22 ±0.00 37.62 ±0.00 35.23 ±0.00 73.18 ±0.00

VGG16bn
cSGLD 66.97 ±0.13 67.48 ±0.11 42.91 ±0.05 37.91 ±0.02 50.52 ±0.01

1 DNN 35.57 ±0.02 35.89 ±0.03 38.35 ±0.00 35.82 ±0.00 26.77 ±0.02

4 DNNs 52.59 ±0.00 53.12 ±0.00 70.89 ±0.00 68.53 ±0.00 41.34 ±0.00

VGG19bn
cSGLD 67.11 ±0.00 66.55 ±0.02 43.50 ±0.01 38.72 ±0.02 49.69 ±0.02

1 DNN 20.50 ±0.02 20.97 ±0.00 ⋆45.90 ±0.02 ⋆48.60 ±0.02 16.37 ±0.01

4 DNNs 32.43 ±0.06 32.25 ±0.04 63.11 ±0.07 65.64 ±0.06 25.34 ±0.02

WideResNet
cSGLD 81.99 ±0.01 85.63 ±0.01 27.04 ±0.02 23.46 ±0.01 68.43 ±0.01

1 DNN 49.24 ±0.16 52.84 ±0.03 20.23 ±0.04 18.53 ±0.02 60.84 ±0.09

4 DNNs 77.45 ±0.01 79.55 ±0.13 36.33 ±0.13 33.60 ±0.22 83.24 ±0.00



Table 7: Inter-architecture transfer success rates of I-FGSM of single architecture surrogate on MNIST (in %). All
combinations of surrogate and targeted architectures are evaluated. Diagonals are intra-architecture. cSGLD has always
higher transferability than 1 DNN. Symbols ⋆ indicate Bayesian methods (SVI or HMC) having lower transferability than 1
DNN. 1 DNN and cSGLD have similar computation budget (50 epochs). Bold is best. Higher is better.

Target Architecture

Norm Surrogate
Architecture

Surrogate
Method Small FC FC CNN

L2

Small FC

cSGLD 99.17 ±0.01 97.15 ±0.05 46.04 ±0.15

HMC ⋆2.66 ±0.01 ⋆2.04 ±0.01 ⋆0.37 ±0.01

SVI ⋆5.67 ±0.09 ⋆4.04 ±0.09 ⋆0.62 ±0.02

1 DNN 44.19 ±0.00 43.98 ±0.00 19.35 ±0.00

5 DNNs 48.01 ±0.01 47.78 ±0.04 24.76 ±0.02

10 DNNs 52.36 ±0.09 51.97 ±0.11 26.52 ±0.05

15 DNNs 53.13 ±0.09 52.84 ±0.08 27.05 ±0.12

FC

cSGLD 98.61 ±0.00 97.36 ±0.03 49.27 ±0.17

SVI 17.16 ±0.17 15.47 ±0.17 ⋆4.85 ±0.06

1 DNN 15.37 ±0.00 15.32 ±0.00 10.40 ±0.00

5 DNNs 23.13 ±0.06 23.07 ±0.08 16.03 ±0.06

10 DNNs 24.55 ±0.14 24.46 ±0.13 16.96 ±0.21

15 DNNs 23.46 ±0.13 23.44 ±0.12 16.44 ±0.21

CNN

cSGLD 46.86 ±0.27 47.06 ±0.32 92.57 ±0.14

1 DNN 10.73 ±0.00 10.43 ±0.00 14.80 ±0.00

5 DNNs 22.20 ±0.09 22.22 ±0.05 28.69 ±0.03

10 DNNs 19.18 ±0.23 19.27 ±0.34 23.84 ±0.40

15 DNNs 19.71 ±0.22 19.83 ±0.22 24.33 ±0.26

L∞

Small FC

cSGLD 61.75 ±0.25 37.66 ±0.25 1.25 ±0.01

HMC ⋆1.24 ±0.01 ⋆0.91 ±0.03 ⋆0.10 ±0.01

SVI ⋆1.76 ±0.02 ⋆1.25 ±0.01 ⋆0.16 ±0.03

1 DNN 58.77 ±0.00 32.15 ±0.00 0.95 ±0.00

5 DNNs 66.81 ±0.02 37.40 ±0.04 1.04 ±0.01

10 DNNs 67.88 ±0.18 38.22 ±0.02 1.02 ±0.02

15 DNNs 68.07 ±0.13 38.35 ±0.08 1.04 ±0.03

FC

cSGLD 60.06 ±0.01 41.04 ±0.02 1.33 ±0.01

SVI ⋆4.29 ±0.02 ⋆3.18 ±0.05 ⋆0.30 ±0.01

1 DNN 40.15 ±0.00 34.01 ±0.00 1.11 ±0.00

5 DNNs 51.62 ±0.05 42.66 ±0.17 1.25 ±0.02

10 DNNs 54.05 ±0.52 44.44 ±0.15 1.26 ±0.02

15 DNNs 55.03 ±0.45 44.78 ±0.27 1.27 ±0.01

CNN

cSGLD 3.07 ±0.08 2.89 ±0.04 5.42 ±0.03

1 DNN 2.40 ±0.00 2.30 ±0.00 3.83 ±0.00

5 DNNs 3.50 ±0.03 3.09 ±0.06 6.05 ±0.04

10 DNNs 3.79 ±0.04 3.39 ±0.01 6.37 ±0.03

15 DNNs 3.81 ±0.09 3.37 ±0.04 6.55 ±0.05



F TEST-TIME TRANSFERABILITY TECHNIQUES

Table 8: Transfer success rates of (M)I-FGSM attack improved by our approach combined with test-time transformations
on CIFAR-10 (in %). Columns are targets. PreResNet110 columns are intra-architecture transferability, others are inter-
architecture. Bold is best. Symbols ⋆ are DNN-based techniques better than our vanilla cSGLD surrogate, and † are
techniques that do not improve the corresponding vanilla surrogate. The success rate for every cSGLD-based technique is
better than its counterpart with 1 DNN.

Target Architecture

Norm Surrogate PreResNet110 PreResNet164 VGG16bn VGG19bn WideResNet

L2

1 DNN 34.42 ±0.00 34.39 ±0.01 12.67 ±0.00 12.54 ±0.00 26.29 ±0.01

+ Input Diversity 59.63 ±0.80 59.79 ±0.75 24.37 ±0.16 23.25 ±0.12 46.09 ±0.47

+ Skip Gradient Method 57.00 ±0.00 57.66 ±0.04 20.87 ±0.03 20.10 ±0.09 41.80 ±0.04

+ Ghost Networks 79.22 ±0.30 80.38 ±0.16 ⋆32.03 ±0.25 ⋆28.63 ±0.17 56.65 ±0.24

+ Momentum 67.12 ±0.07 67.80 ±0.00 20.49 ±0.02 19.15 ±0.01 44.11 ±0.04

+ Input Diversity 81.44 ±0.32 82.69 ±0.29 27.64 ±0.03 25.82 ±0.42 57.29 ±0.12

+ Skip Gradient Method 73.52 ±0.00 75.23 ±0.01 24.52 ±0.00 22.76 ±0.00 49.73 ±0.00

+ Ghost Networks 77.44 ±0.28 79.13 ±0.12 ⋆28.98 ±0.57 25.74 ±0.18 54.06 ±0.04

cSGLD 90.67 ±0.39 89.74 ±0.31 28.05 ±0.33 26.12 ±0.14 67.27 ±0.89

+ Input Diversity 92.45 ±0.14 91.80 ±0.14 33.69 ±0.28 31.35 ±0.28 72.41 ±0.76

+ Skip Gradient Method 92.46 ±0.17 92.10 ±0.28 31.96 ±0.53 29.84 ±0.34 71.04 ±1.23

+ Ghost Networks 92.73 ±0.21 92.20 ±0.07 36.17 ±0.39 33.08 ±0.32 74.77 ±0.10

+ Momentum †90.35 ±0.37 89.77 ±0.28 †26.89 ±0.37 †25.02 ±0.29 †65.98 ±0.52

+ Input Diversity 92.31 ±0.33 91.58 ±0.23 31.92 ±0.49 29.72 ±0.46 70.94 ±0.31

+ Skip Gradient Method 92.33 ±0.34 91.94 ±0.41 31.95 ±0.29 29.85 ±0.28 70.96 ±0.65

+ Ghost Networks 92.42 ±0.16 91.93 ±0.25 33.02 ±0.60 29.77 ±0.14 72.28 ±0.53

L∞

1 DNN 72.73 ±0.00 74.58 ±0.01 22.26 ±0.00 20.98 ±0.00 47.59 ±0.01

+ Input Diversity 81.29 ±0.18 82.77 ±0.12 28.10 ±0.22 26.17 ±0.25 57.04 ±0.10

+ Skip Gradient Method 77.92 ±0.00 79.50 ±0.01 27.43 ±0.00 25.31 ±0.01 53.39 ±0.00

+ Ghost Networks 74.92 ±0.08 77.23 ±0.26 ⋆29.61 ±0.19 26.31 ±0.30 52.93 ±0.05

+ Momentum 76.12 ±0.01 78.05 ±0.00 23.77 ±0.02 22.33 ±0.01 50.49 ±0.01

+ Input Diversity 84.66 ±0.19 86.38 ±0.12 ⋆31.47 ±0.05 ⋆28.89 ±0.31 61.60 ±0.16

+ Skip Gradient Method 79.72 ±0.02 80.80 ±0.02 28.75 ±0.01 26.12 ±0.00 55.74 ±0.00

+ Ghost Networks 80.34 ±0.34 82.59 ±0.42 ⋆34.17 ±0.48 ⋆29.37 ±0.18 60.62 ±0.40

cSGLD 90.98 ±0.40 90.26 ±0.35 29.26 ±0.53 26.97 ±0.43 67.18 ±1.03

+ Input Diversity 92.46 ±0.14 91.62 ±0.16 33.81 ±0.25 30.84 ±0.34 71.15 ±0.92

+ Skip Gradient Method 93.38 ±0.50 92.84 ±0.25 35.68 ±0.61 32.43 ±0.52 73.55 ±1.08

+ Ghost Networks 91.66 ±0.40 91.32 ±0.19 34.77 ±0.09 31.01 ±0.27 71.60 ±0.40

+ Momentum 92.84 ±0.18 92.18 ±0.28 32.03 ±0.49 28.53 ±0.38 71.56 ±0.25

+ Input Diversity 94.05 ±0.31 93.53 ±0.21 37.31 ±0.38 33.23 ±0.23 75.40 ±0.25

+ Skip Gradient Method 94.64 ±0.26 94.29 ±0.31 38.08 ±0.27 34.28 ±0.17 76.62 ±0.50

+ Ghost Networks 93.76 ±0.14 93.75 ±0.13 38.01 ±0.44 33.15 ±0.36 76.23 ±0.29



G ATTACK AND TRAINING HYPERPARAMETERS
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Figure 4: Transfer success rates on ImageNet of three iterative gradient-based attacks on the same architecture (ResNet-50)
with respect to the number of iterations.
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Figure 5: Transfer success rates on CIFAR-10 of three iterative gradient-based attacks on the same architecture (PreRes-
Net110) with respect to the number of iterations.
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Figure 6: Intra-architecture transfer success rate of I-FGSM with respect to the number of cSGLD samples per cycle. We
train one PreResNet110 cSGLD on CIFAR-10 for every number of cycles, from 1 to 10 samples per cycle. Each additional
sample per cycle increases the training cost by 1 epoch per cycle (starting at 48 epochs per cycle). A fixed number of 5
cSGLD cycles is used.
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Figure 7: Intra-architecture transfer success rate of I-FGSM with respect to the number of cSGLD cycles on CIFAR-10
(PreResNet110).
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Figure 8: Transfer success rates of the test-time transferability technique Skip Gradient Method with varying values of
its hyperparameter γ between 0 and 1 with 0.1 steps. The surrogate is a PreResNet110 DNN trained on CIFAR-10 and
evaluated on 1 independently trained DNN for every targeted architecture. The plain line represents the intra-architecture
transferability, and the dotted ones the inter-architecture transferability. Adversarial examples are crafted from a validation
set randomly sampled from the train set. γ = 0.7 is selected in the rest of the paper for PreResNet110.



Table 9: Hyperparameters used to train cSGLD or Deep Ensemble. The ⋆ symbols refer to the inter-architecture and test-time
techniques sections, and ⋆⋆ to the Bayesian and Ensemble training methods section. We do not include target DNNs on
ImageNet, since they are pretrained models from PyTorch and timm.

CIFAR-10 ImageNet

Method Hyperpara-
meter cSGLD DNN

Surrogate
DNN
Target cSGLD DNN

Surrogate

All

Number epochs 50 per cycle 300 300 45 per cycle 130
(135 for ⋆)

Initial learning
rate 0.5 0.01 0.01 0.1 0.1

Learning rate
schedule

Cosine
Annealing

Step size
decay
(×0.1 each
75 epochs)

Step size
decay
(×0.1 each
75 epochs)

Cosine
Annealing

Step size
decay
(×0.1 each 30
epochs)

Optimizer cSGLD Adam Adam cSGLD SGD
Momentum 0 0.9 0.9 0.9 0.9

Weight decay
5e-4
(3e-4 for
PreResNet)

1e-4 1e-4 1e-4 1e-4

Batch-size 64 128 128
256 for
ResNet50,
64 for others

256 for
ResNet50,
64 for others

cSGLD

Sampling
interval

1 sample per
epoch - - 1 sample per

epoch -

Nb cycles 6
(18 for ⋆⋆) - -

5
(3 for ⋆, 6 for
⋆⋆)

-

Nb samples per
cycle 5 - - 3 -

Nb epochs with
noise 5 - - 3 -

Table 10: Hyperparameters of attacks and test-time transferability techniques.

Attack /
Technique Hyperparameter ImageNet CIFAR-10 MNIST

All attacks Perturbation 2-norm ε 3 0.5 3
Perturbation∞-norm ε 4

255
4

255 0.1

Iterative Attacks Step-size α ε
10

ε
10

ε
10

Number iterations 50 50 50
MI-FGSM Momentum term 0.9 0.9 0.9
PGD Number random restarts 5 5 5

Ghost Network Skip connection erosion
random range

[1-0.22,
1+0.22]

[1-0.22,
1+0.22] -

Input Diversity Minimum resize ratio 90 % 90 % -
Probability
transformation 0.5 0.5 -

Skip Gradient
Method

Residual Gradient Decay
γ

0.2 (ResNet50) 0.7 (PreRes-
Net110) -
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