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A SUHNPF AS HYPERNETWORK

Fig. 1 shows the overview of SUHNPF as a hypernetwork
tasked with optimizing the weights of the target neural clas-
sifier. The input to the neural classifier are data points Y and
the output are matched against labels Z1 ¢yye, Z2,true for
two different tasks. The weights of the neural classifier are
© and SUHNPF as a hypernetwork approximates the weak
Pareto manifold M (6*) for optimal trade-off over different
values « for the two MOO losses L1, L.
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Figure 1: Framework for extracting the Pareto optimal front

M(©) of a given target model C'e (which could also be a non-
neural model: Decision Tree, Logistic Regression, etc.)

B SUHNPF VS. OTHER MTL METHODS

Point based solvers. Most MTL methods, including
MOOMTL, PMTL, EPSE, and EPO are point based solvers.
Being point-based, they return one solution per run, re-
lying upon specialized local initialization to generate an
even spread of Pareto points, using cones, rays, or other do-
main partitioning strategies, across the feasible set of saddle
points. Thus asked for P Pareto candidates, these solvers
would have to run for P instances. Later, if the user demands
2P points, they have to run for 2P instances from scratch,
without utilizing the results from the previous run.

Manifold based solvers. A manifold-based solution strat-
egy should separate Pareto vs. non-Pareto points, without
requiring any special initialization. It would also be able to
extract 2P Pareto candidates while being trained to generate
P candidates, due to interpolating from the learned bound-
ary. This is highly advantageous over point-based schemes
for deployment of practical systems, where the expected

user trade-off preference is not known a priori, hence good
to have the full approximated front. Notably, Navon et al.
[2021] and Lin et al. [2020] are the only prior manifold
based Pareto solvers that we are aware of that are also scal-
able to optimize large neural models. Another advantage
is that both SUHNPF and EPO (used by PHN in backend)
solvers have a user-specified error tolerance criteria built in,
while other MTL solver lack it and therefore run a specified
number of iterations before declaring a candidate Pareto,
without actually checking for optimality.

Full rank indicator vs. low rank regressor. A manifold
based solver should also generalize to cases where the man-
ifold is an implicit function as opposed to its easier counter-
part of being an explicit function. SUHNPF has an added
advantage in extracting the weak Pareto manifold as an k-
dimensional diffusive indicator function as opposed to a
(k — 1)-dimensional manifold itself, where the regressed
manifold is not only guided by the weak Pareto points (in-
dicator value 1) but also the sub-optimal points (indicator
value 0) for a more robust and accurate extraction. Thus it
can generally approximate the manifold, irrespective of the
manifold being an explicit or implicit function. In compari-
son, PHN learns a (k — 1)-dimensional regression manifold,
given solution points obtained from EPO or LS. Therefore,
PHN’s default assumption is that the Pareto manifold is
always an explicit function i.e., for k objectives, the Pareto
manifold is of dimension k£ — 1.

C DISCUSSION ON REMARK 1

Remark: If fis are continuous and differentiable once, in an
unconstrained setting, then the set of weak pareto optimal points
are x* = {z|det(L(x)" L(z)) = 0}, for a non-square matrix
L(x), and is equivalent to ©* = {x|det(L(z)) = 0} for a square
matrix L(x).

We begin by considering an unconstrained MOO for ease of de-
scription. Let us consider the following two quadratic functions,
convex in both variables as:

fi(x) = (21 = 1)* + (22 — 1)°
fa(x) = (z1+1)° + (22 + 1)
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The task is to find the Pareto front between the objectives f1(x)
and f2(x). For this problem the Pareto front is known a priori as
the straight line 1 = x2 for 1 € [—1, 1] in the variable domain.
Let us now first plot f; vs. fo for visual assessment in Fig. 2.
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Figure 2: Functional Domain plot for two competing objectives.
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One can easily confirm that the gradient matrix L cannot be identi-
cally zero for any value of = € R

L=[Vfi(z) Vfa(z)]

To avoid a trivial solution the vector [o; 2] must also not be
identically zero. This becomes clear if the scalarized function
S(x) = a1 fi + azfs is defined, where a1 + a2 = 1.

The only remaining possibility is La should approach zero for
some x = [z1 2] as we iteratively update z. This gives us our
termination/convergence criterion.
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Let us assume any point (z1, z2) in the feasible domain. What «
values can achieve the above termination criterion? We now have
two equations in two unknowns (o s):
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Eliminating o1 using the first equation and substituting in the
second equation:
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Alternatively,
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Note that for any matrix A # 0, Ax = 0 can be solved for a
non-trivial  # 0 if and only if A has a null-space; or A is low
rank; or if A is square then it’s determinant is zero. [J
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The det(L) matrix defined in Eq. 6 (main) is given by:

VF V@
=l

To achieve det(L) = 0 requires that either:

1. VF(x) = 0: atleast one objective function has reached its op-
timum (local/global minima/maxima under a min/max setting);
and / or

2. G(x) = 0: at least one constraint is satisfied.

This criteria is only applicable for square systems. However, for
practical problems, the system might become non-square, hence we
need to satisfy det(L” L) = 0 following Eq. 7 (main). One might
think that it’s a different optimization problem. However satisfying
det(L™ L) = 0 mathematically provides the same justification and
we provide the derivation of it.

r._ [VF' 0][VF VG

det(LL) = [VGT GT} [ 0o G

_[VFTVF VFTvG
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We now observe Eq. 1 for the two cases prescribed above and see
if det(L™ L) evaluates to zero or not. For Case 1, where VF = 0,
Eq. 1 reduces to:
Ty 0 ovaG
det(L" L) = {VGTO VGTVG +GTG
which is low-rank since row 1 equates to 0. For Case 2, where
G = 0, Eq. | reduces to:

T T
det(L7L) = {VF VF VF'VG ]

VGTVE VGTVG+0

_ rw 1 |VE VG
=VF'VG {V FovGe
which is low-rank again because row 1 and row 2 are equal. Hence
it is easy to observe that satisfying det(L) = 0 is equivalent to
satisfying det(LT L) = 0.0

D EXPERIMENTAL SETUP DETAILS

Experimental Setup. We use an Nvidia 2060 RTX Super 8GB
GPU, Intel Core 17-9700F 3.0GHz 8-core CPU and 16GB DDR4
memory for all experiments. Keras [Chollet, 2015] is used on a
Tensorflow 2.0 backend with Python 3.7 to train the SUHNPF
networks and evaluate the MTL solvers. For optimization, we use
AdaMax [Kingma and Ba, 2015] with parameters (/r=0.001).

SUHNPF Setup. Each training step runs for 2 epochs, with 50
steps per epoch. Thus, if the network takes I iterations to converge,



then the effective epochs taken by the network is 27. For computing
the gradient of the Fritz-John matrix w.rz. the input variables x, we
use Tensorflow’s Gradient Tape', which implicitly allows us
to scale the computation of the gradient matrix Vdet to arbitrarily
large dimensions of variable x. To compute the gradient update on
P1, we use a learning rate of n = 0.01.

MTL Setup. Sourcecode for LS, MOOMTL, PMTL and EPO
solvers use EPO’s repository”, while EPSE® and PHN* codes are
taken from their individual repositories.

E GENERAL DISCUSSION

Handling Non-Convex forms: Pareto optimal solution set is a
collection of saddle points [ Van Rooyen et al., 1994, Ehrgott and
Wiecek, 2005] of an MOO problem, wherein no objective can be
further improved without penalizing at least one of the other ob-
jectives. This entails min-max optimization to minimize objectives
(such as loss functions) while simultaneously maximizing trade-
offs between them. Although prior works [Sener and Koltun, 2018,
Lin et al., 2019, Mahapatra and Rajan, 2020] have asserted that
Karush-Kuhn-Tucker (KKT) conditions [Boyd et al., 2004] in this
min-max setting ensure that MTL methods find (correct) Pareto
optimal solutions, it is known that KKT conditions hold true only
for convex cases. Gobbi et al. [2015] further show that KKT-based
criteria can give Pareto solutions only under fully convex setting
of objectives and constraints.

Evaluation on Benchmarks. Because the Pareto solution is often
unknown on real MOO problems, OR works have advocated that
any proposed Pareto solver should first be tested on synthetic MOO
with known analytic solutions. This permits controlled experimen-
tation that vary MOO problem difficulty (e.g., non-convexity in
variable and function domains, presence of constraints, efc.) in or-
der to assess the capabilities and measure the true accuracy against
a known front. Ideally studies should evaluate against synthetic
benchmark problems that vary in difficulty, and there is some-
times ambiguity and confusion in referring to an MOO problem as
non-convex without clarifying the specific non-convex aspects. Dif-
ficulty can also vary greatly depending on whether non-convexity
occurs in the objectives, constraints, or the front itself.

Termination of Solvers. An iterative solver should define termi-
nation criteria based on an error tolerance being satisfied and/or
inability to further improve. It is also important that a solver re-
ports inability to converge (achieve the termination criteria/error
tolerance) within the specified maximum iterations. While both
HNPF (used by SUHNPF) and EPO (used by PHN) define such
error tolerance criteria for termination, inspection of source code
for MOOMTL [Sener and Koltun, 2018], PMTL [Lin et al., 2019],
and EPSE [Ma et al., 2020] iterative solvers (at the time of our
submission) shows support only for running a fixed number of
iterations, without other termination criteria. See the following

lhttpsz//www.tenscrflow.orq/api_docs/python/tf/
GradientTape

zht:ps://github.:cm/dbmptr/EPOSearch
3https://g;thub.com/mltfgfx/ContlnqousParetoNIA

https://github.com/AvivNavon/pareto-hypernetworks

sourcecode links to solvers for MOOMTL’, PMTL®, and EPSE’.

F CONVERGENCE PLOTS OF SUHNPF
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Figure 3: Case I: Variable domain. The gray line show the true an-
alytic solution (0 < z1 < 1, z2 = 0). SUHNPF Pareto candidates
P1 (red dots) converge in 5 iterations.

Convergence of Pareto candidates towards the weak Pareto front
over iterations for the variable (Fig. 3) and functional (Fig. 4)
domains are shown for benchmark Case I considered in our work.

G ADDITIONAL BENCHMARKS

We consider two additional synthetic benchmark cases considered
by Navon et al. [2021]. We demonstrate that SUHNPF works well
in these cases since the considered functions are either convex or
monotone within the feasible domain for both cases.

Case A:
fi(@y,x2) = (21 = )23 +1)/3, fo(ar,22) = 2
sit. g1,92:0 < z1,22 <1 2)
Case B:
fi(zy,m2) = @1, fo(mr,22) = 1= (21/(1 + 922))?
st.g1,92:0< 21,22 <1 3)

Please note that although in PHN [Navon et al., 2021], the form
of fo = 1 for Eq. 2, we believe it is a typo w.r.z. the original

Shttps://qithub.ccm/dbmptr/EPOSearch/blob/ﬁaster/
toy_experiments/solvers/moo_mtl.py

6ht:ps://github.:cm/dbmptr/EPOSearch/blob/haster/
toy_experiments/solvers/pmtl.py

7https://github.com/mit—gfx/ContinuousParctoMT;/
blob/master/pareto/optim/hvp_solver.py
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Figure 4: Case I: Functional domain mapping to Fig. 1 (main).
SUHNPF Pareto candidates P1 (red dots) converge in 5 iterations.

work by Evtushenko and Posypkin [2013], where this case was
proposed, as the reported Pareto front in their work is achieved
only for fo = x2. We therefore proceed with this updated form.

H LOSS PROFILES

Fig. 5 shows the loss profiles for the benchmark cases I - III.
SUHNPF converged in 5 iterations, with each iteration running for
2 epochs, using error tolerance 10~ for both the outer gradient
descent 100p €outer and inner gradient descent 100p €;nner. Since
the last layer of the SUHNPF network classifies points as being
weak Pareto or not, the loss enforced is Binary Cross Entropy
(blue line). We also report the Mean Squared Error (MSE, dashed
red line) between the current iterate of point set P1 and the true
analytical solution manifold. Alg. 1 (main) updates the Pareto
candidate set in the outer descent loop. Since the inner descent
loop that measures the training loss itself P1 has ran twice for 2
epochs, MSE is be measured only once per iteration. This results
in the staircase nature of the MSE loss.

I RUNTIME COMPLEXITY

Assume the following notation from main text for clarity i.e. k:
num objectives; m: num constraints; n: num variables; P: num
Pareto candidates; Z: num iterations till convergence. In Algo-
rithm 1 (main), the outer while loop (lines 4-9) takes Z itera-
tion till convergence. Note that for any gradient descent based
solver, the number of iterations Z is not known a priori. Per
iteration, step 5 involves training the neural network with P
points using the FJC and error computation in step 6 jointly cost-
ing O(P(k 4+ m)?n). Step 7 can be effectively broken down
into two serial sub-computations: a) Computing the gradient

of the determinant takes cost O((k + m)®n) and b) calculat-
ing the gradient of the determinant as O(Pk?). Step 8 takes
O(P(k + m)) due to the update of P points using a (k + m)-
dimensional vector. Hence the total compute cost per iteration
is O(P(k +m)*n + (k+m)*n + Pk +m)® + P(k +m)),
which can be simplified to O(P(k +m)?n + P(k +m)?). Un-
der a practical deep MTL, n > k, m (i.e., variable dimension
is strictly greater than the number of functions and constraints
in any neural setting), the complexity is dominated by the term
O(P(k + m)?n), where the scaling is linear in terms of the vari-
able dimension n, and quadratic in the number of functions and
constraints k, m. Thus, the overall compute cost for Z iterations
is T x O(P(k + m)?n). Note that this is similar to the runtime
complexity reported in EPO [Mahapatra and Rajan, 2020], where
their point based solver takes O (k®n) for each point for each
iteration, leading to a total compute cost of T x O(Pk>n) for P
points and Z iterations, under an unconstrained optimization set-
tings. In SUHNPEF, since we also support constrained optimization,
we have replaced ‘K’ with ‘k +m’.

We report both the asymptotic and actual runtimes for EPO and
SUHNPF in Table 1. Note that for Case I, although the complexity
of SUHNPF is twice that of EPO (O(400) vs. O(800)) i.e., both
are asymptotically similar, in actual runtime SUHNPF is much
faster than EPO (10s vs. 752s). SUHNPF moves candidates to-
wards being Pareto optimal through the use of the FIC guided
discriminator in Algorithm 1 (main), while EPO has to solve two
separate primal and dual problems to find Pareto optimal points.
This imparts SUHNPF lower runtime per iteration than EPO, hence
it converges faster too. Furthermore, SUHNPF constructs the ap-
proximate Pareto manifold in addition to finding 50 candidates
on it. To achieve similar functionality based on EPO would re-
quire first computing 50 points via 50 runs of EPO, then running
a neural network to regress over those 50 points. This is what
PHN [Navon et al., 2021] in its PHN-EPO configuration. Hence in
Table 4 (main), PHN has higher runtime than EPO.

Table 1: Per-iteration time complexity and full runtime of Cases I-
III for EPO vs. SUHNPE. We do not report complexity for EPO on
Case I1, because their solver reported NaNs, or on Case III, because
EPO does not support constrained optimization. As shown above,
the asymptotic complexity of EPO is given by O(Pk?n), whereas
that of SUHNPF is given by O(P(k + m)*n + P(k + m)?).

Variables EPO SUHNPF
Cases | k' m n P | Complexity Runtime (sec) | Complexity Runtime (sec)
I 2 0 2 50 O(400) 752 O(800) 10
il 2 0 30 50| O(6000) O(6400) 20
Jug 2 2 2 50 - O(4800) 10

While correctness and point density in finding the true Pareto opti-
mal solution should be our top priority in comparing methods, we
also report run-time of SUHNPF vs. other MTL approaches on the
studied cases. We explicitly request that each method generate 50
Pareto candidates, within the feasible functional domain. Table 4
(main) reports the percentage of such candidates obtained, and
the overall execution time, averaged over 10 runs each, given our
experimental setup in Appendix D.

PHN uses either EPO or LS as their base solver, hence we report
the total time that includes the (a) run-time of the base solver; and
(b) the neural network run-time to learn the regression manifold.
Cases I and III have a 2D variable domain, where SUHNPF takes
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1s per epoch, with 2 epochs for training in Step 7 of Alg. 1 (main).
Both the cases took 5 epochs to converge, resulting in a total run-
time of 10s. Case II has a 30D variable domain where SUHNPF
takes 2s per epoch resulting in a total run-time of 20s. While LS
and MOOMTL are at similar run-time scale with SUHNPEF, they
fail to generate an even spread of points (Fig. 3 (main) (a,b)).

J SPACE COMPLEXITY ANALYSIS

MTL methods solve problems in both primal and dual space i.e.,
gradient of the objectives in the primal and the trade-off a’s in
the dual. SUHNPF however works only in the primal space w.r..
the gradient of the functions necessary in the construction of the
Fritz-John matrix, since the FJC ensure « free stationary point
identification. Thus, the additional dual optimization space is not
required. To fairly compare w.r.z. MTL methods, we consider the
general cost of both such systems under a unconstrained setting i.e.,
only objectives and no additional constraints. Thus k, n indicate
the number of objectives and the dimension of the variable space.

SUNHPF. To find P Pareto candidates, SUHNPF updates P
points of size Pn. The VFTVF and Vdet matrices are of size
k? and nk respectively. The total memory cost is thus of order
O(n(P + k) + k%)).

MTL. To find P candidates, MTL methods uses P cones or rays
requiring size Pn. The gradient matrix of the objective function
V F takes nk, constructing the simplex takes k2, solving for trade-
off o takes k? and the iterative update requires additional nk
memory. The total memory cost is of order O(n(P 4 2k) + 2k?)).

K UNIFORMITY AND COVERAGE

SUHNPF starts with a random set of 2P candidates. P of these are
then altered through our FIC guided Algorithm 1 (main) towards
being Pareto candidates within the tolerance bound. Since all the
starting points are generated uniformly at random within the feasi-
ble set, they tend to have even initial spread. When the FIC guided
descent is run, each of these points are then directed towards their
nearest Pareto front via gradient descent. Empirically, we observe

this suffices to achieve good spread of the P training points on the
Pareto front, without any explicit optimization target to promote
or enforce even spread.

MTL methods partition space into equal sized cones or preference
rays, which leads to semi-uniformity iff the obtained candidates
lie within the specified cone or in the vicinity of the preference ray.
EPO [Mahapatra and Rajan, 2020] is the only method which has
this explicitly loss criteria to ensure even spread / uniformity of
points in their algorithm. However, note that these cone and ray
approaches implicitly assume a symmetric and uniform nature of
the front, which is not known a priori and rarely seen in practice.

To measure spread, we distinguish two concepts:

uniformity evenness of spread of candidates along the front

coverage the extent of the front spanned by extreme Pareto points

For uniformity, we report the average and maximum euclidean dis-
tance between two neighboring Pareto candidates. Smaller values
indicate greater density (average and worst case, respectively).

For coverage we report the [2 distance between the two farthest
Pareto candidates on the front. Larger values are better, indicating
a wider range of the front is spanned by Pareto points found.

Table 2 reports results on benchmark Case I. Note that for fair
evaluation, we only consider candidates that are produced within
the feasible functional bounds for the problem. We also observe
that LS performs best in terms of coverage (I2) for our run, while
SUHNPEF performs better across both uniformity measures.

Table 2: Evenness of spread of Pareto points found across methods
for Case I, as measured by uniformity and coverage.

Method | LS MOOMTL PMTL EPO EPSE PHN |[SUHNPF

Avg. Dist. | 0.087 0.089 0.030 0.035 0.059 0.031 | 0.029
Max. Dist. | 0.261 0235 0.117 0.122 0.231 0.085 | 0.078
Coverage | 1.256 0.843 1.110 1.201 1.252 1.214 | 1.254

L  WHY PARETO FRONT LEARNING?

The goal of PFL [Navon et al., 2021] (or any Pareto HyperNetwork)
is to induce the full Pareto manifold from training in order to
be able to show users the entire space of optimal trade-offs that
are feasible. This empowers users to then choose any solution
point they prefer on the manifold, a posteriori. In contrast, prior
point-based methods from operations research (OR) and multi-task
learning (MTL) find individual Pareto points only. Lacking prior
knowledge of the manifold, a user would have to formulate an



abstract preference trade-off over objectives (e.g., 25% f1, 75%
f2), input that to a point solver, and then see what they get. If they
don’t like the result, they would then have to iterate, running the
point-solver repeatedly with different preferences until satisfied.

Motivation for building on HNPF. We build on HNPF [Singh et al.,
2021] for two key reasons: 1) its support for non-convexity in
functional objectives, variable domain, and/or constraints, due to
the usage of the Fritz-John Conditions (FJC) and 2) its guarantee of
Pareto solution correctness within the e error tolerance parameter
(1e-4 in our experiments). In addition to this, point-based solvers
from OR are accurate and support non-convexity but are inefficient
(wrt the scaling of variable dimension), while MTL solvers are
efficient but have limited support and accuracy with non-convexity.
SUHNPEF strives to deliver both accuracy and scalability.

Motivation for SUHNPF over prior work. Prior MTL approaches
to learning the Pareto front have sought to find an even spread of
Pareto points across the front by using ray or cone-based methods
to partition the space uniformly. However, these works assume
that the spread is uniform and symmetrical in the functional space.
However, the nature of the Pareto front is not known a priori and so
making such symmetry assumptions can lead to misleading results
and expectations. For example, Fig. 2 (main) and Fig. 5 (main)
show that the Pareto front in the functional domain is not symmet-
ric around the 45-degree line (or implicitly assumed as o = 0.5).
In contrast, adopting a hypernetwork approach allows learning the
full Pareto front without any such assumptions regarding its shape.
In comparison, the prior PHN [Navon et al., 2021] hypernetwork
fits a posthoc regression surface over a set of Pareto points found
by point-based solvers. In addition to being posthoc, it also inher-
its all the above limitations of point-based solvers (EPO or LS).
In contrast, SUHNPF explicitly learns a classification boundary
between Pareto vs. non-Pareto points via FJC.

Extraction of Trade-off value. For any general Pareto HyperNet-
work, once the entire Pareto front is approximated, one can simply
select a point on the front and compute the value of trade-off o a
posteriori. The cost for post-computing the value would vary from
one method to another. Similar to HNPF, we also take O(k) i.e.,
linear runtime in objectives for « extraction.

Need for differentiable functions. We rely on objectives/constraints
to be at least once differentiable, in accordance with the Fritz-John
Conditions in Section 4 (main). Furthermore, since our framework
relies on gradients of the objectives to check for optimality, as a
consequence, we need the objectives differentiable at least once for
their gradient to exist and be computable. Indeed, this is true for
all MTL methods as well, and in general any method that relies on
gradient descent. As noted earlier, this further motivates continuing
development of differentiable measures [Swezey et al., 2021].

Convex Utility. Although the final objective is a weighted linear
combination of the two objectives: af1 + (1 — ) f2, note that f1
and f> are losses operating on a neural network, hence the loss
surface for both f1 and f is non-convex in nature. Convex combi-
nation of two convex functions is guaranteed to be convex, but not
for the convex combination of two non-convex functions [Boyd
et al., 2004]. Many practical classification and recommendation
problems have been shown to be non-convex in nature [Hsieh et al.,
2015], hence their linear (convex) combination can still lead to
non-convex fronts. Practical examples include Low Rank Matrix
Recovery and Robust Linear Regression as in [Jain et al., 2017].

Need for benchmarking on non-convex setting. Refer to Fig 2
(main) for Case I, where the non-convex region of the front is
the boundary of the feasible set of solutions. If one takes convex
combinations of the endpoints (1,0) and (0,1), constructing a 135°
line, points can always be obtained on that line, that have lower
values on both functions f1 and f> which are strictly lying below
the non-convex region of the front. However, given the feasible
domain for the problem, one cannot go lower than the non-convex
portion of the front around that region.

Although various Pareto solvers exist in different research com-
munities, they do not scale well to practical problems at hand,
especially to optimize weights of large neural networks. MTL ap-
proaches were motivated as developing scalable Pareto solvers to
tackle such problems.

M ANALYSIS OF LINEAR
SCALARIZATION

We refer to Case I here for analysis on Linear Scalarization (LS).

fi(zr, z2) = 1, fz(ml,xz) =1 +x§ —x1 — 0.1sin3mx1
st. g1:0< 21 <1,g2: —2<25<2

Pareto optimal points here correspond to stationary points for the
scalarized objective S(z1,z2) = afi + (1 — «) f2 for different
trade-offs of @ € [0, 1]. Although some prior studies have asserted
that LS cannot handle any non-convexity, Fig. 3 (main) (a) shows
that LS finds Pareto points in the non-convex portions of the front.

To explore this case further, Fig. 7 plots the contour surface of the
objective S(z1, z2) as a function of its variables x1, z2, for three
different values of @ € [0.1,0.5, 0.9] (similar functional plots can
be shown for any values of « € [0, 1]). Across plots, we observe
that the functional landscape contains one or more minima (marked
by ared cross x) for a € (0,0.5]. Any gradient descent algorithm
would settle on one of these minima, depending on the choice of
initialization and step size. On the other hand, fora = Oora =1
(optimizing only one objective, not shown), and for « € (0.5,1)
(i.e., linear function f; = z dominating), there are no optima at
all. In these cases, any gradient descent algorithm would settle on
the boundary of the feasible set. We thus observe for Case I that
Vo € [0, 1], LS will always find a feasible a Pareto candidate.

Note that we adopt the LS implementation from PMTL’s public
sourcecode only®. It is fairly straightforward to plug the Case I
functions into their code and observe that LS is indeed producing
Pareto candidates in the non-convex region of the front.

Note that if Case I had contained local or global maxima, LS’s
solving a minimization problem, min S(z1, z2), would naturally
not find these maxima.
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