
Modeling Extremes with d-max-decreasing Neural Networks (Appendix)

A BACKGROUND ON EXTREME VALUE THEORY

The main idea behind extreme value theory (EVT) is to establish a form of the central limit theorem for the maxima of
appropriately scaled random variables. EVT characterizes the behavior of the maxima of n independent and identically
distributed (i.i.d.) random variables X1, · · · , Xn with continuous distribution function F . More precisely, let Mn =
max1≤i≤n Xi, then there exists sequences of real numbers an > 0 and bn such that the limit P [(Mn − bn) /an ≤ x] →
H(x) as n → ∞ is non-degenerate. We then say that F is in the maximum domain of attraction of H or equivalently
F ∈ MDA(H). This limit is fully identified by the generalized extreme value (GEV) distribution given by:

Hξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
, if ξ ̸= 0

exp (−e−x), if ξ = 0
(1)

where 1 + ξx > 0 and ξ is the shape parameter indicating the thickness of the tail. The following theorem due to Fisher,
Tippet and Gnedenko, stated in de Haan and Ferreira [2010], states the fundamental result of EVT.

Theorem 1 (Fisher-Tippet-Gnedenko Theorem, stated in de Haan and Ferreira [2010]). If F ∈ MDA(H), and if the limit H
exists then it belongs to the class of GEV distributions, i.e. H = Hξ for some real number ξ.

A.1 MAIN DEFINITIONS AND THEOREMS

Theorem 2 (Extreme value copula). If C is a d−variate extreme value copula then there exists a tail dependence function
ℓ : [0,∞)d → [0,∞) such that:

C (u1, · · · , ud) = e−ℓ(− log u1,··· ,− log ud), (2)

where (u1, · · · , ud) ∈ (0, 1]d. Using the homogeneity property of ℓ, the extreme value copula C can be rewritten as:

C (u1, · · · , ud) = e
(
∑d

k=1 log uk)A
(

log u1∑d
k=1

log uk
,··· , log ud∑d

k=1
log uk

)
, (3)

where A is known as the Pickands dependence function, which can be thought of as the restriction of ℓ to the unit simplex
∆d−1 = {w = (w1, · · · , wd) ∈ [0,∞)d :

∑d
k=1 wk = 1}. The Pickands function A is known to be d-max-decreasing and

satisfies:
max
1≤k≤d

wk ≤ A(w1, · · · , wd) ≤ 1, (4)

for all w = (w1, · · · , wd) ∈ ∆d−1.

Definition 1 (Tail dependence function). A function ℓ : [0,∞)d → [0,∞) is a tail dependence function if for all
(x1, · · · , xd) ∈ [0,∞)d, the following conditions are satisfied:

• (i) ℓ is d-max-decreasing and homogeneous of order 1, i.e. ℓ(cx1, · · · , cxd) = c ℓ(x1, · · · , xd), for all c > 0.

• (ii) max1≤k≤d xk ≤ ℓ(x1, · · · , xd) ≤
∑d

k=1 xk.
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A.2 SPECTRAL DECOMPOSITION OF STATIONARY MAX-STABLE PROCESSES

Stationary max-stable processes can be intuitively interpreted as i.i.d. samples from infinite dimensional extreme value distri-
butions (i.e. distributions over functions). A stationary max-stable process can be decomposed by the spectral representation
defined in De Haan et al. [1984] which we recall in Proposition 1.

Proposition 1 (Spectral Representation of Max-Stable Processes [De Haan et al., 1984]). Suppose that M(t) has unit
Fréchet margins and is stationary. Then, M(t) can be written as:

M(t) = max
i≥1

ξiY
+
i (t), t ∈ T . (5)

{Yi(t)}i≥1 are i.i.d. copies of a continuous stochastic process Y defined on T such that E[Y +(t)] = 1 with Y +(t) =
max{0, Y (t)} and ξi is the ith realization of an independent Poisson point process on [0,∞) with intensity ξ−2dξ.

B D-MAX-DECREASING FUNCTIONS

We use the definition given in Hofmann [2009]. A function A(w) : Rd → R is d-max-decreasing if and only if for any
x ≤ y ≤ 0 and any subset E ⊊ {1, . . . , d}:

∑
m={0,1}d,
mj=1 if j∈E

(−1)d+1−
∑

j≤d mj

∑
j≤d

−y
mj

j x
1−mj

j

A

(
ym1
1 x1−m1

1∑
j≤d y

mj

j x
1−mj

j

, · · · ,
ymd

d x1−md

d∑
j≤d y

mj

j x
1−mj

j

) ≥ 0,

and A(ei) = 1 where ei is the canonical basis function. Moreover, from Hofmann [2009, Theorem 3.1.1], the following
three characterizations are equivalent:

1. The function

exp

−
∑

j=1,...,d

xjA

(
x1∑

j=1,...,d xj
, · · · , xd∑

j=1,...,d xj

)
defines a multivariate extreme value distribution;

2. There exists a spectral measure Λ such that

A(w) =

∫
∆d−1

max
k=1,...,d

wksi dΛ(s), w ∈ ∆d−1;

3. A(w) is d-max-decreasing.

Next, we note the nesting property of d-max-decreasing functions, given in Hofert et al. [2018, Section 2.2], that hierarchies
of spectral measures define valid EVDs, i.e.

A(w) = E

[
s
(2,1)
1 E

[
max

k=1,...,d
s
(1,1)
k wk

]
, . . . , s

(2,1)
d E

[
max

k=1,...,d
s
(1,d)
k wk

]]
.

We use part of this property in the next section to define the d-max neural network.

C PROOFS

C.1 D-MAX-DECREASING NEURAL NETWORKS

We partition the proof into the 1-layer case and the n-layer case. We assume that all parameters θ ∈ [0, 1] for the purposes
of the proof.
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Background: D−norms. D−norms are norms defined as

∥x∥D := d Eθ

[
max

k=1...d
(|xk|θk)

]
, x ∈ X ⊂ Rd, (6)

where θ ∈ [0, 1]d and E[θk] = 1/d, for i = 1 . . . d. We note that the condition E[θk] = 1/d is not necessary for the d−max
decreasing property, though it leads to unit exponential margins for convenience during inference, see Fougères et al. [2013,
Section 2.1] or Hofmann [2009, Definition 5.4.1] for more on this property. The key condition is that the expectation in (6)
is taken with respect to the distribution of θ which has support only on nonnegative real numbers. Taking X to be the unit
simplex, we see that a D−norm defines a Pickands dependence function, and by the spectral representation of the Pickands
function, all Pickands functions are D−norms. The main property we will use throughout the proof is that compositions of
D−norms are also D−norms. This property is well established in, for example, Hofert et al. [2018] and Hofmann [2009].
We finally note that all D−norms satisfy the d−max decreasing property defined as shown in Hofmann [2009, Theorem
3.1.1] .

1-Layer Case.

Proof. Recall that the 1-layer dMNN is given by

A
(1)
θ (w) = max

(
L(1)(w) + (1− L(1)(e)Tw), max

k=1...d
wk

)
, w ∈ ∆d−1 (7)

L(1)(w) =
1

n1

n1∑
j=1

(
max

k=1...d
wkθkj

)
j

(8)

The expression (8), corresponding to the first term in (7), is a valid D−norm since it is the expectation with respect to a
nonnegative spectral measure. The second term (1−L(1)(e)Tw) =

∑d
i=1(1−E[θi])wi is also a D−norm since (1−E[θi])

is positive, for i = 1 . . . d, and thus it is also an expectation with respect to a nonnegative spectral measure. In fact, it
is equivalent to ∥diag(1 − E[θ])w∥1. The combination L(1)(w) + (1 − L(1)(e)Tw) is then the sum of two D−norms,
equivalent to a composition with the ∥ · ∥1 norm, which is again a D−norm. Finally, the outer max with maxi=1...d wi, a
D−norm corresponding to dependence, is yet another composition of D−norms. This results in a function that is d−max
decreasing and concludes the proof for the single layer case.

n-Layer Case.

Proof. We first show the base case (the 2-layer case), then show that the general n-layer case follows. We focus on the
composition of intermediate layers, since the technique for proving the output layer is a D−norm follows from the 1-layer
case. Recall that the 2-layer dMNN is given by

A
(2)
θ (w) = max

(
L(2)(w) + (1− L(2)(e)Tw), max

k=1...d
wk

)
, w ∈ ∆d−1

L(2)(w) =
1

n2

n2∑
j=1

(
ℓ(2)

(
ℓ(1)(w)

))
j

Let ℓ(1)(w) have width n1. Then the output of ℓ(1) is given by the following vector

ℓ(1)(w) =


Eθ(1,1)∼λ(1,1)

[
maxk=1...d θ

(1,1)
k wk

]
...

Eθ(1,n1)∼λ(1,n1)

[
maxk=1...d θ

(1,n1)
k wk

]
 , θ ∈ [0, 1]d. (9)

Each row in (9) is a D−norm where the expectation is taken over a delta function centered at θ, i.e. λ(1,j) = δ(θ(1,j)) for
j = 1, . . . , n1. Therefore, the property of D−norms is preserved for each row of (9). By analogy to ℓ(1) in (9), the property
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of D−norms is preserved for ℓ(2) in (10):

ℓ(2)(w) =


Eθ(2,1)∼λ(2,1)

[
maxk=1...n1 θ

(2,1)
k wk

]
...

Eθ(2,n2)∼λ(2,n2)

[
maxk=1...n1

θ
(2,n2)
k wk

]
 , θ ∈ [0, 1]d. (10)

We then use the nesting property of D−norms given in Hofert et al. [2018] such that ℓ(2)(ℓ(1)(w)) is a D−norm, and by the
same construction, ℓ(n)(ℓ(n−1)(· · · (ℓ(1)(w)))) is a D−norm and is thus d−max-decreasing. Following the arguments in
the 1-layer case for the output layer then completes the proof.

C.2 UNIVERSAL APPROXIMATION

Our proof that our architecture is an universal approximator of Pickand’s copula functions is constructive. Recall that every
Pickands function has the form

A(w) = Es∼λ(∆d−1)

[
max

k=1...d
skwk

]
, w ∈ ∆d−1, (11)

where λ is a spectral measure with supp(λ) = ∆d−1. We now construct a single layer dMNN, with width n, by sampling n
independent and identically distributed (i.i.d.) samples s(1), . . . , s(n) ∼ λ(∆d−1), and setting

Ãn(w) =
1

n

n∑
j=1

max
k=1...d

(s
(j)
k wk) (12)

Before showing that Ãn converges uniformly to A, we show that it converges point-wise. Although this intermediary result
is not needed to show uniform converge, its proof provides intuition while being less technical.

The copula Ãn converges pointwise to A, almost surely.

Proof. Consider the discrete distribution Λn given by the n i.i.d. samples s(1), . . . , s(n) ∼ λ(∆d−1):

Λn :=
1

n

n∑
i=1

δ(s(i)),

where δ(s) represents a Dirac measure at s. By the law of large numbers, for every w ∈ ∆d−1,

Es∼Λn

[
max

k=1...d
skwk

]
a.s.−−→ Es∼λ

[
max

k=1...d
skwk

]
, n → ∞

=⇒ Aθ(w)
a.s.−−→ A(w).

We now state and prove the main result regarding uniform convergence.

The empirical process
Gn =

√
n
(
Ãn −A

)
weakly converges to a zero-mean Gaussian process as n → ∞ where Ãn is a single layer dMNN with width n.

Proof. Let λ be the law given by the spectral measure λ(∆d−1) and the discrete empirical spectral measure be given by
Λn := 1

n

∑n
j=1 δ(s

(j)) for n i.i.d. samples s(1), . . . , s(n) from λ. We additionally write λf := Es∼λ[f(s)] as the expectation
with respect to the measure λ. The empirical process Gn is defined by

Gn =
√
n
(
Ãn −A

)
=

√
n (Λn − λ) f

=
√
n

 1

n

n∑
j=1

max
k=1...d

(s
(j)
k wk)− Es∼λ

[
max

k=1...d
(skwk)

] ,
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where f ∈ F and
F := {fw(s) := max

k=1...d
(skwk) : w ∈ ∆d−1}.

By the classical central limit theorem, for a given w,
√
n
(
Ãn(w)−A(w)

)
d−→ N (0, σ2), with σ2 ≤ (1−A(w))(A(w)−

1
d2 ), since the random variable maxk=1...d(wksk) ∈ [1/d2, 1] is bounded and has finite variance.

Our claim is that Gn ⇝ G where G is a zero-mean Gaussian process for establishing uniform convergence over w. We will
now show that the function class given by F is λ−Donsker. To show this, we will show that the bracketing integral given by

J[ ](1,F , L2(λ)) =

∫ 1

0

√
logN[ ](ϵ,F ∪ 0, L2(λ)) dϵ (13)

converges where the L2(λ) norm is defined as ∥f∥λ,2 = (
∫
f2dλ)1/2. A sufficient condition for convergence of (13) is to

show that the logarithm of the bracketing number N[ ] grows at a rate slower than O( 1
ϵ2 ). The function class F is indexed by

w ∈ ∆d−1 and is Lipschitz on w. From Sen [2018, Lemma 2.14], the bracketing number of F is thus bounded above by the
covering number of ∆d−1, i.e.

N[ ](2ϵ,F , L2(λ)) ≤ N(ϵ,∆d−1, ∥ · ∥2),

where the covering number of the unit simplex is asymptotically O
(

1
ϵd−1

)
. The logarithm of the bracketing number then

grows at a rate logN[ ] ≤ O
(
(d− 1) log 1

ϵ

)
< O( 1

ϵ2 ). This proves that F is λ−Donsker and thus Gn ⇝ G.

We can also make a statement on the covariance of the process. For any two points w(i), w(j), the covariance of the Gaussian
process converges to

Cov
(
A
(
w(i)

)
, A
(
w(j)

))
= E

[
max

k
skw

(i)
k max

k
skw

(j)
k

]
− E

[
max

k
skw

(i)
k

]
E

[
max

k
skw

(j)
k

]
= E

[
max

k
skw

(i)
k max

k
skw

(j)
k

]
−A(w(i))A(w(j))

≤
√
V ar

(
A
(
w(i)

))
V ar

(
A
(
w(j)

))
≤ 1

4

(
1− 1

d

)2

.

The final inequality comes from Popoviciu’s inequality and the fact that A(w) ∈ [1/d, 1]. For an introduction to empirical
processes, see the review given in Wellner [2005].

D SURVIVAL PROBABILITY ESTIMATION

One particularly useful task is estimating multi-dimensional survival probabilities rather than cumulative probabilities. More
precisely, let (γ1, · · · , γd) ∈ Rd be a d−dimensional vector of thresholds, we are interested in calculating the following
survival probability:

P
[
M (1)

n > γ1, · · · ,M (d)
n > γd

]
= P

[
M̄ (1)

n > γ̄1, · · · , M̄ (d)
n > γ̄d

]
, (14)

where γ̄k =
γk−b(k)

n

a
(k)
n

, k ∈ {1, · · · , d}.

To calculate this, we simply use a change-of-variable technique which we present in the following proposition. This approach
is well known, and we only provide the proposition for completeness.

Proposition 2 (Survival Probability Computation). Let Gk(x) := F−1
k (1− Fk(x)) for k ∈ {1, . . . , d}, then the random

variables Gk(M̄
(k)
n ) and M̄

(k)
n have the same marginal CDF Fk, for k ∈ {1, . . . , d}, and

P
[
M̄ (1)

n > γ̄1, · · · , M̄ (d)
n > γ̄d

]
= P

[
G1(M̄

(1)
n ) < G1(γ̄1), · · · , Gd(M̄

(d)
n ) < Gd(γ̄d)

]
. (15)
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Proof. With the change-of-variable Gk(x) := F−1
k (1−Fk(x)) for k ∈ {1, · · · , d}, it first follows that the random variables

Gk(M̄
(k)
n ) ∼ Fk:

P(Gk(M̄
(k)
n ) ≤ x) = P(F−1

k (1− Fk(M̄
(k)
n )) ≤ x) = P(1− Fk(M̄

(k)
n ) ≤ Fk(x)) = Fk(x), (16)

since Fk(M̄
(k)
n ) and 1− Fk(M̄

(k)
n ) follow the unit uniform distribution.

Moreover, the survival probability can be written as:

P
[
M̄ (1)

n > γ̄1, · · · , M̄ (d)
n > γ̄d

]
= P

[
1− F1(M̄

(1)
n ) < 1− F1(γ̄1), · · · , 1− Fd(M̄

(d)
n ) < 1− Fd(γ̄d)

]
= P

[
G1(M̄

(1)
n ) < G1(γ̄1), · · · , Gd(M̄

(d)
n ) < Gd(γ̄d)

]
= C (1− F1(γ̄1), · · · , 1− Fd(γ̄d)) ,

where C is the copula of
(
G1(M̄

(1)
n ), · · · , Gd(M̄

(d)
n )

)
.

This proposition implies that the transformed variables Gk(M̄
(k)
n ) are samples from extreme value distributions. Then, we

can fit Pickands dependence function to these transformed variables, and finally evaluate the corresponding extreme value
copula on (1− F1(γ̄1), · · · , 1− Fd(γ̄d)). Details on how to estimate the survival probability in (14) are given in Algorithm
2.

E ADDITIONAL EXPERIMENTS AND FIGURES

Code for all experiments can be found at https://github.com/alluly/dMNN.

E.1 24 WIDTH 3 DEPTH ARCHITECTURE

Here we repeat the experiments with a different architecture. All other hyperparameters are the same, the only difference is
we increase the depth to 3 and use a width of 24 for each layer. Most of the results remain similar for the synthetic data but
we see a change in the results for the real data, specifically, the Wind and Commodities data show a slight deterioration in
performance. However, the variances are still high for the real experiments and not much can be said regarding the efficacy
of any single method.
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(a) ASL MSE (d = 2)
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Figure 1: Using 24 width 3 depth architecture: MSE of survival probabilities for d = 2 with 100 samples for ASL (1a) and
AASL (1b). Thresholds are above the 75th percentile.
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Figure 2: Using 24 width 3 depth architecture: Comparison of ||Â(w) − A(w)||22 for different estimators Â for dif-
ferent dependence α = {0.25, 0.50, 0.75, 1.0} with fixed d = 256 (2a, 2b) and for fixed α = 0.5 with different
d = {256, 512, 728, 1024} (2c, 2d). The truth models considered are ASL (2a, 2c) and AASL (2b, 2d). Results are over 50
runs with 100 training samples for each run.

d Train/Test Length PICKANDS CFG BDV PROPOSED

Wind 10 day/week 4.48(18.6)×10
−4 4.15(15.1)×10

−4 4.10(16.3)×10
−4 4.80(20.6)×10

−4

Ozone 4 day/week 3.06(4.66)×10
−2 3.86(6.10)×10

−2 2.86(4.46)×10
−2 2.82(4.38)×10

−2

Commodities 10 week/month 4.34(5.82)×10
−3 4.33(5.71)×10

−3 1.60(1.96)×10
−3 2.20(3.41)×10

−3

S&P 500 418 week/month 3.02(21.2)×10
−3 3.02(21.1)×10

−3 6.28(35.2)×10
−3 2.41(22.2)×10

−3

Crypto 100 week/month 1.06(2.85)×10
−2 1.05(4.86)×10

−2 1.34(3.44)×10
−2 8.42(26.1)×10

−3

COVID (NC) 100 week/week 4.04(7.21)×10
−2 4.04(7.19)×10

−2 3 .83 (6 .51 )×10
−2 5.22(12.8)×10

−3

COVID (NY) 58 week/week 2.74(10.4)×10
−2 2.74(10.4)×10

−2 2 .25 (7 .75 )×10
−2 3.52(7.92)×10

−3

COVID (CA) 58 week/week 1.17(3.98)×10
−2 1 .19 (3 .87 )×10

−2 1.17(3.85)×10
−2 3.27(9.28)×10

−3

Table 1: MSE of different estimators in estimating maxima over two time scales for 24 width 3 depth architecture. Best and
second best performances are marked in bold and italic respectively.
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E.2 64 WIDTH 4 DEPTH ARCHITECTURE

Here we repeat the experiments with a different architecture. All other hyperparameters are the same, the only difference is
we increase the depth to 4 and use a width of 64 for each layer. Most of the results remain similar for the synthetic data but
we see a change in the results for the real data, specifically, the Wind and Commodities data show a slight deterioration in
performance. However, the variances are still high for the real experiments and not much can be said regarding the efficacy
of any single method.
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Figure 3: Using 64 width 4 depth architecture: (3a, 3b) MSE of survival probabilities for d = 2 with 100 samples for ASL
(3a) and AASL (3b). Thresholds are above the 75th percentile.

d Train/Test Length PICKANDS CFG BDV PROPOSED

Wind 10 day/week 4.48(18.6)×10
−4 4.15(15.1)×10

−4 4.10(16.3)×10
−4 4.76(18.7)×10

−4

Ozone 4 day/week 3.06(4.66)×10
−2 3.86(6.10)×10

−2 2.86(4.46)×10
−2 2.73(4.25)×10

−2

Commodities 10 week/month 4.34(5.82)×10
−3 4.33(5.71)×10

−3 1.60(1.96)×10
−3 2.20(3.44)×10

−3

S&P 500 418 week/month 3.02(21.2)×10
−3 3.02(21.1)×10

−3 6.28(35.2)×10
−3 2.39(22.1)×10

−3

Crypto 100 week/month 1.06(2.85)×10
−2 1.05(4.86)×10

−2 1.34(3.44)×10
−2 8.28(25.6)×10

−3

COVID (NC) 100 week/week 4.04(7.21)×10
−2 4.04(7.19)×10

−2 3 .83 (6 .51 )×10
−2 4.93(12.1)×10

−3

COVID (NY) 58 week/week 2.74(10.4)×10
−2 2.74(10.4)×10

−2 2 .25 (7 .75 )×10
−2 3.69(8.64)×10

−3

COVID (CA) 58 week/week 1.17(3.98)×10
−2 1 .19 (3 .87 )×10

−2 1.17(3.85)×10
−2 1.10(4.78)×10

−3

Table 2: MSE of different estimators in estimating maxima over two time scales for 64 width 4 depth architecture. Best and
second best performances are marked in bold and italic respectively.

E.3 ESTIMATION COMPARISON

We finally add a few figures comparing the learned dependence functions between different architectures. We additionally
provide a table comparing the results for different architectures on the real data experiments in Table 3.

F DATA DESCRIPTION

Synthetic Data

For the synthetic data experiments we consider samples of 100 points from each respective distribution. We use the full
dataset for the batch size during training. We additionally sample 1000 points from the simplex for each data point during
training.
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Figure 4: Using 64 width 4 depth architecture: Comparison of ||Â(w) − A(w)||22 for different estimators Â for dif-
ferent dependence α = {0.25, 0.50, 0.75, 1.0} with fixed d = 256 (4a, 4b) and for fixed α = 0.5 with different
d = {256, 512, 728, 1024} (4c, 4d) for ASL (4a, 4c) and AASL (4b, 4d). Results are over 50 runs with 100 training
samples for each run.
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Figure 5: Margin comparison for winds dataset.

Ozone Data

We consider ozone levels measured at 4 different stations in Sequoia National Park from data that can be downloaded
from the National Park Service website 1. The 4 stations are located at Ash Mountain, Lower Kaweah, Grant Grove and

1https://ard-request.air-resource.com/data.aspx
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Figure 6: Margin comparison for ozone dataset.
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Figure 7: Margin comparison for commodities dataset.
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Figure 8: Margin comparison for commodities dataset.
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Figure 9: Margin comparison for S&P 500 dataset.
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Figure 10: Margin comparison of different architectures for Cryptocurrencies dataset.

512width × 1depth 24width × 3depth 64width × 4depth

Wind 4.37(17.5)×10
−4 4.80(20.6)×10

−4 4.76(18.7)×10
−4

Ozone 2.73(4.25)×10
−2 2.82(4.38)×10

−2 2.73(4.25)×10
−2

Commodities 1.56(2.21)×10
−3 2.20(3.41)×10

−3 2.20(3.44)×10
−3

S & P 2.41(22.2)×10
−3 2.41(22.2)×10

−3 2.39(22.1)×10
−3

Crypto 8.57(26.4)×10
−3 8.42(26.1)×10

−3 8.28(25.6)×10
−3

Table 3: Comparison of 3 different architectures, in terms of MSE, on the real data experiments.

Lookout Point. We train the different models on daily maxima of ozone levels at the 4 different stations for the period from
January 1984 to December 1996. To reduce the effect of seasonality, we do not train over the whole period, but we train
different models on a single month (training month, e.g. June of each year) and compute accuracy on the consecutive month
(validation month e.g. July of the same year). We additionally only look at summer months due to the increase of extreme
events during that time. The accuracy is averaged with the specific validation month of each year over the whole period. We
train on daily maxima and test on weekly maxima. For the experiments, we consider the following pair of (training/test)
months: (June/July), (July/August), and (August/September).

California Wind Data

We are interested in modeling the extremal relationship of wind gusts between different locations in California during the
summer months. We consider 10 locations in California illustrated in 11. We obtained the data from the Remote Automated
Weather Station (RAWS) archive available at the online repository2. The RAWS data are collected from various time
intervals from December 1989 to December 2020. We consider only the time points that occur in the intersection of all the
data collected and where all values are valid (i.e. not NaNs or missing) for the summer months. Similarly to the ozone data,
and in an effort to reduce seasonality, we consider the daily max wind gust for the different locations for a single month over
all the years the data were collected. To evaluate the proposed method, we train and test on data from consecutive months
and repeat for multiple sets of months in our dataset. Additionally, we train on daily max and test on monthly max using the
following data splitting scheme (training/validation months): (June/July), (July/August), and (August/September).

Commodities Data

We consider the extreme dependency between different commodities such as Coffee, Copper, Corn, Crude Oil, Gold, Heating
Oil, Natural Gas, Platinum, Silver and Wheat. We collect data of daily prices of the different commodities from January
2015 to December 2020 as published in 3. For training, we consider weekly max drawdown over a year. We validate the
performance by evaluating accuracy of monthly max drawdown over next three years. We consider the following pairs
of ([training years],[validation years]): ([2015], [2016, 2017, 2018]), ([2016], [2017, 2018, 2019]), ([2017], [2018, 2019,
2020]).

2https://raws.dri.edu/index.html
3https://www.investing.com/commodities/
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Figure 11: Locations (yellow circles) of weather stations sampled for the wind speed experiments. Figure generated via
Google Maps.

S&P 500 Data

We obtain historical data from https://www.alphavantage.co4. We choose the components of the S&P 500 with
sufficient history (resulting in 418 stocks). For training, we consider weekly max drawdown over a year. We validate the
performance by evaluating accuracy of monthly max drawdown over next three years. We consider the following pairs
of ([training years],[validation years]): ([2015], [2016, 2017, 2018]), ([2016], [2017, 2018, 2019]), ([2017], [2018, 2019,
2020]). For the full list of stocks, see the sp_names.txt file in the supplementary materials.

Cryptocurrencies Data

We obtain historical data from https://coinmarketcap.com5 for 100 coins with the longest history. For training, we
consider weekly max drawdown over a year. We validate the performance by evaluating accuracy of monthly max drawdown
over next three years. We consider the following pairs of ([training years],[validation years]): ([2015], [2016, 2017, 2018]),
([2016], [2017, 2018, 2019]), ([2017], [2018, 2019, 2020]). For the full list of coins, see the crypto_names.txt file in
the supplementary materials.

COVID-19 Data

We obtained COVID-19 case counts for the United States at the county level from https://github.com/nytimes/
covid-19-data. We chose the states of North Carolina, New York, and California for the analysis. We consider training
on weeks in 2020 and testing on weeks in 2021. We choose the same time scale due to the fact that cases were poorly
counted in 2020 whereas in 2021 case counts were more accurately reported. Additionally, 2021 saw an increase in cases
due to the arrival of new variants such as Delta and Omicron. For the conditional classification examples, we take the
observation at the locations and compute the probability. If the probability is reported as > 0.5 then we consider it to be
classified correctly. If it is < 0.5 then we consider it an incorrect classification. For the North Carolina data, we condition

4Alpha Vantage allows academic use as long as the website is cited.
5Coin Market Cap allows academic use as long as the website is cited (see FAQ page).
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on the counties of: Mecklenburg, Wake, Guilford, Forsyth, and Cumberland and predict Durham. For the New York data,
we condition on Westchester, Nassau, New York City, Suffolk, and Erie and predict Monroe (the data aggregated all the
NYC counties into a single datapoint). For the California data, we condition on Los Angeles, San Diego, San Bernardino,
Riverside, and Orange and predict Santa Clara.

G PICKANDS, CFG AND BDV ESTIMATORS

Pickands Estimator

The Pickands estimator Pickands [1981] is built following the transformations (6) and (7) in the paper. The estimator is
obtained by exactly maximizing the likelihood (Equation (8) in the paper) resulting in the following non-parametric estimate:

ÂPickands(w) =

(
1

B

B∑
i=1

Zw,i

)−1

. (17)

CFG Estimator

The CFG estimator Capéraà et al. [1997] is constructed following the observation:

E logZw = − logA(w)− γ,

where γ = −
∫∞
0

log xe−xdx denotes the Euler’s contant. The CFG estimator is thus given by:

ÂCFG(w) = exp

[
−γ − 1

B

B∑
i=1

logZw,i

]
. (18)

In our main submission we use a similar estimator, with the correction term presented in Gudendorf and Segers [2011]:

ÂCFG,C(w) = exp

(
log ÂCFG(w)−

d∑
k=1

wk log
(
ÂCFG(ek)

))
, (19)

where ek is the k-th canonical basis vector.

BDV Estimator

We propose an d-dimensional extension to the bivariate estimator described in Bücher et al. [2011]. We begin by defining
the minimum distance estimator between the true CDF, C(u) and the one estimated by the Pickands function A(w).∫

[0,1]d

[
logC(u)−

d∑
k=1

log ukA

(
log(u)∑
k log uk

)]2
du (20)

=

∫
∆d−1

∫ 1

0

(logC(yw1 , . . . , ywd)− log(y)A(w))2(− log(y))d−1 dy dw. (21)

We have

Ĉ(yw1 , . . . , ywd) =
1

B

B∑
i=1

1(F1(M̄
(1)
n,i ) ≤ yw1 , · · · , Fd(M̄

(d)
n,i ) ≤ ywd) (22)

=
1

B

B∑
i=1

1(F1(M̄
(1)
n,i )

1
w1 ≤ y, · · · , Fd(M̄

(d)
n,i )

1
wd ≤ y) (23)

=
1

B

B∑
i=1

1( max
1≤k≤d

Fk(M̄
(k)
n,i )

1
wk ≤ y) (24)

=
1

B

B∑
i=1

1 (Γw,i ≤ y) , (25)
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where Γw,i = exp(−Zw,i). Now, if we reorder these so that Γw,1 ≤ · · · ≤ Γw,B , we have that

Ĉ(yw1 , . . . , ywd) =


0 if y < Γw,1,

i

B
if Γw,i ≤ y < Γw,i+1, i ∈ {1, . . . , B − 1},

1 if Γw,B ≤ y.

(26)

Because log Ĉ(· · · ) is not defined if y < Γw,1, the following modified estimator is considered in Bücher et al. [2011].

C̃(yw1 , . . . , ywd) := max
{
C(yw1 , . . . , ywd), B−γ

}
, (27)

where γ is any positive real greater or equal than 1
2 . For convenience, we choose γ = 1 so that:

C̃(yw1 , . . . , ywd) =


1

B
if y < Γw,2,

i

B
if Γw,i ≤ y < Γw,i+1, i ∈ {2, . . . , B − 1},

1 if Γw,B ≤ y.

(28)

Finally, as in Bücher et al. [2011], for any positive weight function h : (0, 1) → R+
0 , let h∗(y) := h(y)(log y)2,

Bh :=

∫ 1

0

h∗(y) dy and g(x) := −B−1
h

∫ x

0

h∗(y)

log y
dy. (29)

Then, letting Γw,0 = 0, Γw,B+1 = 1, we define the BDV estimator ÂBDV,h as follows

ÂBDV,h(w) = B−1
h

∫ 1

0

log C̃(yw1 , . . . , ywd)

log y
h∗(y) dy (30)

= B−1
h

B∑
i=0

∫ Γw,i+1

Γw,i

log C̃(yw1 , . . . , ywd)

log y
h∗(y) dy (31)

= − log
1

n
g(Γw,2)−

n∑
i=2

log
i

n
(g(Γw,i+1)− g(Γw,i)) (32)

= −
n∑

i=2

log
i− 1

n
g(Γw,i) +

n∑
i=2

log
i

n
g(Γw,i) (33)

=

n∑
i=2

log

(
1 +

1

i− 1

)
g(Γw,i) (34)

In our main submission, we use a slightly modified estimator, which proved to have superior performance in our experiments.
Recall that, if A is a Pickand’s dependence function, we have max(w) ≤ A(w) ≤ 1, which implies the true copula verifies:

max(w) ≤ logC(yw1 , . . . , ywd)

log y
= A(w) ≤ 1. (35)

Accordingly, we let

clampa,b(x) :=

 a if x ≤ a,
x if a < x < b,
b if x ≥ b,

(36)

and define
C̆(yw1 , . . . , ywd) = exp

(
clamplog y,max(w) log y log Ĉ(yw1 , . . . , ywd)

)
, (37)

and

ÂBDV,MM,h(w) = B−1
h

∫ 1

0

log C̆(yw1 , . . . , ywd)

log y
h∗(y) dy (38)

= B−1
h

B∑
i=0

∫ Γw,i+1

Γw,i

log C̆(yw1 , . . . , ywd)

log y
h∗(y) dy (39)
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Letting Γ
(ℓ)
w,i = clampΓw,i,Γw,i+1

((
i
n

) 1
max(w)

)
, Γ

(u)
w,i = clampΓw,i,Γw,i+1

(
i
n

)
for i ∈ {0, . . . , B} and η(x) =

B−1
h

∫ x

0
h∗(y) dy, we have

ÂBDV,MM,h(w) = B−1
h

B∑
i=0

∫ Γw,i+1

Γw,i

log C̆(yw1 , . . . , ywd)

log y
h∗(y) dy

= B−1
h

B∑
i=0

∫ Γ
(ℓ)
w,i

Γw,i

max(w)h∗(y) dy +

∫ Γ
(u)
w,i

Γ
(ℓ)
w,i

log
i

n

h∗(y)

log y
dy +

∫ Γw,i+1

Γ
(u)
w,i

h∗(y) dy

=

B∑
i=0

max(w)
(
η(Γ

(ℓ)
w,i)− η(Γw,i)

)
− log

i

n

(
g(Γ

(u)
w,i)− g(Γ

(ℓ)
w,i)
)
+ η(Γw,i+1)

− η(Γ
(u)
w,i)

In our main submission, we use ÂBDV,MM,h with h(y) = 1
log(y) .

H FURTHER DETAILS ON EXPERIMENTS

Architecture Details

For learning the Pickands dependence function, in all experiments in the manuscript we used 512 width and 1 depth dMNNs.
Only the input layer was changed according to the input dimension. In order to force the weights to be positive, we use a
weight clipping during training.

For the generative model experiments, we model pz as a 128 d Gaussian random variable. The generator is a basic multi
layer perceptron (MLP) with ReLU activations and batch norm. For all experiments, we use a width 256 and depth 2 MLP
for the generator. The output is ensured to be positive through a final ReLU operation.

Hyperparameter Tuning

For learning the Pickands dependence experiments, we used the Adam Kingma and Ba [2014] optimizer for optimizing
all parameters with learning rate 1× 10−2 with a decay according to the ReduceLROnPlateau decay algorithm with a
patience of 100 epochs. Each model was trained for 2000 epochs for the survival experiments and 4000 for the sampling
experiments. For the sampling experiments, the generator was trained using Adam with learning rate 1× 10−3, β1 = 0.5
and β2 = 0.99 with exponential decay on the learning rate of 0.99998. Models for the generator were trained for 4000
epochs

Computational Resources

All experiments were run on an Nvidia RTX Titan GPU with an Intel Core i9-7900X CPU @ 3.30GHz and 64 GB of RAM.
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Figure 12: (Larger figures from main text) Qualitative comparison of 3d margins from learned 10d MEV for the commodities
dataset. The dMNN is the method that retains margins that are valid Pickands dependence functions as the others are
non-convex and outside the required bounds. Contours plotted with solid line.
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Figure 13: (Larger figures from main text) (13a, 13b) MSE of survival probabilities for d = 2 with 100 samples for ASL
(13a) and AASL (13b). Thresholds are above the 75th percentile.
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Figure 14: (Additional figure.) Qualitative comparison of 6 2d margins from learned 4d MEV for the Ozone dataset. The
dMNN is the method that retains margins that are valid Pickands dependence functions as the others are non-convex and
outside the required bounds.

J ALGORITHMS

Here we provide algorithms for the estimation and sampling presented in the main content. We recall the transformations on
M̄

(n)
k :

M̃
(n)
k = − log(Fk(M̄

(n)
k )), ∀k ∈ {1, . . . , d}, (40)

Zw = min
k=1,...,d

M̃
(n)
k /wk. (41)

Then, we have: P [Zw > z] = e−zA(w). Additionally, recall the definition of the copula in terms of A:

K SAMPLING EXAMPLES
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Figure 15: (Additional figure.) Qualitative comparison of 10 2d margins from learned 10d MEV for the commodities. The
dMNN is the method that retains margins that are valid Pickands dependence functions as the others are non-convex and
outside the required bounds.

Algorithm 1 Fitting the Pickands-dMNN to Data

1: Input:
{(

X
(i)
1 , . . . , X

(i)
d

)}N

i=1
, N = B × n samples of i.i.d. random vectors where B is the number of blocks of data

and n is the size of each block.
2: Take component-wise maxima over each block:

{(
M

(n,b)
1 , . . . ,M

(n,b)
d

)}B

b=1
where M

(n,b)
k =

maxi=(b−1)n+1,...,bn X
(i)
k , (k, b) ∈ {1, . . . , d} × {1, . . . , B}.

3: Fit a GEV to each component-wise maxima {M (n,b)
k }Bb=1, obtain {M̄ (n,b)

k }Bb=1, then estimate marginals Fk for each
k ∈ {1, . . . , d}.

4: Initialize the parameters θ ≥ 0 of the dMNN
Repeat:

5: Randomly sample a minibatch of training data {M̄ (n,b)
k }b∈batch and uniformly sample w ∈ ∆d−1.

6: Transform samples according to Equations (40) and (41) to obtain transformed samples {Zw,b}b∈batch.
7: Compute gradient ∇θ

∑
b∈batch L (Zw,b;θ).

8: Update θ with Adam [Kingma and Ba, 2014]
Until convergence
Output: A⋆

θ(w).

REFERENCES

Axel Bücher, Holger Dette, Stanislav Volgushev, et al. New estimators of the pickands dependence function and a test for
extreme-value dependence. The Annals of Statistics, 39(4):1963–2006, 2011.
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Figure 16: (Additional figure.) Qualitative comparison of 28 2d margins from learned 418d MEV for the S&P dataset. The
dMNN is the method that retains margins that are valid Pickands dependence functions as the others are non-convex and
outside the required bounds.

Algorithm 2 Estimating survival probabilities with the Pickands dependence function

1: Input: {M̄ (k)
n,b}Bb=1, thresholds: (γ1, · · · , γd).

2: Train a model A(w; θ) with the transformed variables {(G1(M̄
(1)
n,b , . . . , Gd(M̄

(d)
n,b ))}Bb=1 using Algorithm 1 and obtain

A(w; θ∗).
3: Evaluate the Pickands copula:

C (1− F1(γ̄1), · · · , 1− Fd(γ̄d)) ,

where C is calculated as in Equation (3) with A = A(w; θ∗).

Philippe Capéraà, A-L Fougères, and Christian Genest. A nonparametric estimation procedure for bivariate extreme value
copulas. Biometrika, 84(3):567–577, 1997.

Laurens de Haan and Ana Ferreira. Extreme Value Theory: An Introduction (Springer Series in Operations Research and
Financial Engineering). Springer, 2010.

Laurens De Haan et al. A spectral representation for max-stable processes. The Annals of Probability, 12(4):1194–1204,
1984.

Anne-Laure Fougères, Cécile Mercadier, and John P Nolan. Dense classes of multivariate extreme value distributions.
Journal of Multivariate Analysis, 116:109–129, 2013.
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Figure 17: (Additional figure.) Qualitative comparison of 28 2d margins from learned 100d MEV for the Crypto dataset.
The dMNN is the method that retains margins that are valid Pickands dependence functions as the others are non-convex
and outside the required bounds.

Algorithm 3 Training a Generator for a Pickands Copula
1: Input: A(w), pz , tolerance parameter ϵ
2: Initialize parameters ϕ of generator G(·;ϕ)
3: Sample {w(j)}Nsimplex

j=1 samples uniformly over ∆d−1.

4: while
∑Nsimplex

j=1 L(w(j);ϕ) > ϵ do
5: Sample {w(j)}Nsimplex

j=1 samples uniformly over ∆d−1.

6: Sample {y(i)}Ngen
i=1 where y(i) = G(z(i);ϕ), z(i) ∼ pz for 1 ≤ i ≤ Ngen.

7: Define η(w,y) = max{w ⊙ y} with ⊙ denoting the point-wise multiplication.
8: Compute gradient w.r.t ϕ of

∑Nsimplex
j=1 L(w(j);ϕ) where:

L(w(j);ϕ) = (A(w(j))− 1

Ngen

Ngen∑
i=1

η(w(j),y(i)))2 +

∥∥∥∥∥∥ 1

Ngen

Ngen∑
i=1

y(i) − 1

∥∥∥∥∥∥
2

2

9: Update ϕ using Adam Kingma and Ba [2014].
10: end while
11: Output: G(.;ϕ∗).

Gordon Gudendorf and Johan Segers. Nonparametric estimation of an extreme-value copula in arbitrary dimensions. Journal
of multivariate analysis, 102(1):37–47, 2011.

Marius Hofert, Raphaël Huser, and Avinash Prasad. Hierarchical archimax copulas. Journal of Multivariate Analysis, 167:
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Figure 18: (Larger figures from main text) Comparison of ||Â(w) − A(w)||22 for different estimators Â for different
dependence α = {0.25, 0.50, 0.75, 1.0} and d = 256 (18a, 18b) and for fixed α = 0.5 for d = {256, 512, 728, 1024} (18c,
18d) for ASL (18a, 18c) and AASL (18b, 18d). Results are over 50 runs with 100 training samples for each run.

Algorithm 4 Heuristic for Sampling From a Given Pickands Copula [Hofert et al., 2018, Algorithm 1]
Input: A(w), Nmax > 1 ∈ N
Optimize a generator G(·;ϕ) using Algorithm 3.
for i ∈ {1, . . . , Nmax} do

Generate y(i) where y(i) = G(z(i);ϕ∗), z
(i) ∼ pz .

Sample {ξ(i)}Nmax
1 from the Poisson process by sampling ϵk ∼ Exp(1) and ξ(i) = 1/

∑i
k=1 ϵk.

end for
Compute the component-wise maxima as: M = max1≤i≤Nmax{ξ(i) ⊙ y(i)}.
Output: M .

195–211, 2018.

Daniel Hofmann. Characterization of the D-norm corresponding to a multivariate extreme value distribution. PhD thesis,
Universität Würzburg, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In http://arxiv.org/abs/1412.6980, 2014.

J Pickands. Multivariate extreme value distributions, bull. int. statist. 1981.

Bodhisattva Sen. A gentle introduction to empirical process theory and applications. Lecture Notes, Columbia University,
2018.

Jon A Wellner. Empirical processes: Theory and applications. Notes for a course given at Delft University of Technology,
2005.
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Figure 19: (Larger figures from main text) Qualitative comparison of 10 out of 45 total 2d margins from learned 10d MEV
for the California Winds dataset. The dMNN is the only method that retains margins that are valid Pickands dependence
functions.
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Figure 20: (Larger figures from main text) MSE of CFG estimate for 1000 samples and 1000 simplex points for d = 225
(20a, 20b) at various α ∈ (0, 1) and α = 0.5 (20c, 20d) at d = {64, 128, 256, 784, 1024} for ASL (20a) and AASL (20b) for
data sampled from generative model (blue), dMNN (orange), and exact sampled (green). Both models were trained with
1000 data points.
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