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A MATHEMATICAL APPENDIX

A.1 PROOF OF PROPOSITION 1

We know that, with the Radon-Nikodým derivative R � dP{dPTrain,

V pπq � ErY pπqs � ETrainrRY
πs. (31)

where

R �
dPpX,T, Y q

dPTrainpX,T, Y q
�

dPpX,T, Y q
dPpX,T, Y | S � 1q

(32)

�
dPpX,T, Y q

dPpX,T, Y, S � 1q
P pS � 1q �

P pS � 1q

PpS � 1 | X,T, Y q
. (33)

Remark 1. With the above result for the Radon-Nikodým derivative, we can see the effect of the selection variable S: If S
does not depend on X , T , and Y , then R � 1. Therefore, P would be identical to PTrain and, as a consequence, the policy
value on the target population, i. e., VTargetpπq, would coincide with the policy value on the training data, i. e., ETrainrY

πs. If,
however, S depends on X , T , and Y , then the policy value on the target population does not coincide with the policy value
on the training data and, therefore, VTargetpπq � ETrainrY

πs.

A.2 PROOF OF THEOREM 1

Let Z � 1
n

°n
i�1R

�
i . Then,

VTargetpπq ¤ V̂ �
Targetpπq � sup

πPΠ

∣∣V̂ �
Targetpπq � VTargetpπq

∣∣, (34)

and

sup
πPΠ

∣∣V̂ �
Targetpπq � VTargetpπq

∣∣ (35)

� sup
πPΠ

∣∣∣∣ 1
n

°n
i�1R

�
i ψipπq

Z
�
VTargetpπq

Z
�
VTargetpπqp1� Zq

Z

∣∣∣∣ (36)

¤
1

Z
sup
πPΠ

∣∣∣∣ 1n
ņ

i�1

R�i ψipπq � V pπq

∣∣∣∣� sup
πPΠ

C
∣∣1� Z

∣∣
Z

. (37)

We let

T � sup
πPΠ

∣∣∣∣ 1n
ņ

i�1

R�i ψipπq � VTargetpπq

∣∣∣∣. (38)

Since |Y | ¤ C and, therefore, |µtpxq| ¤ C, R�i ¤ u, and 1� η ¥ πbpxq ¥ η (for some η ¡ 0 due to positivity), we have
that

1.) for ψDM
i pπq from (8): T � supπPΠ

∣∣∣∣ 1n °n
i�1R

�
i pπpXiqµ1pXiq � p1 � πpXiqqµ0pXiqq � V pπq

∣∣∣∣ satisfies bounded

differences with 4Cu
n ,

2.) for ψNIPW
i pπq from (9): T � supπPΠ

∣∣∣∣ 1n °n
i�1R

�
i p

2W IPW
i

1
n

°n
j�1W

IPW
j

p1 � 2Tiqp1 � Ti � πpXiqqYiq � V pπq

∣∣∣∣, satisfies

bounded differences with 4Cu
n

1�η
η ,

3.) for ψDR
i pπq from (10): T � supπPΠ

∣∣∣∣ 1n °n
i�1R

�
i pψ

DM
i pπq�W IPW

i p1�2Tiqp1�Ti�πpXiqqpYi�µTipXiqqq�V pπq

∣∣∣∣,
satisfies bounded differences with 4Cu

n
1�η
η .



Hence, T satisfies bounded differences with 4Cu
n Kψ, where Kψ � 1 for ψDM

i pπq, Kψ � 1�η
η for ψNIPW

i pπq, and
Kψ � 1�η

η for ψDR
i pπq.

Thus, using McDiarmid’s inequality yields

P pT � ErT s ¥ ϵq ¤ expp�
nϵ2

8C2u2K2
ψ

q. (39)

Therefore, we have that

P pT � ErT s ¤ ϵq ¥ 1� expp�
nϵ2

8C2u2K2
ψ

q. (40)

Using p1 � expp� nϵ2

8C2u2K2
ψ
q and, therefore, ϵ � 2CuKψ

b
2logp1{p1q

n , we have that with probability at least 1� p1,

T ¤ ErT s � 2CuKψ

c
2logp1{p1q

n
. (41)

Since ErR�i ψipπqs � V pπq, a standard symmetrization argument yields

ErT s ¤ E
� 1

2n
ΣσPt�1,�1un sup

πPΠ
| 1
n

ņ

i�1

σiR
�
i ψipπq|

�
. (42)

Then, using the Rademacher comparison theorem (Thm 4.12 in Ledoux and Talagrand [2013]), this yields

ErT s ¤ 2CuKψErRnpΠqs, (43)

where Kψ is from above and depends on whether one uses ψDM
i pπq, ψNIPW

i pπq, or ψDR
i pπq. Moreover, RnpΠq satisfies

bounded differences with constants 2
n and, hence, we can again use McDiarmid’s inequality, which yields

P pErRnpΠqs �RnpΠq ¥ ϵq ¤ expp
�ϵ2n

2
q. (44)

Therefore, we have that

P pErRnpΠqs �RnpΠq ¤ ϵq ¥ 1� expp
�ϵ2n

2
q. (45)

Using p2 � expp�ϵ
2n
2 q and, therefore, ϵ �

b
2logp1{p2q

n , we have that with probability at least 1� p2,

ErRnpΠqs ¤ RnpΠq �

c
2logp1{p2q

n
. (46)

The second term in (37) can be bounded using 0 ¤ R�i ¤ u, E rR�s � 1, and Hoeffding’s inequality:

P p|1� Z| ¥ ϵq ¤ 2expp�2ϵ2u�2nq. (47)

Therefore, we have that
P p|1� Z| ¤ ϵq ¥ 1� 2expp�2ϵ2u�2nq. (48)

Using p3 � 2expp�2ϵ2u�2nq and, therefore, ϵ � u
b

logp2{p3q
2n , we have that with probability at least 1� p3,

C|1� Z| ¤ Cu

c
logp2{p3q

2n
. (49)

Finally, using that 1{Z ¤ 1{l, we get that with probability at least 1� p1 � p2 � p3,

sup
πPΠ

∣∣∣∣V̂ �
Targetpπq � VTargetpπq

∣∣∣∣ ¤ 2C
u

l
KψRnpΠq � 2C

u

l
Kψ

c
2logp1{p2q

n
� 2C

u

l
Kψ

c
2logp1{p1q

n
� C

u

l

c
logp2{p3q

2n
.

(50)



Let p1, p2 � δ{4 and p3 � 2δ{4, then, using that Kψ ¥ 1, the above is bounded by 2C u
lKψRnpΠq � 2C u

lKψ

b
18logp4{δq

n .

The proof is completed by recognizing that, since the true R� P R, we have that V̂ �
Targetpπq ¤ V Targetpπq.

Remark 1. We briefly explain how Theorem 1 is proven in the case in which we do not have access to the true nuisance
functions (using the results from Athey and Wager [2021].

Let Ṽ �
Targetpπq be the estimator which uses the true nuisance functions and Ṽ �

Targetpπq the estimator which uses estimated
nuisance functions. Let Z � 1

n

°n
i�1R

�
i . Then,

VTargetpπq ¤ V̂ �
Targetpπq � sup

πPΠ

∣∣V̂ �
Targetpπq � Ṽ �

Targetpπq � Ṽ �
Targetpπq � VTargetpπq

∣∣ (51)

¤ V̂ �
Targetpπq � sup

πPΠ

∣∣Ṽ �
Targetpπq � V̂ �

Targetpπq
∣∣� sup

πPΠ

∣∣Ṽ �
Targetpπq � VTargetpπq

∣∣ (52)

The term supπPΠ
∣∣Ṽ �

Targetpπq � VTargetpπq
∣∣ can be bounded analogously to the proof above. The term supπPΠ

∣∣Ṽ �
Targetpπq �

V̂ �
Targetpπq

∣∣ can be bounded using Lemma 4 in Athey and Wager [2021]. The result follows the analogously to the proof
above.

A.3 PROOF OF THEOREM 2

Let piq denote the ith index of the increasing order statistics, an ordering where ψp1qpθq ¤ . . . ψpnqpθq. Hence, we address
the following optimization problem

max
R

°n
i�1Rpiqψpiqpθq°n

i�1Rpiq
s. t., l ¤ Rpiq ¤ u, Rpiq ¥ 0,@i � 1, . . . , n. (53)

We derive a closed-form solution for any of the ψipθq in (8), (9), and (10), which generalizes the solution of Kallus and
Zhou [2018] to all standard policy learning methods. Since the constraint on R is linear, the above optimization problem
is a linear fractional program. Hence, we can use the Charnes-Cooper transformation [Charnes and Cooper, 1962] with
R̃piq � Rpiq{

°n
i�1Rpiq and t � 1{

°n
i�1Rpiq, which yields

max
R̃

ņ

i�1

R̃piqψpiqpθq s.t. t l ¤ R̃piq ¤ t u, R̃piq ¥ 0
ņ

i�1

R̃piq � 1, t ¥ 0,@i � 1, . . . , n (54)

The corresponding dual problem has the dual variables λ P R for the normalization constraint and w, v P Rn� for the box
constraints on the normalized Radon-Nikodým derivative. It is given by

min
λ,v,w

λ, s.t.
ņ

i�1

vpiq u� wpiq l ¥ 0, λ� vpiq � wpiq ¥ ψpiqpθq,@i � 1, . . . , n λ P R, v, w P Rn�. (55)

At the optimal solution, only one of the primal weight bound constraints, (for nontrivial bounds l   u), t l ¤ Rpiq or
Rpiq ¤ t u will be tight. At the optimal solution, by complementary slackness, either none or one of the nonbinding
primal constraints is nonzero, i. e., either vpiq, wpiq, or none is nonzero. Moreover, t � 0 is infeasible, since t � 0

would imply R̃piq � 0 for all i, which contradicts
°n
i�1 R̃piq � 1. Hence, t � 0. At the optimal solution, the constraint°n

i�1 vpiq u� wpiq l ¥ 0 must be active. Otherwise, we can find a λ which is smaller than the optimal one but still feasible,
and hence contradicts the optimality. As a result, at an optimal solution, we have that:

ņ

i�1

vpiq u� wpiq l � 0, (56)

vpiq � wpiq � ψpiqpθq � λ,@i � 1, . . . , n. (57)

Since v, w ¥ 0, we see the following by distinction of cases. If ψpiqpθq ¥ λ, then wpiq � 0 and vpiq � ψpiqpθq � λ. If
ψpiqpθq   λ, then vpiq � 0 and wpiq � λ� ψpiqpθq.

At optimality, since piq is the increasing order statistics, there exists some index k P t1, . . . , nu such that ψpkqpθq   λ ¤
ψpk�1qpθq. Hence, we can substitute the solution from (57) in (56) and obtain the following

ķ

i�1

lpλ� ψpiqpθqq �
ņ

i�k�1

upψpiqpθq � λq � 0, (58)



and, therefore,

λpkq �
l
°k
i�1 ψpiqpθq � u

°n
i�k�1 ψpiqpθq

k l � pn� kqu
. (59)

The optimal k is given by k� � inftk : λpkq ¤ ψpk�1qpθqu, which can be seen by the following argument. When λpkq is
maximal, we have that λpkq ¥ λpk � 1q. This is equivalent to λpkq ¤ ψpk�1qpθq, since the following steps are equivalent

0 ¥ λpk � 1q � λpkq (60)

0 ¥
plk � upn� kqqλpkq � pl � uqψpk�1qpθq

lpk � 1q � upn� k � 1q
� λpkq (61)

0 ¥ plk � upn� kqqλpkq � pl � uqψpk�1qpθq � λpkqplpk � 1q � upn� k � 1qq (62)

0 ¥ plk � upn� kqqλpkq � pl � uqψpk�1qpθq � λpkqplk � upn� kqq � λpkqpl � uq (63)

0 ¥ pl � uqψpk�1qpθq � λpkqpl � uq (64)

λpkq ¤ ψpk�1qpθq, (65)

where the last inequality switches because we divide by l � u which is negative. Next, we show that if λpkq ¥ λpk � 1q,
then λpk � 1q ¥ λpk � 2q.

λpk � 1q (66)

�
plk � upn� kqqλpkq � pl � uqψpk�1qpθq

lpk � 1q � upn� k � 1q
(67)

¤
plk � upn� kqqψpk�1qpθq � pl � uqψpk�1qpθq

lpk � 1q � upn� k � 1q
(68)

� ψpk�1qpθq ¤ ψpk�2qpθq, (69)

and, since we showed above that λpkq ¥ λpk � 1q is equivalent to λpkq ¤ ψpk�1qpθq, we have that λpk � 1q ¤ ψpk�2qpθq
is equivalent to λpk � 1q ¥ λpk � 2q. Thus, k� � inftk : λpkq ¤ ψpk�1qpθqu. Hence, the solution of the dual problem

is R̃piq �
l1ppiq¤k�q�u1ppiq¡k�q

k� l�pn�k�qu . Then, the solution of the primal problem can be recovered by R � 1
t R̃, where t �

1{pk� l � pn� k�quq.

A.4 PROOF OF LEMMA 1

For the direct method, we have

ψDM
i pθq � πpXi, θqµ1pXiq � p1� πpXi, θqqµ0pXiq (70)

� pg̃pXi, θq � h̃pXi, θqqµ1pXiq � p1� g̃pXi, θq � h̃pXi, θqqµ0pXiq. (71)

To derive gi and hi, we proceed with a case distinction.

Case 1: µ0pXiq ¥ 0 and µ1pXiq ¥ 0
In this case, we have

ψDM
i pθq � pg̃pXi, θqµ1pXiq � h̃pXi, θqµ0pXiq � µ0pXiqq (72)

� ph̃pXi, θqµ1pXiq � g̃pXi, θqµ0pXiqq, (73)

and, hence, the claim follows with

gipθq � g̃pXi, θqµ1pXiq � h̃pXi, θqµ0pXiq � µ0pXiq (74)

hipθq � h̃pXi, θqµ1pXiq � g̃pXi, θqµ0pXiq. (75)

Case 2: µ0pXiq   0 and µ1pXiq ¥ 0
In this case, we have

ψDM
i pθq � pg̃pXi, θqµ1pXiq � g̃pXi, θq|µ0pXiq|� |µ0pXiq|q (76)

� ph̃pXi, θqµ1pXiq � h̃pXi, θq|µ0pXiq|q, (77)



and, hence, the claim follows with

gipθq � g̃pXi, θqµ1pXiq � g̃pXi, θq|µ0pXiq|� |µ0pXiq| (78)

hipθq � h̃pXi, θqpµ1pXiq � |µ0pXiq|q. (79)

Case 3: µ0pXiq ¥ 0 and µ1pXiq   0
In this case, we have

ψDM
i pθq � ph̃pXi, θq|µ1pXiq|� h̃pXi, θqµ0pXiq � µ0pXiqq (80)

� pg̃pXi, θq|µ1pXiq|� g̃pXi, θqµ0pXiqq, (81)

and, hence, the claim follows with

gipθq � h̃pXi, θq|µ1pXiq|� h̃pXi, θqµ0pXiq � µ0pXiq (82)
hipθq � g̃pXi, θqp|µ1pXiq|� µ0pXiqq. (83)

Case 4: µ0pXiq   0 and µ1pXiq   0
In this case, we have

ψDM
i pθq � ph̃pXi, θq|µ1pXiq|� g̃pXi, θq|µ0pXiq|� |µ0pXiq|q (84)

� pg̃pXi, θq|µ1pXiq|� h̃pXi, θq|µ0pXiq|q, (85)

and, hence, the claim follows with

gipθq � h̃pXi, θq|µ1pXiq|� g̃pXi, θq|µ0pXiq|� |µ0pXiq| (86)

hipθq � g̃pXi, θq|µ1pXiq|� h̃pXi, θq|µ0pXiq|. (87)

For the normalized inverse propensity weights method, we have

ψNIPW
i pθq �

2W IPW
i

1
n

°n
j�1W

IPW
j

p1� 2Tiqp1� Ti � πpXi, θqqYi. (88)

Again, by a case distinction, we yield for Ti � 1:

ψNIPW
i pθq �

2W IPW
i

1
n

°n
j�1W

IPW
j

πpXi, θqYi (89)

�
2W IPW

i
1
n

°n
j�1W

IPW
j

g̃pXi, θqYi �
2W IPW

i
1
n

°n
j�1W

IPW
j

h̃pXi, θqYi, (90)

and, hence, the claim follows with

gipθq �
2W IPW

i
1
n

°n
j�1W

IPW
j

g̃pXi, θqYi (91)

hipθq �
2W IPW

i
1
n

°n
j�1W

IPW
j

h̃pXi, θqYi. (92)

For Ti � 0, we derive,

ψNIPW
i pθq �

2W IPW
i

1
n

°n
j�1W

IPW
j

p1� πpXi, θqqYi (93)

�
2W IPW

i
1
n

°n
j�1W

IPW
j

p1� g̃pXi, θq � h̃pXi, θqqYi, (94)



and, hence, the claim follows with

gipθq �
2W IPW

i
1
n

°n
j�1W

IPW
j

ph̃pXi, θq � 1qYi (95)

hipθq �
2W IPW

i
1
n

°n
j�1W

IPW
j

g̃pXi, θqYi. (96)

For the doubly robust method, we can use the decomposition of the direct method. By defining

νi � p1� 2TiqpYi � µTipXiqq, (97)

and rewriting

W IPW
i p1� 2Tiqp1� Ti � πpXi, θqqpYi � µTipXiqq �W IPW

i p1� Ti � πpXi, θqqνi, (98)

we proceed again by a case distinction for the rest. For νi ¥ 0 we have

W IPW
i p1� Ti � πpXi, θqqνi �W IPW

i p1� Tiqνi �W IPW
i νih̃pXi, θq (99)

�W IPW
i νig̃pXi, θq. (100)

For νi   0, we have that

W IPW
i p1� Ti � πpXi, θqqνi �W IPW

i p1� Tiqνi �W IPW
i |νi|g̃pXi, θq (101)

�W IPW
i |νi|h̃pXi, θq. (102)

and, hence, the claim follows.

A.5 PROOF OF THEOREM 3

By Theorem 2, we know that

max
RPR

°n
i�1Riψipθq°n

i�1Ri
� max
RPS�R

°n
i�1Riψipθq°n

i�1Ri
, (103)

with |S| � n� 1   8. Hence, we can write the inner maximum as

max
jPJ

°n
i�1R

j
iψipθq°n

i�1R
j
i

, (104)

where Rj for j P J � t0, . . . , nu denotes one of the n� 1 possible assignments of l and u, i. e., for j � 0, it is the vector
with all entries equal to l; for j � 1, it is the vector with all entries equal to l except for the first one being u and so on. By
defining the convex functions

Gjpθq �

°n
i�1R

j
i gipθq°n

i�1R
j
i

, (105)

Hjpθq �

°n
i�1R

j
ihipθq°n

i�1R
j
i

, (106)

we have °n
i�1R

j
iψipθq°n

i�1R
j
i

� Gjpθq �Hjpθq, (107)



and, hence,

max
jPJ

°n
i�1R

j
iψipθq°n

i�1R
j
i

� max
jPJ

tGj �Hju (108)

� max
jPJ

tGj �
ņ

k�1
k�j

Hk �
ņ

k�1

Hku (109)

� max
jPJ

tGj �
ņ

k�1
k�j

Hku

looooooooooomooooooooooon
�:g

�
ņ

k�1

Hk

loomoon
�:h

. (110)

Note that g and h are convex as the sum of convex functions is convex and the maximum of convex functions is convex.
Now, g can be rewritten as follows

gpθq � max
jPJ

tGj �
ņ

k�1
k�j

Hku � max
jPJ

tGj �Hj �
ņ

k�1

Hku (111)

� max
jPJ

tGj �Hju �
ņ

k�1

Hk � max
RPR

"°n
i�1Riψipθq°n

i�1Ri

*
�

ņ

k�1

Hk (112)

� max
RPR

"°n
i�1Riψipθq°n

i�1Ri

*
� h. (113)

Furthermore, we can use the special structure of the worst case policy solutions to rewrite h as

h �
ņ

k�1

Hk �
ņ

k�1

°n
i�1R

k
i hipθq°n

i�1R
k
i

�
ņ

k�1

ņ

i�1

Rki°n
i�1R

k
i

hipθq (114)

�
ņ

i�1

hipθq
ņ

k�1

Rki°n
i�1R

k
iloooooomoooooon

�:ci

�
ņ

i�1

hipθqci, (115)

where ci can be calculated as

ci � l

�
i̧

k�1

1

pn� k � 1ql � pk � 1qu

�
� u

�
ņ

k�i�1

1

pn� k � 1ql � pk � 1qu

�
, (116)

for all i by combinatorial arguments.

A.6 PROOF OF THEOREM 4

The convergence analysis of MMCCP follows from the convergence analysis of the DC-algorithm (DCA) [Tao and An,
1997]. More precisely, DCA for minimizing a function f � g � h reduces to the convex-concave procedure in case that the
function h is differentiable [Phan et al., 2018, Sriperumbudur and Lanckriet, 2009]. This is exactly what we have in our case,
as by our assumption on g̃ and h̃ we have that each hi (as a linear combination of differentiable functions) is differentiable
and, hence, h is differentiable.

Now, 1. in Theorem 4 directly follows from (i) of Theorem 3 in Tao and An [1997]. For 2. in Theorem 4, we have to proof
the following:

1. inf
θPΘ

max
RPR

°n
i�1 Riψipθq°n

i�1 Ri
is finite.

2. It holds ρpgq � ρphq ¡ 0.

3. pθkqkPN is bounded.



Ad Item 1: Since |Y | ¤ C, we have that |µtpXiq| ¤ C. Also, the rest of the terms involved in each of the three cases for ψi
are bounded constants, and l ¤ Ri ¤ u for all i P t1, . . . , nu. Hence, since πp�, θq P r0, 1s, we have that Item 1 holds true.

Ad Item 2: For all i P t1, . . . , nu, we have in each of the three cases for ψi, that hi is, up to a constant, a linear combination
of g̃ and h̃ with positive weights. By our assumptions, we have that ρpg̃q ¡ 0 and ρph̃q ¡ 0 and, hence, ρphiq ¡ 0. By
Theorem 3, we have that h �

°n
i�1 hici with non-negative weights ci, which yields ρphq ¡ 0. Item 2 follows by observing

that ρpgq ¥ 0.

Ad Item 3: Follows directly from Assumption 1.

Then, 2. in Theorem 4 follows by (iii) and (iv) of Theorem 3 in Tao and An [1997].

B DETAILS ON COVARIATES IN THE ACTG 175 STUDY

The ACTG 175 study assigned four treatments randomly to 2,139 subjects with human immunodeficiency virus (HIV)
type 1, whose CD4 counts were 200–500 cells/mm3. The four treatments that were compared are the zidovudine (ZDV)
monotherapy, the didanosine (ddI) monotherapy, the ZDV combined with ddI, and the ZDV combined with zalcitabine
(ZAL).

There are 5 continuous covariates: age (year), weight (kg, coded as wtkg), CD4 count (cells/mm3) at baseline, Karnofsky
score (scale of 0-100, coded as karnof), CD8 count (mm3) at baseline. They are centered and scaled before further analysis.
In addition, there are 7 binary variables: gender (1 � male, 0 � female), homosexual activity (homo, 1 � yes, 0 � no), race
(1 � nonwhite, 0 � white), history of intravenous drug use (drug, 1 � yes, 0 � no), symptomatic status (symptom, 1 �
symptomatic, 0 � asymptomatic), antiretroviral history (str2, 1 � experienced, 0 � naive) and hemophilia (hemo, 1 � yes,
0 � no).

C ASSUMPTION 1 FOR LINEAR POLICIES

Linear policies are defined by πpX, θq � σpθ⊺Xq, where σpzq � minp1,maxpz, 0qq. A DC-representation for σpzq, with
z � θ⊺X , is given by

g̃Linpzq � maxpz, 0q, (117)

h̃Linpzq � maxpmaxpz, 0q � 1, 0q. (118)

It is straightforward to check that both functions are convex. Again, they can be made strongly convex by adding λ
2 z

2 to
both functions. Note however, that g̃Lin is not differentiable in 0 and h̃Lin is not differentiable in t0, 1u. As a remedy, one
can set Θϵi � tθ P Rd : ϵ ¤ θ⊺Xi ¤ 1� ϵu for an ϵ ¡ 0 and define Θϵ �

�n
i�1 Θ

ϵ
i . The intersection has to be nonempty to

make this approach work.

D IMPLEMENTATION DETAILS

Our code is available at github.com/tobhatt/GeneralOPL. For our experiments, we used the policy class of
logistic policies as introduced in the main paper. To fulfill Assumption 1, we choose Θ to be a hypercube with large bounds
to ensure a large enough search space, i. e., Θ � r�10, 000; 10, 000sd. In order to solve the subproblems in MMCCP, we
draw upon the L-BFGS-B algorithm implemented in the open-source Python library SciPy. At this point, we note that the
subproblems are convex but not necessarily differentiable, as the point-wise maximum of differentiable functions is not
necessarily differentiable. However, logistic policies are continuously differentiable and the above choice for Θ is compact.
Hence, the functions ψipθq are Lipschitz and, thus,

max
RPR

°n
i�1Riψipθq°n

i�1Ri
(119)

is Lipschitz as the point-wise maximum of Lipschitz functions. By Rademacher’s theorem, (119) is therefore almost
everywhere differentiable. The points θ where (119) is not differentiable are given by the points in which the maximizing
argument R changes. Due to this fact, we find empirically that L-BFGS-B can efficiently solve these subproblems. The
rest of the parameters are set as follows. The parameter for the stopping criterion is set to δtol to 10�4. In order to make

github.com/tobhatt/GeneralOPL
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Figure 1: Percentage of patients with πpXq ¡ 0.5 for our GenDM and GenNIPW policy method. Fewer patients are treated for increasing
Γ.

g̃ and h̃ strongly convex, λ is set to 10�3. In every run, the starting points are initialized via a normal distribution, i. e.,
θ0 � Ndp0d, 0.1 � Idq. For each method, we ran our algorithm 5 times on the datasets.

We run all of our experiments on a server with two 16 Core Intel Xeon Gold 6242 processors each with 2.8GHz, and 192GB
of RAM.

E RESULTS FOR GENDM AND GENNIPW ON ACTG 175 STUDY

We present the results on the ACTG 175 study for our method GenDM, which uses ψDM
i pπq from (8) and our method

GenNIPW, which uses ψNIPW
i pπq from (9). Analogously to Section 5.2, we study the percentage of patients that are treated

(i. e., πpXq ¡ 0.5) for varying Γ. The results are presented in Figure 1. Similar to the results for GenDR in Section 5.2, we
find that compared to the baseline policy, our policy treats fewer patients for increasing Γ. GenNIPW shows little variance
across several runs on the dataset. For each run, GenNIPW obtains different, but similar θ. However, the percentage of
patients treated remains consistent across different runs.
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