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1 DYNAMIC PROGRAMMING
ALGORITHM

Algorithm 1 Computing configuration distribution
Pr(C|b0(M1), b0(M2), . . . , b0(MN ))

Require: 〈b0(M1), b0(M2), . . . , b0(MN )〉
Ensure: PN , which is the distribution Pr(Ca−0) represented as

a trie.
Initialize cai

0 ← (0, . . . , 0), P0[c
ai
0 ]← 1.0

for k = 1 to N do
Initialize Pk to be an empty trie
for cai

k−1 from Pk−1 do
for aai

k ∈ Aai
k such that πai

k (aai
k ) > 0 do

cai
k ← cai

k−1

if aai
k 6= ∅ then
cai
k (aai

k )
+← 1

end if
if Pk[c

ai
k ] does not exist then

Pk[c
ai
k ]← 0

end if
Pk[c

ai
k ]

+← Pk−1[c
ai
k−1]× πai

k (aai
k )

end for
end for

end for
return PN

2 PROOF OF PROPOSITION 1

Here we assume a common model of noise, P (aoj |aek),
where the subject agent observes action aoj from another
agent when the latter executed action aek, as

P (aoj |aek) =

{
1− δ if aoj = aek

δ
|A|−1 otherwise

(1)

for some small δ. The effect of such noise from the private
observation of an individual agent’s action can be aggre-
gated over N agents in terms of δ as follows. Suppose the ob-
served configuration, ω′

0, is Co = (#ao1,#ao2, . . . ,#ao|A|),

and the true configuration is Ce = (#ae1,#ae2, . . . ,#ae|A|).
Then the probability of an error in the observation of a
configuration is

P (error) =
∑
Ce

∑
Co 6=Ce

P (Co ∧ Ce)

=
∑
Ce

∑
Co 6=Ce

P (Co|Ce)P (Ce)

where

P (Ce) =
∏
i

θ
#ae

i
i , and

P (Co|Ce) =
∏

(j,k)∈A×A

P (aoj |aek)njk

s.t. (
∑
j

njk = #aek) ∧ (
∑
k

njk = #aoj) (2)

Let moe
i = min{#aoi ,#aei}. Then P (Co|Ce) can be maxi-

mized by setting the diagonal of the matrix [njk] as nii =
moe

i , and distributing the remaining weight N −
∑

i m
oe
i to

the off-diagonal positions while satisfying Eq. 2. This yields

P (Co|Ce) ≤(1− δ)
∑

i m
oe
i

(
δ

|A| − 1

)N−
∑

i m
oe
i

≤(1− δ)N−1

(
δ

|A| − 1

)
in order to ensure that Co 6= Ce. Furthermore, the number
of solutions of Eq. 2 is ≤

∏
i(m

oe
i +1) = O(N |A|). Hence

P (error) ≤ N |A|(1− δ)N−1

(
δ

|A| − 1

)
The above is a decreasing function of N when N >

|A|
log(1/1−δ) .

3 POLICY VALUE WITH RESPECT TO
EPISODES

We choose to use time in hours as metric for demonstrating
efficiency of tested algorithms. We provide additional plots
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(a) Tree (b) Star (c) Fully Connected (d) Battlefield

Figure 1: Cumulative reward of learned policies in (a) tree structure, (b) star structure, and (c) fully connected structure. (d)
Win rate against pre-trained agents in the MAgent battlefield domain.

that use episodes as metric in Fig. 1. QMIX and MF-AC
do not converge to optimal policy given same amount of
episodes as IA2C-BU, however, it only takes QMIX and
MF-AC about one third of the time to finish one episode
compared to IA2C-BU.
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