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1 DETAILED DERIVATIONS

1.1 INFERENCE FOR THE VANILLA GPODE MODEL

The model. We consider the problem of inferring an ODE system

y(t) = x(t) + ε (1)

x(t) = x0 +

∫ t

0

f(x(τ))dτ (2)

from some noisy observations y(t) of the true system state x(t) ∈ RD, whose evolution over time t ∈ R+ follows a
differential equation vector field

ẋ(t) =
dx(t)

dt
:= f(x(t)), f : RD 7→ RD (3)

starting from an initial state x0 ∈ RD. Our goal is to learn the underlying ODE vector field f .

We propose a Gaussian process prior to the differential function

f(x) ∼ GP(0, k(x,x′)). (4)

Following Titsias (2009) for sparse inference of GPs using inducing variables, we augment the full model with inducing
values U = (u1, . . . ,uM )T ∈ RM×D and inducing locations Z = (z1, . . . , zM )T ∈ RM×D, which results in a low-rank
GP

p(U) = N (U|0,KZZ) (5)

p(f |U) = N (f |Avec(U),KXX −AKZZAT ), (6)

where X = (x1,x2, . . .xN ′)
T ∈ RN ′×D collects all the intermediate state evaluations x(ti) encountered along numerical

approximation of the true continuous ODE integral (2), f = (f(x1)T , . . . , f(xN ′)
T )T ∈ RN ′D×1, KXX is a block-

partitioned matrix of size N ′D ×N ′D with D ×D blocks, so that block (KXX)i,j = K(xi,xj), and A = KXZK−1ZZ.

The joint model The joint probability of the model is

p(Y, f ,U,x0) =

N∏
i=1

p(yi|f ,x0)p(f |U)p(U)p(x0) (7)

=

N∏
i=1

p(yi|f ,x0)︸ ︷︷ ︸
likelihood

p(f ,U)︸ ︷︷ ︸
GP prior

p(x0)︸ ︷︷ ︸
initial state prior

, (8)

where we assume a standard Gaussian prior p(x0) = N (0, I) for the unknown initial state x0.
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Figure 1: Plate diagrams: latent random variables that are considered during model inference are shaded in green. The
intermediate variables xi (unshaded) are defined as deterministic transformations of the inferred variables (conditioned
on the vectorfield). In the vanilla GPODE formulation (a), the initial state distribution x0 is integrated forward in time to
match all the observations {y1,y2, . . . ,yN} forming a full trajectory. The shooting version (b) splits the full trajectory
into multiple subintervals. Every subinterval i starts with an approximated state distribution si, which is integrated forward
to match the next observation yi+1. In addition, the state evolution from the previous shooting variable is matched to the
variational shooting approximation at the current state.

Inference. Our primary goal is to learn the vector field f by inferring the model posterior p(f ,U,x0|Y), which is
intractable. We resort to stochastic variational inference Hensman et al. (2013), and introduce a factorized Gaussian posterior
approximation for the inducing variables across state dimensions

q(U) =

D∏
d=1

N (ud|md,Qd), (9)

where, ud ∈ RM and md ∈ RM ,Qd ∈ RM×M are the mean and covariance parameters of the variational Gaussian
posterior approximation for the inducing variables. The Gaussian process posterior process with an inducing approximation
can be written as

q(f) =

∫
p(f |U)q(U)dU (10)

=

∫
N
(
f |Avec(U),KXX −AKZZAT

)
q(U)dU. (11)

We also introduce posterior approximation for the initial state variable x0,

q(x0) = N (x0|m0,S0). (12)

This results in a variational joint posterior approximation

q(f ,U,x0) = q(f ,U)q(x0) (13)
= p(f |U)q(U)q(x0), (14)

ELBO. With the above model specification, under variational inference of the posterior approximations, the evidence
lower bound (ELBO) log p(Y) ≥ L can be written as,

L =

∫∫∫
q(f ,U,x0) log

p(Y, f ,U,x0)

q(f ,U,x0)
dfdUdx0 (15)

=

∫∫∫
q(f ,U,x0) log

N∏
i=1

p(yi|f ,x0)︸ ︷︷ ︸
Ly

p(f |U)

p(f |U)

p(U)

q(U)︸ ︷︷ ︸
Lu

p(x0)

q(x0)︸ ︷︷ ︸
Lx0

dfdUdx0. (16)



Hence the ELBO decomposes into three additive terms

L = Ly + Lu + Lx0
, (17)

where each term contains the (relevant parts of) expectation over q(f ,U,x0).

Likelihood term. The variational likelihood term Ly is an expectation of the likelihood wrt the variationally marginalized
vectorfield posterior q(f), and the initial state distribution q(x0),

Ly =

∫∫
q(f ,x0) log p(y|f ,x0)dfdx0 (18)

=

N∑
i=1

Eq(f ,x0) log p(yi|f ,x0). (19)

This term computes the likelihood p(yi|f ,x0) = p(yi|xi) over ODE state solutions xi = x0 +
∫ ti
0

f(x(τ))dτ for a single
realization of the vector field f ∼ p(f) and the initial state x0 ∼ p(x0). Because of the non-linear integration x0 7→ x(t),
we cannot solve this integral analytically. Instead, we resort to Monte Carlo integration by sampling ODE trajectories over
different vector field realizations f ∼ q(f) and initial states x0 ∼ q(x0). In practice, this term can be approximated as

Ly ≈
1

S

S∑
s=1

N∑
i=1

log p(yi|f (s),x(s)
0 ) (20)

where we sum over S reparameterized samples f (s) ∼ q(f) and x
(s)
0 ∼ q(x0).

Inducing KL. This term corresponds to the KL divergence between variational posterior and the prior distribution of
inducing values. This term can be derived analytically as the KL between multivariate Gaussians.

Lu =

∫
q(U) log

p(U)

q(U)
dU (21)

=

D∑
d=1

∫
q(ud) log

p(ud)

q(ud)
du (22)

= −
D∑
d=1

KL [q(ud)||p(ud)] (23)

Initial state KL. This term corresponds to the KL divergence between variational posterior and the prior distribution of
the initial state. With an assumption of Gaussian prior and variational posterior, this term can also be derived analytically,

Lx0
=

∫
q(x0) log

p(x0)

q(x0)
dx0 (24)

= −KL [q(x0)||p(x0)] (25)

Complete ELBO. The full ELBO is then

L =

N∑
i=1

Eq(f ,x0) log p(yi|f ,x0)−KL[q(U) || p(U)]−KL[q(x0) || p(x0)] (26)

1.2 DECOUPLED SAMPLING OF GPODES

In this section, we provide details for simulating valid ODE trajectories from a GP vector field posterior of the form

q(u) = N (m,Q), (27)

q(f) =

∫
p(f |u)q(u)du (28)

=

∫
N
(
f |Au,KXX −AKZZAT

)
q(u)du, (29)



where A = KXZK−1ZZ and m ∈ RM ,Q ∈ RM×M are the variational mean and covariance parameters of the Gaussian
posterior approximation for inducing variables. For simplicity, we consider a scalar valued GP, but it is straightforward to
extend this approach to vector-valued GPs.

A sparse GP posterior of the form (29) can be decomposed into two parts using Matheron’s rule (Corollary 2 Wilson et al.
(2020)),

f(x)|u︸ ︷︷ ︸
posterior

= f(x)︸︷︷︸
prior

+ k(x,Z)K(Z,Z)−1(u− fZ))︸ ︷︷ ︸
update

. (30)

Wilson et al. (2020) propose a decoupled sampling from the posterior by using different bases for the prior and
update terms. In particular, they propose Fourier basis functions for the prior term and canonical basis for the update
term respectively

f(x)|u︸ ︷︷ ︸
posterior

≈
F∑
i=1

wiφi(x)︸ ︷︷ ︸
prior

+

M∑
j=1

νjK(x, zj)︸ ︷︷ ︸
update

, (31)

where we use F Fourier bases φi(·) with wi ∼ N (0, 1) (Rahimi and Recht, 2007) to represent the stationary prior, and
function basis K(·, zj) for the posterior update with ν = K(Z,Z)−1(u−Φw), Φ = φ(Z) ∈ RM×F ,w ∈ RF . We can
evaluate functions from the posterior (29) in linear time at arbitrary locations.

For the experimental results presented in the paper, we use a squared exponential kernel for which we can compute

the feature maps φi(x) =

√
σ2
f

F (cos xTωi, sin xTωi) where ωi is sampled proportional to the spectral density of the
squared exponential kernel ωi ∼ N (0,Λ−1), Λ is a diagonal matrix collecting lengthscale parameters of the kernel
Λ = diag(l21, l

2
2, . . . , l

2
D) and σ2

f is the signal variance parameter. In the case of the squared exponential kernel, this results in
2F feature maps φ(x) ∈ R2F , for which we sample weights w ∈ R2F from the standard Normal wi ∼ N (0, 1). By fixing
random samples of feature maps φ(·), corresponding weights w and inducing values u for an ODE integration call, we can
sample a unique ODE trajectory from a posterior vector field of the form (29).

1.3 PROBABILISTIC SHOOTING FORMULATION FOR GPODES

The model. We consider the problem of inferring an ODE system

y(t) = x(t) + ε (32)

x(t) = s0 +

∫ t

0

f(x(τ))dτ, (33)

from some noisy observations y(t) of the true system state x(t) ∈ RD, whose evolution over time t ∈ R+ follows a
differential equation

ẋ(t) =
dx(t)

dt
:= f(x(t)), f : RD 7→ RD (34)

starting from the initial state s0 ∈ RD. Our goal is to learn the underlying ODE vector field f .

Shooting augmentation. We propose an augmented ‘shooting’ ODE system

yi = x(ti; si−1) + ε (35)

x(ti; si−1) = si−1 +

∫ ti

ti−1

f(x(τ))dτ (36)

si = x(ti; si−1) + ξ, (37)

where we divide the state function x(t) intoN short segments, with the end state of ith segment x(ti; si−1) defining solutions
to initial value problems (36) starting from the corresponding shooting variables si−1. These short shooting segments follow



the same differential f as the original model. The augmented system is equivalent to the original ODE system, in the limit
when the tolerance parameter ξ → 0.

We assume Gaussian distributions on both observation noise and tolerance parameters, resulting in the following distributions,

p(yi|si−1) = N (yi|x(ti; si−1), σ2
yI); ε ∼ N (0, σ2

yI), (38)

p(si|si−1) = N (si|x(ti; si−1), σ2
ξ I); ξ ∼ N (0, σ2

ξ I). (39)

Gaussian process ODE. We propose a Gaussian process prior for the differential function

f(x) ∼ GP(0, k(x,x′)) (40)

In addition, we augment the full model with inducing values U = (u1, . . . ,uM )T ∈ RM×D and inducing locations
Z = (z1, . . . , zM )T ∈ RM×D, which results in a low-rank GP

p(U) = N (U|0,KZZ) (41)

p(f |U) = N (f |Avec(U),KXX −AKZZAT ), (42)

where A = KXZK−1ZZ.

The joint model. The joint probability of the model is

p(Y,S, f ,U) = p(Y|S, f)p(S|f)p(f |U)p(U) (43)

=

N∏
i=1

p(yi|si−1, f)︸ ︷︷ ︸
likelihood

N−1∏
i=1

p(si|si−1, f)︸ ︷︷ ︸
shooting prior

p(s0)︸ ︷︷ ︸
initial state

p(f |U)p(U)︸ ︷︷ ︸
GP prior

, (44)

where S = (s0, s1, . . . sN−1)T ∈ RN×D collects all shooting variables.

We also note that observations are at indices 1, . . . , N , while the shooting variables are always one behind the observations
at 0, . . . , N − 1 (see plate diagram 1 (b)).

Inference. Our primary goal is to learn the vector field f by inferring the model posterior p(S, f ,U|Y), which is intractable.
Similar to non-shooting GPODEs, we introduce a factorized Gaussian posterior approximation for the inducing variables
across state dimensions

q(U) =

D∏
d=1

N (ud|md,Qd), (45)

where, ud ∈ RM and md ∈ RM ,Qd ∈ RM×M are the mean and covariance parameters of the variational Gaussian
posterior approximation for the inducing variables.

The Gaussian process posterior process with an inducing approximation can be written as

q(f) =

∫
p(f |U)q(U)dU (46)

=

∫
N
(
f |Avec(U),KXX −AKZZAT

)
q(U)dU. (47)

Next, we introduce a factorized Gaussian posterior approximations for the shooting variables S as well,

q(S) =

N−1∏
i=0

q(si) =

N−1∏
i=0

N (si|ai,Σi). (48)

where, ai ∈ RD and Σi ∈ RD×D are the mean and covariance parameters of the variational Gaussian posterior approxima-
tion for the shooting variables.

This results in a variational joint posterior approximation

q(S, f ,U) = q(S)q(f ,U) (49)

=

N−1∏
i=0

q(si)p(f |U)q(U). (50)



ELBO. Under variational inference the posterior approximations q are optimized to match the true posterior in the KL
sense,

arg min
q

KL
[
q(S, f ,U) || p(S, f ,U|Y)

]
. (51)

This is equivalent to maximizing the evidence lower bound (ELBO) log p(Y) ≥ L,

L =

∫∫∫
q(S, f ,U) log

[
p(Y,S, f ,U)

q(S, f ,U)

]
dSdfdU (52)

=

∫∫∫
q(S, f ,U) log

[
N∏
i=1

p(yi|si−1, f) ·
N−1∏
i=1

p(si|si−1, f)

q(si)
· p(s0)

q(s0)
· p(f ,U)

q(f ,U)

]
dSdfdU (53)

=

∫∫
q(S)q(f) log

N∏
i=1

p(yi|si−1, f)dSdf︸ ︷︷ ︸
Ly

+

∫∫
q(S)q(f) log

N−1∏
i=1

p(si|si−1, f)dSdf︸ ︷︷ ︸
Lsc

−
∫
q(S) log

N−1∏
i=1

q(si)dS︸ ︷︷ ︸
Lse

+

∫
q(s0) log

p(s0)

q(s0)
ds0︸ ︷︷ ︸

L0

+

∫
q(U) log

p(U)

q(U)
dU︸ ︷︷ ︸

Lu

(54)

(55)

which results in the ELBO decomposing into four additive terms

L = Ly + Lsc + Lse + L0 + Lu, (56)

where each term contains the (relevant parts of) expectation over q(S, f ,U).

Likelihood term. The variational likelihood term Ly is an expectation of the likelihood under the posteriors of shooting
variables q(S) and the posterior vectorfield q(f),

Ly =

∫∫
q(S)q(f) log

N∏
i=1

p(yi|si−1, f)dSdf (57)

=

N∑
i=1

∫∫
q(si−1)q(f) log p(yi|si−1, f)dsi−1df (58)

=
N∑
i=1

Eq(si−1)q(f)

[
log p(yi|si−1, f)

]
. (59)

We can evaluate this term with Monte Carlo integration by taking reparameterized samples from the posteriors f (s) ∼ q(f)

and s
(s)
i−1 ∼ q(si−1) as below

Ly =

N∑
i=1

Eq(si−1,f)

[
log p(yi|si−1, f)

]
(60)

Ly ≈
1

S

S∑
s=1

N∑
i=1

[
log p(yi|x(s)

i )
]
, (61)

where x
(s)
i is defined as solution to the following initial value problem,

x
(s)
i := x(s)(ti; si−1) = s

(s)
i−1 +

∫ ti

ti−1

f (s)(x(τ))dτ. (62)



Shooting cross-entropy term. This term computes the cross-entropy between the prior specification for the shooting
variables under the ODE evolution p(si|si−1, f), and the point-wise approximations q(si),

Lse =

∫∫
q(S)q(f)

[
log

N−1∏
i=1

p(si|si−1, f)
]
dSdf (63)

=

∫∫
q(sN−1) · · · q(s1)q(s0)q(f)

[
log p(sN−1|sN−2, f) · · · p(s1|s0, f)

]
dSdf (64)

=

N−1∑
i=1

∫∫
q(f)q(si)q(si−1)

[
log p(si|si−1, f)

]
dsi−1dsidf (65)

=

N−1∑
i=1

Eq(si,si−1,f)

[
log p (si|si−1, f)

]
. (66)

This term can also be numerically estimated with Monte Carlo integration using posterior samples f (s) ∼ q(f), s
(s)
i−1 ∼

q(si−1) and s
(s)
i ∼ q(si)

Lse =

N−1∑
i=1

Eq(si,si−1,f)

[
log p (si|si−1, f)

]
(67)

≈ 1

S

S∑
s=1

N−1∑
i=1

log p
(
s
(s)
i

∣∣x(s)
i

)
, (68)

x
(s)
i := x(s)(ti; si−1) = s

(s)
i−1 +

∫ ti

ti−1

f (s)(x(τ))dτ. (69)

Shooting entropy term. This term computes the entropy of the posterior approximations for shooting variables q(si).
Since we assume factorized Gaussian approximations, this term can be simplified analytically as the sum of Gaussian
entropy.

Lse = −
∫
q(S) log

N−1∏
i=1

q(si)dS (70)

= −
N−1∑
i=1

Eq(si)
[

log q(si)
]
. (71)

Initial state KL term. This term corresponds to the KL divergence between variational posterior and the prior distribution
of the initial state. With the assumption of Gaussian prior and variational posterior, this term can also be derived analytically,

L0 =

∫
q(s0) log

p(s0)

q(s0)
ds0 (72)

= −KL [q(s0)||p(s0)] . (73)

Inducing KL term. This term corresponds to the KL divergence between variational posterior and prior distribution of
inducing values. This term can also be derived analytically as the KL between multivariate Gaussians.

Lu =

∫
q(U) log

p(U)

q(U)
dU (74)

=

D∑
d=1

∫
q(ud) log

p(ud)

q(ud)
du (75)

= −
D∑
d=1

KL [q(ud)||p(ud)] . (76)



Complete ELBO. The full ELBO is then

L = Ly + Lsc + Lse + L0 + Lu (77)

=

N∑
i=1

Eq(si−1,f)

[
log p(yi|si−1, f)

]
+

N−1∑
i=1

Eq(si,si−1,f)

[
log p (si|si−1, f)

]
−
N−1∑
i=1

Eq(si)
[

log q(si)
]
−KL[q(s0) || p(s0)]−KL[q(U) || p(U)] (78)

which in practice is numerically estimated with Monte Carlo integration

L ≈ 1

S

S∑
s=1

N∑
i=1

[
log p(yi|x(s)

i )
]

+
1

S

S∑
s=1

N−1∑
i=1

log p
(
s
(s)
i

∣∣x(s)
i

)
−
N−1∑
i=1

Eq(si)
[

log q(si)
]
−KL[q(s0) || p(s0)]−KL[q(U) || p(U)] (79)

where f (s) ∼ q(f), s
(s)
i−1 ∼ q(si−1), s

(s)
i ∼ q(si) and

x
(s)
i := x(s)(ti; si−1) = s

(s)
i−1 +

∫ ti

ti−1

f (s)(x(τ))dτ. (80)

2 EXPERIMENTAL DETAILS

Algorithm 1 GPODEs : Bayesian inference of ODEs using Gaussian processes

Inputs:
- Observed states Y, observation time sequence t.

Initialize hyperparameters:
- Kernel parameters θ, likelihood parameters, inducing locations Z.

Initialize variational parameters:
- Parameters of q(U) = N (m,Q).
- Parameters of q(x0) = N (a0,Σ0).

Optimization:
for every optimization step do

(1) Sample a function f from the ODE posterior in (11) by taking following samples:
- Parameters of Fourier bases ωθ proportional to the spectral density of GP kernel,
- Weights w ∼ N (0, I),
- Sample from the inducing posterior U ∼ N (m,Q).

(2) Sample initial state x0 ∼ N (a0,Σ0).
(3) Compute predicted states Ŷ = ODEsolve(f ,x0, t).
(4) Compute ELBO from (26) : likelihood(Y, Ŷ), KL[q(U)||p(U)], KL[q(x0)||p(x0)].
(5) Update all parameters with stochastic gradients of ELBO.

end for

2.1 OPTIMIZATION SETUP

We use Adam (Kingma and Ba, 2014) optimizer and jointly train all the variational parameters and hyperparameters. The
complete list of optimized parameters, along with additional method-specific details, are given below.

Vanilla GPODE model. We use ‘whitened’ representation for the inducing variables and optimize following parameters
against the evidence lowerbound (see algorithm 1).

• Variational parameters:



– Inducing variables q(U), initial states q(x0)

• Hyperparameters:
– Inducing locations Z

– Likelihood parameters: scale parameter for the Gaussian likelihood
– Kernel parameters: length scales and signal variance parameters in case of squared exponential kernel

Shooting GPODE model. We use ‘whitened’ representation for inducing variables and optimize the following parameters
against the evidence lower bound.

• Variational parameters:
– Inducing variables q(U), shooting states q(S)

• Hyperparameters:
– Inducing locations Z

– Likelihood parameters: scale parameter for the Gaussian likelihood
– Kernel parameters: length scales and signal variance parameters in case of squared exponential kernel

npODE model. We use ‘whitened’ representation for inducing variables, maximum a posteriori (MAP) objective, and
optimize following parameters:

• Inducing values U and locations Z.
• Likelihood parameters: scale parameter for the Gaussian likelihood.
• Kernel parameters: length scales and signal variance parameters in case of the squared exponential kernel.

NeuralODE model. We use tanh activation and a fully connected block with one hidden layer having 32 units in Van
der Pol/ Fitz-Hugh Nagumo experiments. In MoCap experiments, we try one/two hidden layers with 64/128 hidden units,
and report the best results. All the network parameters were optimized against MSE loss.

Bayesian NeuralODE model. We utilized the codebase 1 provided by Dandekar et al. (2020) for training Bayesian
version of NeuralODEs. We used networks with one hidden layer and 32 units VDP/FHN experiments and performed
posterior sampling with HMC. In case of experiments with long sequences (shooting illustration on VDP and MocCap) the
HMC sampling had convergence issues, hence we performed variational inference instead. In case of MoCap experiments,
we tried networks with two hidden layers and 64/128 hidden units, and performed mean-field variational inference.

2.2 ADDITIONAL DETAILS ON THE INDUCING VARIABLES

‘Whitening’ the inducing variables. While performing sparse inference for GPs using inducing variables, it is a common
practice to use noncental parameterization Ũ = LθU where LθLθ

T = Kθ(Z,Z) (Hensman et al., 2015). Such a
reparametrization turns the inference for U with prior N (0,KZZ) into inference for Ũ with isotropic Gaussian prior
N (0, I). This generally improves the optimization performance by decorrelating the latent parameters from each other.

Initializing inducing variables using data gradients. In case of sparse Gaussian process model with inducing variables,
we initialize the vector field with empirical gradients from the observed data. We first initialize inducing locations Z
as kmeans cluster centers of observations Y. Next we compute empirical gradient estimates, Ẏ = (y2 − y1,y3 −
y2, . . . ,yN − yN−1) at locations Ỹ = (y1,y2, . . . ,yN−1) and initialize inducing values U as the GP mean interpolation
of empirical gradients at inducing locations.

U = ∆t ·K(Z, Ỹ)K(Ỹ, Ỹ)−1Ẏ, (81)

where ∆t is the time difference between two consecutive observations in the dataset.

2.3 ADDITIONAL DETAILS ON THE CMU MOCAP EXPERIMENT

Details on the dataset. The dataset used in this experiment was obtained from http://mocap.cs.cmu.edu/. The
database consists of sensor recordings of multiple activities for different subjects in .amc files. We selected three subjects

1https://github.com/RajDandekar/MSML21_BayesianNODE

http://mocap.cs.cmu.edu/
https://github.com/RajDandekar/MSML21_BayesianNODE


Table 1: For each subject (a), we report the activity considered for the experiment (b), the data split train/validation/test (c),
the number of sequences considered for the corresponding split (d), and the files used in the corresponding split (e).

(a) subject (b) activity (c) split (d) # sequences (e) files

subject 09 running train 6
05.amc, 06.amc, 07.amc,
08.amc, 09.amc, 11.amc

validation 2 01.amc, 02.amc

test 2 03.amc, 04.amc

subject 35 walking train 16

01.amc, 02.amc, 03.amc, 04.amc,
05.amc, 06.amc, 07.amc, 08.amc,
09.amc, 10.amc, 11.amc, 12.amc,
13.amc, 14.amc, 15.amc, 16.amc

validation 3 28.amc, 29.amc, 30.amc

test 4 31.amc, 32.amc, 33.amc, 34.amc

subject 39 walking train 6
01.amc, 02.amc, 07.amc,
08.amc, 09.amc, 10.amc

validation 2 03.amc, 04.amc

test 2 05.amc, 06.amc

with the most number of walking or running sequences: subjects 09, 35, and 39. The .amc files considered for train,
validation and test purposes are given in table 1. The training sequences and their lengths were selected to include at least
one full cycle of the dynamics while learning the model. The observation sequence lengths for training/test/validation splits
are reported in table 2.

Details on the PCA In the CMU MoCap experiment, we project the data from D dimensional observation-space to
K < D dimensional latent-space using eigenvectors corresponding to top-K eigenvalues. The ODE model is then learnt in
the latent-space and model predictions are projected back into the observation-space using K eigenvectors. We refer to this
as ‘inverting the PCA’ in the main text.

Table 2: For each subject (a), we report the experiment type (b), the data split train/validation/test (c), and the number of
observations considered for the corresponding split.

(a) subject (b) experiment (c) split (d) sequence length

subject 09

short
train 50

validation 120
test 120

long
train 100

validation 120
test 120

subject 35

short
train 50

validation 300
test 300

long
train 250

validation 300
test 300

subject 39

short
train 100

validation 300
test 300

long
train 250

validation 300
test 300
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Figure 2: Learning the 2D Van der Pol dynamics on irregularly sampled observations (a) with alternative methods (b-d).
Column 1 shows the vector fields while columns 2 and 3 show the state trajectories x1(t) and x2(t). GPODE learns the
posterior accurately.
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