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A LINEAR PERFORMANCE METRIC ELICITATION (LPME)

In this section, we shed more light on the procedure from [Hiranandani et al., 2019b] that elicits a multiclass linear metric.
We call it the Linear Performance Metric Elicitation (LPME) procedure. As discussed in Algorithm 1, we use this as a
subroutine to elicit metrics in the quadratic family.

LPME exploits the enclosed sphere S C 'R for eliciting linear multiclass metrics. Let the sphere S’s radius be
p > 0, and the oracle’s scale invariant metric be ¢""(r) = (a,r) such that [|a]; = 1. The oracle queries are
Q (ry,rg; @) = 1[¢""(r1) > ¢""(r2)]. We first outline a trivial Lemma from [Hiranandani et al., 2019b].

Lemma 1. [Hiranandani et al., 2019b] Let a normalized vector a with ||a||y = 1 parametrize a linear metric o' = (a,r),
then the unique optimal rate T over S is a rate on the boundary of S given by ¥ = pa + o, where o is the center of S.

Algorithm 2 Linear Performance Metric Elicitation

1: Input: Query space S C R, binary-search tolerance € > 0, oracle Q(-, - ; ¢"") with metric ¢'™

2: fori=1,2,---kdo
3: Seta=a’ = (1/Vk,...,1/VE).
4:  Setal, =—1/Vk.
5 Compute the optimal 5® and 5@ over the sphere S using Lemma 1
6:  Query Q(5®, §(al); @M
{These queries reveal the search orthant}

7: Start with coordinate j = 1.
8: Initialize: 6 = 6V (0W isa point in the search orthant.}
9: fort=1,2,--- , T=3(k—1)do

10: Set6® — 0<C> 0 =99 =9 =9,
11:  Set 0;-“) and 9; ) to be the min and max angle, respectively, based on the search orthant

12: while’é?(.b) _ 9@‘ > ¢ do

(a) 4 g(b) (a) 4 p(®) IO [©)
13: SeIQ(C) %,0;@ w , and 0(6) %39
14: Set r<“> = (@) (ie. parametnzatlon of 88) Similarly, set 7(¢), @ #(&) §®)
15: [ej”),ej“} < ShrinkInterval (2,7, £ §(d) §(e) §(®)) {see Figure 1}

. d) _ (a) (b)
17:  Set@® =@,
18:  Update coordinate ]+~ j + 1 cyclically.
19: Output: a, = H‘ 1 sm6‘ ) cos 0,0 vi e [k —1], ar = Hk 4 sin G(T)

Lemma | provides a way to define a one-to-one correspondence between a linear performance metric and its optimal rate over
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Subroutine ShrinkInterval lin h
Input: Oracle ) and rate profiles £ 5 5@ §le) ) ¢
Query Q) (<) ; ¢™).
If (& - <°>) Sete(”’ 9“).
else Query Q(F(9, T (d)
It (59 - £9) Set 00 9“”
else Query Q(F(?, (<) ; ng“")
If (& - ) Sew(“) 6 and 05" = 9.
else Set 9;‘1) = 9](-").
Output: [9§“>,9§b>].
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Figure 1: (Left): The ShrinkInterval subroutine used in line 16 of Algorithm 2 (Right): Visual illustration of the subroutine
ShrinkInterval [Hiranandani et al., 2019b]; ShrinkInterval shrinks the current search interval to half based on oracle responses
to at most three queries.

the sphere. That is, given a linear performance metric, using Lemma 1, we may get a unique point in the query space lying on
the boundary of the sphere 0S. Moreover, the converse is also true; i.e., given a feasible rate on the boundary of the sphere
0S8, one may recover the linear metric for which the given rate is optimal. Thus, for eliciting a linear metric, Hiranandani
et al. [2019b] essentially search for the optimal rate (over the sphere S) using pairwise queries to the oracle. The optimal rate
by virtue of Lemma 1 reveals the true metric. The LPME subroutine is summarized in Algorithm 2. Intuitively, Algorithm 2
minimizes a strongly convex function denoting distance of query points from a supporting hyperplane whose slope is the
true metric (see Figure 2(c) in [Hiranandani et al., 2019b]). The procedure also uses the following standard paramterization
for the surface of the sphere 0S.

Parameterizing the boundary of the enclosed sphere 0S. Let 0 be a (k — 1)-dimensional vector of angles. In 0, all the
angles except the primary angle are in [0, 7], and the prlmary angle is in [0, 27]. A scale invariant 11near performance metric
with ||al|2 = 1 can be constructed by assigning a; = II'_; ! sin6; cos6; fori € [k — 1] and ay, = H;“ 1 sin ;. Since we can
easily compute the metric’s optimal rate over S using Lemma 1, by varying 0 in this procedure, we parametrize the surface

of the sphere OS. We denote this parametrization by (), where 1 : [0, 7]=2 x [0, 27] — OS.

Description of Algorithm 2: Let the oracle’s metric be ¢ = (a, r) such that ||al|o = 1 (Section 2.2). Using the parametriza-
tion 1(@) for the boundary of the sphere S, Algorithm 2 returns an estimate a with ||a||s = 1. Line 2-6 recover the
search orthant of the optimal rate over the sphere by posing k trivial queries. Once the search orthant of the optimal rate
is known, the algorithm in each iteration of the for loop (line 9-18) updates one angle 6; keeping other angles fixed by
the ShrinkInterval subroutine. The ShrinkInterval subroutine (illustrated in Figure 1) is binary-search based routine that
shrinks the interval [9;, 9?] by half based on the oracle responses to (at most) three queries.! Note that, depending on the
oracle responses, one may reduce the search interval to half using less than three queries in some cases. Then the algorithm
cyclically updates each angle until it converges to a metric sufficiently close to the true metric. We fix the number of cycles
in coordinate-wise binary search to three. Therefore, in order to elicit a linear performance metric in k£ dimensions, the
LPME subroutine requires at most 3 x 3 x klog(m/2¢) queries, where three is the number of cycles in coordinate wise
binary search, three is the (maximum) number of queries to shrink the search interval into half, and the initial search interval
for the angles is 7/2.

B GEOMETRY OF THE FEASIBLE SPACE (PROOFS OF SECTION 2 AND SECTION 4)

Proof of Proposition 1 and Proposition 2. We prove Proposition 2. The proof of Proposition 1 is analogous where the
probability measures (corresponding to classifiers and their rates) are not conditioned on any group.

The group-specific set of rates RY for a group g has the following properties [Hiranandani et al., 2020]:

* Convex: Consider two classifiers hi, hj € H9 that achieve the rates r{, rj € RY, respectively. Also, consider a classifier
h9 that predicts what classifier h{ predicts with probability v and predicts what classifier h5 predicts with probability
1 — . Then the rate vector of the classifier hY is:

"The description of the binary search algorithm in Hiranandani et al. [2019b] always assumes getting responses to four queries that
essentially correspond to the four intervals. In practice, the binary search can be adaptive and may only require at most three queries as we
have discussed in this paper. The order of the queries in LPME, however, remains the same.



Algorithm 3 Obtaining the sphere S C R (Figure 2(a)) of radius p centered at o
forj=1,2,--- ,kdo

Let o¢; be the standard basis vector.

Compute the maximum constant c; such that o + c;a; is feasible by solving (OP1).
: Let CONV denote the convex hull of {o %+ cjer; }¥_,. It will be centered at o.

: Compute the radius p of the largest ball that fits in CONV.

: Output: Sphere S with radius p centered at o.

R (h) = P(h? = iY = i)
=P(h{ = i[h? = BY,Y = ))P(h9 = h) + P(h§ = i[h? = hY,Y = i)P(h? = hY)
=r{ + (1 —)r5.

The above equations show that the convex combination of any two rates is feasible as well, i.e., one can construct
a randomized classifier which will achieve the convex combination of rates. Hence, R? V g € [m] is convex. Since
intersection of convex sets is convex, the intersection set R! N --- N R™ is convex as well.

* Bounded: Since R{;(h) = Plh = i]Y =] < 1foralli € [k], RY C [0,1]".
* The rates o and e;’s are always achievable: A uniform random classifier, i.e, the classifier, which for any input, predicts

all classes with probability 1/k achieves the rate profile o. A classifier that always predicts class ¢ achieves the rate e;.
Thus, e; € RIVi € [k], g € [m] are always feasible.

* e;’s are vertices: Consider the supporting hyperplanes with the following slope: a; > a; > 0 and a@; = 0 for [ € [k],] #
1, 7. These hyperplanes will be supported by e;. Thus, e;’s are vertices of the convex set RY. From Assumption 1, one can
construct a ball around the trivial rate o and thus o lies in the interior.

The above points apply to space of overall rates R as well; thus, proving Proposition 1. U

B.1 FINDING THE SPHERE S C R

In this section, we provide details regarding how a sphere S with sufficiently large radius p inside the feasible region R may
be found (see Figure 2(a)). The following discussion is borrowed from [Hiranandani et al., 2019b] and provided here for
completeness.

The following optimization problem is a special case of OP2 in [Narasimhan, 2018]. The problem is associated with a
feasibility check problem. Given a rate profile ry, the optimization routine tries to construct a classifier that achieves the rate
ro within small error € > 0.

min 0 s.t. |lr—rglls <e (OP1)
rerR

The above optimization problem checks the feasibility, and if there exists a solution to the above problem, then Algorithm 1
of [Narasimhan, 2018] returns it. Furthermore, Algorithm 3 computes a value of p > p/k, where p is the radius of the largest
ball contained in the set R. Also, the approach in [Narasimhan, 2018] is consistent, thus we should get a good estimate of
the sphere, provided we have sufficiently large number of samples. The algorithm is completely offline and does not impact
oracle query complexity.

Lemma 2. [Hiranandani et al., 2019b] Let p denote the radius of the largest ball in R centered at o. Then Algorithm 3
returns a sphere with radius p > p/k, where k is the number of classes.

The idea in Algorithm 3 can be trivially extended to finding a sphere S C R' N --- NR™ corresponding to Remark 3.

C QUADRATIC PERFORMANCE METRIC ELICITATION PROCEDURE

In this section, we describe how the subroutine calls to LPME in Algorithm 1 elicit a quadratic metric in Definition 3.
We start with the shifted metric of Equation (5). Also, as explained in the main paper, we may assume d; # 0 due to
Assumption 2. We can derive the following solution using any non-zero coordinate of d, instead of d;. We can identify a
non-zero coordinate using & trivial queries of the form (pa; + 0,0),Vi € [k].



1. From line 1 of Algorithm 1, we get local linear approximation at o. Using Remark 2, we have (6) which is

sz
Fro

d; = Vie{2,... k) (1

2. Similarly, if we apply LPME on small balls around rate profiles z;, Remark 2 gives us:

d; + (p — 0)Byj _ fij
di+(p—0)B1; fi

Vie{2,... k}, j<i. )

= di+ (p—0)Bij = %(Ch + (p — 0)B1j)
1j
— (= 0By = 42+ (0~ )Bp) — d,
1j

— o fZJ fin _ _ sz
= (p—0)Bij = Iy (d1+f1 (di+ (p— 0)B11) — dj) — f10

B | fii o fij(fjl_fjo) i
_ﬁw‘w”<& Fo " Fi \fu m)“”p@f&“ ®

where we have used that the matrix B is symmetric in the second step, and (1) in the last two steps. We can represent
each element in terms of B1; and d;. So, a relation between B;; and d; may allow us to represent each element of a
and B in terms of d;.

3. Therefore, by applying LPME on small balls around rate profiles —z;, Remark 2 gives us (8):

d2—(p—0)Ba _ f

=22 “4)
di—(p—0)Bu fg
4. Using (2) and (4), we have:
iy fn gl
(p— 0)B11 = Mdl. 5)
-f21 @
i f11
Putting (5) in (3), we get:
f21 + @ _ 2@
B — .fij (1+f]1)fl]f]0f+flj f]l fi1 f1o0 d1
Y f1j fi1 fij fio fio S fu fo _ far
o
Fyoi i +111—2F
= | Fip;(1+Fjpia) —FipjFji0—Fipo+ Fia 2L 15 (6)
F2,1,1 - F271,1
where F; ;; = f” and F; | = f_l As a = d + Bo, we can represent each element of a and B using using (1) and

4l
(6) in terms of dl. We can then use the normalization condition ||a|3 + ||B||% = 1 to get estimates of a, B which are
independent of d; .

This completes the derivation of solution from QPME (section 3).



D FAIR (QUADRATIC) PERFORMANCE METRIC ELICITATION PROCEDURE

Algorithm 4: FPM Elicitation
Input: Query set S’, search tolerance € > 0, oracle '
Let L @
For 0 € Mdo
B3° < QPME(S’, ¢, Q)
Let £7 be Eq. (10), extend £ « LU {¢°}
B «+ normalized solution from (13) using £

AN o S

) <« trace back normalized solution from (10) for any o
Output: a, B, A

We first discuss eliciting the fair (quadratic) metric in Definition 4, where all the parameters are unknown. We then provide
an alternate procedure for eliciting just the trade-off parameter A when the predictive performance and fairness violation
coefficients are known. The latter is a separate application as discussed in [Zhang et al., 2020]. However, unlike Zhang et al.
[2020], instead of ratio queries, we use simpler pairwise comparison queries.

In this section, we work with any number of groups m > 2. The idea, however, remains the same as described in the main
paper for number of groups m = 2. We specifically select queries from the sphere S C R! N --- N R™, which is common
to all the group-specific feasible region of rates, so to reduce the problem into multiple instances of the proposed QPME
procedure of Section 3.

Suppose that the oracle’s fair performance metric is ¢™" parametrized by (a, B, \) as in Definition 4. The overall fair metric
elicitation procedure framework is summarized in Algorithm 4. The framework exploits the sphere S C R' N ---NR™ and
uses the QPME procedure (Algorithm 1) as a subroutine multiple times.

Let us consider a non-empty set of sets M C 2™\ {@ [m]}. We will later discuss how to choose such a set M. We
partition the set of groups [m] into two sets of groups. Let ¢ € M and [m] \ o be one such partition of the m groups defined
by the set of groups o. For example, when m = 3, one may choose the set of groups o = {1, 2}.

Now, consider a sphere S’ whose elements r''™ € S’ are given by:

if
I_g:{s ifgeo 7

o O.W.

This is an extension of the sphere S’ defined in the main paper for the m > 2 case. Elements in S’ have rate profiles
s € S to the groups in ¢ and trivial rate profile o to the remaining groups in [m] \ o. Analogously, the modified oracle is
Q' (ry,ra) = Q((rF™), (ri™)), where r1™ rl™ are the elements of the spheres S’ above. Thus, for elements in S, the
metric in Definition 4 reduces to:

Pt e S a, BN = (1 -\ {(-a®7%,s—o0) + )\%(s —0)'W(s—o0)+¢° 8)

where 70 =5, __ 19, W7 = Zuea.ve[m}\o B"?, and c? is a constant not affecting the oracle responses.

gEo

The above metric is a particular instance of ¢(s;d, B) in (4) withd := —(1 — \)a ® 7% and B := A\W?; thus, we apply
QPME procedure as a subroutine in Algorithm 4 to elicit the metric in (8).

The only change needed to be made to the algorithm is in line 5, where we need to take into account the changed relationship
between d and a, and need to separately (not jointly) normalize the linear and quadratic coefficients. With this change, the
output of the algorithm directly gives us the required estimates. Specifically, we have from step 1 of Algorithm 1 and (6) an
estimate

di  17a; _ fio

di  17ar  fio

~ fio Tt
= ——ay
fiot?

— a;

©))

Using the normalization condition (i.e., ||a||2 = 1), we directly get an estimate & for the linear coefficients. Similarly, steps



2-4 of Algorithm 1 and (9) gives us:Bij =

~ F, ;% +Fy, | —2F§
uv __ o o o o o o 2,1,1 2,1,1 2,1,0 1x
Y. By = (ijj(l +E710) = F T od — By o + F = — )Tl g
u€o,ve[m]\o H o

=, (10

where the above solution is similar to the two group case, but here it is corresponding to a partition of groups defined by o,
and B“Y := AB“?/(1 — ) is a scaled version of the true (unknown) B“?. Let equation (10) be denoted by £7. Also, let the
right hand side term of (10) be denoted by 5°.

Since we want to elicit (';L) fairness violation weight matrices in B, we require (T;) ways of partitioning the groups into two
sets so that we construct (”;) independent matrix equations similar to (10). Let M be those set of sets. Thus, running over
all the choices of sets of groups o € M provides the system of equations £ := U,c (£ (line 4 in Algorithm 4), which is:

E 0 0 b B
0 = 0 b(12) _ ,3(12) : (11
0 0 = B(kk) Buwr)

where f)(ij) = (E}j, l;fj, e 51(]2)) and ;) = ( ilj, fj, e ,61»(]‘2’)) are vectorized versions of the ij-th entry across groups

for i, j € [k], and = € {0, 1}@) (%) is a binary full-rank matrix denoting membership of groups in the set o. For example,
when one chooses M = {{1,2}, {1, 3},{2,3}} form = 3, E is given by:

[1]

0 1
=120
11

O =

One may choose any set of sets M that allows the resulting group membership matrix = to be non-singular. The solution of
the system of equations L is:

T —_ —1

by = 0 ... 01" Buy

b(12) 0 = 0 5(12) ' (12)
B(kk) 0 0 = Bkr)

When all B“*’s are normalized, we have the estimated fairness violation weight matrices as:

R Buv
BY = for w,v € [m],v > u. (13)

% Zﬂvzl,v>u ||Buv ||F

Due to the above normalization, the solution is again independent of the true trade-off \.

Given estimates ij” and a1, we can now additionally estimate the trade-off parameter A from 7 (10) for any o € M. This
completes the fair (quadratic) metric elicitation procedure.

D.1 ELICITING TRADE-OFF A WHEN (LINEAR) PREDICTIVE PERFORMANCE AND (QUADRATIC)
FAIRNESS VIOLATION COEFFICIENTS ARE KNOWN

We now provide an alternate binary search based method similar to Hiranandani et al. [2020] for eliciting the trade-off
parameter A when the linear predictive and quadratic fairness coefficients are already known. This is along similar lines to
the application considered by Zhang et al. [2020], but unlike them, instead of ratio queries, we require simpler pairwise
queries.

Here, the key insight is to approximate the non-linearity posed by the fairness violation in Definition 4, which then reduces
the problem to a one-dimensional binary search. We have:

¢fair(r1:m; a,B, /\) — (1 - )\)<a’ 1_ I‘> n /\% <Zm (ru — rv)TBuv(ru — rv)> . (14)

w,v=1v>u



Algorithm 5 Eliciting the trade-off A when predictive performance and fairness violation are known

1: Input: Query space 3’21, binary-search tolerance e > 0, oracle €2
2: Initialize: \(+) = 0, \® = 1.
3: while’)\(b) — )\W’ > edo

¢) _ 3a(@) (@) d) _ 2@\ e) _ @) 32
4 Set A(©) = ATRATL (@) — AT \(e) :

5. Sets® =argmax(—(1 — A)r' ©a+ A ZBI”(m — 0),s) using Lemma 1
Seg, v=2
z1
6:  Similarly, set s(@) gl gle) &)
MDA« Shrinkinterval (Q,59),s(9)),s(¥),s()) s))) using a subroutine analogous to the routine shown in Figure 1.

: L3 a@a®
8: Output: A = 220

To this end, we define a new sphere &' = {(s, 0,...,0)|s € S}. The elements in &’ is the set of rate profiles whose first
group achieves rates s € S and rest of the groups achieve trivial rate o (corresponding to uniform random classifier). For
any element in &', the associated discrepancy terms (r* — r?) = 0 for u,v # 1. Thus for elements in &', the metric in

Definition 4 reduces to:
m

o ((s,0,...,0);a,B,\) =(1 - \)(-1'®a,s — o)+ )\%(s —o)T ZBM(S —o)+ec (15)
v=2

Additionally, we consider a small sphere 3;1, where z; := (p — ¢)a1 + 0, similar to what is shown in Figure 2(a). We may

approximate the quadratic term on the right hand side above by its first order Taylor approximation as follows:

¢fair((s7 07 A 70); a7 B? )\) ~ stair, apx((s’ 07 A 70); a7B7 >\)

= (—(1—)\)Tl®a+)\ZB1“(z1 —0),s) (16)

v=2

for s in a small neighbourhood around the rate profile z;. Since the metric is essentially linear in s, the following lemma
from [Hiranandani et al., 2020] shows that the metric in (16) is quasiconcave in \.

Lemma 3. Under the regularity assumption that (—7* ® a,y ", B'(zy — 0)) # 1, the function

J(A) = max “wnapy((s,0,...,0);a,B,\) 17)

SES,,

is strictly quasiconcave (and therefore unimodal) in \.

The unimodality of J(\) allows us to perform the one-dimensional binary search in Algorithm 5 using the query space 3;1,

tolerance ¢, and the oracle 2. The binary search algorithm is same as Algorithm 4 in [Hiranandani et al., 2020] and provided
here for completeness.

E EXTENSION TO ELICITING GENERAL QUADRATIC METRICS

In this section, we discuss how the entire setup including the proposed procedure and the guarantees of the main paper
described in terms of the diagonal entries of the predictive rate matrix extends to a setup where the metric is defined in all
the terms of the rate matrix. For this section, we use an additional notation. For a matrix A, let off-diag(A) returns a vector
of off-diagonal elements of A.

Just like the main paper, we consider a k-class classification setting with X € X and Y € [k] denoting the input and
output random variables, respectively. We assume access to an n-sized sample {(x, y); }1, generated iid from a distribution
P(X,Y). We work with randomized classifiers h : X — Ay, that for any x gives a distribution h(x) over the k classes and
use H = {h : X — Ay} to denote the set of all classifiers.

General Predictive rates: We define the predictive rate matrix for a classifier h by R(h,P) € R¥**, where the ij-th entry is
the fraction of label-¢ examples for which the randomized classifier h predicts j:

Rij(h,P) = P(h(X) = j[Y =) fori,j € [K], (18)



where the probability is over draw of (X,Y") ~ IP and the randomness in h.

Notice that each diagonal entry of R can be written in terms of its off-diagonal elements:

k
Rii(h,P)=1— R;i;i(h,P).
(hP)=1-3" Riy(hP)
Thus, we can represent a rate matrix with its ¢ := (k? — k) off-diagonal elements, write it as a vector r(h,P) =

off -diag(R.(h,P)), and interchangeably refer to it as the ‘vector of general rates’ or ‘off-diagonal rates’. To distinguish
from rates considered in the main paper, we will call the rates entries corresponding to the diagonals of the rate matrix, i.e.,
P(h(X) =Y = 1) as discussed in Equation(1), as the ‘diagonal rates’.

Feasible general rates: The set of all feasible general rates is given by:

R ={r(h,P)€[0,1]? : h € H}.

The quadratic metric in general rates is defined in the same way as Definition 3 as follows:

Definition 1 (Quadratic Metric in General Rates). For a vector a € R? and a positive semi-definite symmetric matrix
B € R9% with ||a||3 + ||B||% = 1 (w.l.o.g. due to scale invariance):

¢ (r; a,B) = (a,r) + %rTBr. (19)

Example 1 (Distribution matching). We can extend Example 2 in the multiclass case as follows. In certain applications,
one needs the proportion of predictions for each class (i.e., the coverage) to match a target distribution 7 € Ay [Goh et al.,
2016, Narasimhan, 2018]. A measure often used for this task is the squared difference between the per-class coverage
and the target distribution: ¢°*(r) = Y% | (covi(r) — mi)%, where covi(r) = 1 — ¥ 7! riim 1y emiyay + 30 TGy (k-1)4i +
Zj <iTG-1)(k—1)+i—1. Similar metrics can be found in the quantification literature where the target is set to the class
prior P(Y = 4) [Esuli and Sebastiani, 2015, Kar et al., 2016]. We capture more general quadratic distance measures for

distributions, e.g. (cov(r) — w)TQ(cov(r) — ) for a positive semi-definite matrix Q € PSD;, [Lindsay et al., 2008].

The definition of metric elicitation and oracle query remain the same except that the vector r now represents the vector of
general rates, and not just the diagonal rates.

Consider Appendix B, where we discuss proof of Proposition 1, Proposition 2, and a procedure to construct a feasible sphere
of appropriate radius in the convex set of diagonal rates. The entire methodology applies to general set of rates by just
replacing diagonal rates in the proofs with the general rates. Thus, all the geometrical properties discussed in Proposition |
for the set of diagonal rates applies to the set of general rates. The exact geometry of the set of diagonal rates, as shown in
Figures 2(a) and 2(b)may differ from the geometry of the set of general rates; however, the geometric properties including
e; being the vertices remains the same. Therefore, under the same Assumption |, we can guarantee an existence of a sphere
in the set of general rates similar to Remark 1.

Once we guarantee a sphere in the set of general rates, we can follow LPME for eliciting linear metrics in general rates or
QPME for eliciting linear metrics in general rates. The computational and query complexity will depend on the number of
unknowns, which in the case of general rates, will be O(gq) for LPME and O(g?) for QPME.

F PRACTICALITY OF QUERYING ORACLE

Recall that in our setup, any query posed to the oracle needs to feasible, i.e., should be achievable by some classifier (see
definition of feasible rates in Section 2). Therefore the oracle we query can be a human expert or a group of experts who
compare intuitive visualizations of rates, or can be an entire population of users (as would be the case with A/B testing).

An important practical concern in employing the proposed QPME procedure is the number of queries needed to be posed
to the oracle. We note that (i) the number of queries needed by our proposal is optimal (i.e. matches the lower bound
for the problem in Theorem 2), (ii) has only a /inear dependence on the number of unknowns (Theorem 1), and (iii) can
be considerably reduced by making reasonable practical structural assumptions about the metric to reduce the number



of unknowns. While our procedure’s query complexity for the most general setup (with O(k?) unknowns) is O(k2), the
quadratic dependence on k is merely an artifact of there being O (k?) unknowns in this setup. For example, when the number
of classes is large, one may just cluster the classes from error perspective. For example, one may assume same error costs
for similar classes. This will reduce the number of unknowns to O(c?), where ¢ << k is the number of cluster of classes.

We also stress that in many internet-based settings, one can deploy A/B tests to obtain preferences by aggregating feedback
from a large group of participants. In this case, the entire user population serves as an oracle. Most internet-based companies
run thousands of A/B tests daily making it practical to get preferences for our metric elicitation procedure. Moreover, one
can employ practical improvements such as running A/B tests with fewer participants in the initial rounds (when the rates
are far apart) and switch to running A/B tests with more precision in later rounds. Note that because the queries posed by
our method always corresponds to a feasible classifier (see Section 3), one can easily run comparisons between classifiers as
a part of an A/B test.

If needed, our algorithms can also work with queries that compare classification statistics directly, instead of classifiers.
There has been growing work on visualization of confusion matrices (predictive rates) for non-expert users. For example,
see [Beauxis-Aussalet and Hardman, 2014] and [Shen et al., 2020]. With the aid of such intuitive visualizations, it is
reasonable to expect human practitioners to comprehend the queries posed to them and provide us with pairwise comparisons.
Moreover, we have shown that our approach is resilient to noisy responses, which enhances our confidence in their ability to
handle human feedback. In practice, the most viable option will depend on the target population.

Finally, we would like to emphasize that because our query complexity has only a linear dependence on the number of
unknowns, and the number of unknowns can be reduced with practical structural assumptions, our proposal is as practical as
the prior methods [Hiranandani et al., 2019a,b] for linear metric elicitation. In fact, despite eliciting from a more flexible
class, our proposal has the same dependence on the number of unknowns as those prior methods.

G ELICITATION GUARANTEE FOR THE QPME PROCEDURE

G.1 SAMPLE COMPLEXITY BOUNDS

Recall from Definition 5 that the oracle responds correctly as long as |¢(r1) — ¢(rz)| > €q. For simplicity, we assume that
our algorithm has access to the population rates r defined in Eq. (1). In practice, we expect to estimate the rates using a
sample D = {x,y}"_, drawn from the distribution P, and to query classifiers from a hypothesis class H with finite capacity.
Standard generalization bounds (e.g. Daniely et al. [2015]) give us that with high probability over draw of D, the estimates
are close to the population rates r, up to the desired tolerance €, as long as we have sufficient samples. Further, since the
metrics ¢ are Lipschitz w.r.t. rates, with high probability, we thus gather correct oracle feedback from querying with finite
sample estimates §2(r1, I'2).

More formally, for & € (0,1), as long as the sample size n is greater than O (los(I#1/9)/c2), the guarantee in Theorem 1
hold with probability at least 1 — & (over draw of D), where || can in turn be replaced by a measure of capacity of the
hypothesis class H. For example, one can show the following corollary to Theorem | for a hypothesis class H in which
each classifier is a randomized combination of a finite number of deterministic classifiers chosen from a set A, and whose
capacity is measured in terms of the Natarajan dimension [Natarajan, 1989] of .

Corollary 1. Suppose the hypothesis class H of randomized classifiers used to choose queries to the oracle is of the form:

H= {:v — éatht(a@)

T€Z+7QGAT7h17"'7hT€7:l}>

Jor some class H of deterministic multiclass classifiers h : X — {0,1}*. Suppose the deterministic hypothesis class

‘H has Natarajan dimension d > 0, and ¢ is 1-Lipschitz. Then for any 6 € (0,1), as long as the sample size n >

O (d log(k)+log(1/8)
2

" ) the guarantee in Theorem 1 hold with probability at least 1 — 0 (over draw of D = {x;, y; }I"_, from
Q
P).

The proof adapts generalization bounds from Daniely et al. [2015], and uses the fact that the predictive rate for any
randomized classifier in H is a convex combination of rates for deterministic classifiers in H (due to linearity of expectation).



G.2 PROOFS
Before presenting the proof of Theorem 1, we re-write the LPME guarantees from [Hiranandani et al., 2019b] for linear
metrics in the presence of an oracle noise parameter e from Definition 5.

Lemma 4 (LPME guarantees with oracle noise [Hiranandani et al., 2019b]). Let the oracle Q’s metric be ¢'" = (a,r) and
its feedback noise parameter from Definition 5 be eq. Then, if the LPME procedure (Algorithm 2) is run using a sphere
S C R of radius o and the binary-search tolerance €, then by posing O(klog(1/¢€)) queries it recovers coefficients & with

la—alls < O (VE(e + Vea/0))-

Proof of Theorem 1. We first find the smoothness coefficient of the metric in Definition 3.

A function ¢ is said to be L-smooth if for some bounded constant L, we have:

[Vo(x) = Vo(y)l2 < Lilz — yll2
For the metric in Definition 3, we have:

IVg1d(z) = Ve (y)]l2 = [la + Bx — (a + By)|»
< [IBll2llz = yll2
< [IBllrllz = yll2,
<1-lz =yl

where in the last step, we have used the scale invariance condition from Definition 3, i.e., ||a||3 + ||B||% = 1, which implies
that |B||% = 1 — ||a|3 < 1. Hence, the metrics in Definition 3 are 1-smooth.

quad

Now, we look at the error in Taylor series approximation when we approximate the metric 4"*“ in Definition 3 with a linear

approximation. Our metric is

1
¢ (r) = (a,r) + irTBr.
We approximate it with the first order Taylor polynomial around a point z, which we define as follows:
L 7
Ti(r) ={a,z) + 72 Bz + (a+ Bz,r)

The bound on the error in this approximation is:

|E(r)] = [™*(r) - T3(r)]

= %Kr —2)" Ap®o(r — 2)| (First-order Taylor approximation error)
=3 |(r —2)"B(r — z)| (Hessian at any point c is the matrix B)
< 2Bl e — I3

< 5 IBlpe?

< %gz (Due to the scale invariance condition)

So when the oracle is asked (r, re) = 1[¢%%(r1) > ¢94(ry)], the approximation error can be treated as feedback error
from the oracle with feedback noise 2 x %QQ. Thus, the overall feedback noise by the oracle is eq + o2 for the purposes of
using Lemma 4 later.

We first prove guarantees for the matrix B and then for the vector a. We write Equation (9) in the following form assuming
dy = 1 (since we normalize the coefficients at the end due to scale invariance):
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fij fi1 fij fio  fio fijfuu fa _ fa
i fi1
R R R & ik |
. j j j I 11 10
— B:7 =1 — 4 gl + J0 J1 11 _ +f7
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f11 f11
= ¢;fj + cofo, (20)

where B[:, j] is the j-th column of the matrix B, and the constants c¢; and ¢ are well-defined due to the regularity
Assumption 4. Notice that,
9B, j]
of;

9B, ]
oo

= dz'ag(c;-) ©I ,and = diag(cj) O 1,

where c;, ¢, are vector of Lipschitz constants (bounded due to Assumption 4). This implies
B[, j] = Bl jlll2 < lIE; — 512 + collfo — foll2
< c;\/E (e—l— Q-I—GQ/,Q) + ok (e+ o+ EQ/Q)
=0 (\/E(e—i— Q—l—m/g)) ,

where we have used LPME guarantees from Lemma 4 under the oracle-feedback noise parameter eq + 0°.

The above inequality provides bounds on each column of B. Since ||x|loc < [|x[|2, we have max;; |B;; — B;;| <
@) (\/E (e ++o+ GQ/Q)>, and consequentially, |[B — B[z < O <k\/§ (e +Vo+ 6Q/Q)>.

Now let us look at guarantees for a. Since a = d — Bo from (4), we can write

k
a= COfO - ZOjB[:aj]7
j=1

where co = 1/ f10. Since o is the rate achieved by random classifier, o; = 1/k V;j € [k], and thus we have

Oa Oa 1
— =c¢ol d =-L
of, MY 9Bl Tk
Thus,
1k
—Aall, < ¢ _
I —alo < Vi (e + Vet cafe) + 7 3 VE e+ Vet cale)
j=
1k
=cyVk (e—i— g-i—eg/g) + EZCQ\/E(é—i- g—i—eQ/g)
j=1
=0 (\/E (e—l— Q—i—eg/g)) ,
where ¢, c;- ’s are some Lipschitz constants (bounded due to Assumption 4). O

Notice the trade-off in the elicitation error that depends on the size of the sphere. As expected, when the radius of the sphere
o increases, the error due to approximation increases, but at the same time, error due to feedback reduces because we get
better responses from the oracle. In contrast, when the radius of the sphere p decreases, the error due to approximation
decreases, but the error due to feedback increases.



The following corollary translates our guarantees on the elicited metric to the guarantees on the optimal rate of the elicited
metric. This is useful in practice, because the optimal classifier (rate) obtained by optimizing a certain metric is often the key
entity for many applications.

Corollary 2. Let ¢ be the original quadratic metric of the oracle and éq“ad be its estimate obtained by the QPME
procedure (Algorithm 1). Moreover, let v* and t* be the mazximizers of ¢34 and ¢4, respectively. Then, 3% (r*) <

9 (%) 4 O (1&@ (e+ o+ eﬂ/g)) _

Proof. We first show that if [¢9%(r) — ¢9d(;)| < ¢ for all rates r and some slack e, then it follows that ¢4%d(i*) >
@944 (r*) — 2¢. This is because:

PI(3*) > A (3) — ¢ (as ¢ approximates qbq“ad)
> gZ§<1uad(r*) — € (as * maximizes ngSquad>
> M (r*) — 2¢ (as g?)q”ad approximates qbq“ad) 2D

Now, let us derive the trivial bound |92 (") — $2%d(r)| for any rate r.

6%9(r) — %(r)] = |(a — &) + 5x" (B ~ Bl
<la—ax)|+ k(B - Bl
< Jla—alllrls + 5B~ Bl |3
< lla—allovF + [B ~ Bl ok
<0 (kW% (e+vo+ eg/g)) , 22)

where in the fourth step, we have used the fact that the rates are bounded in [0, 1]; hence ||r||2 < V/k, and in the fifth step,
we have used the guarantees from Theorem 1. Combining(21) and (22) gives us the desired result. O

Proof of Theorem 2. For the purpose of this proof, let us replace (e +Vo+ea/ g) by some slack €. Theorem 1 guarantees
that after running the QPME procedure for O(k? log(1/€) queries, we have

* la—all, < O(Vke)
B— BHF < O(kvke).

If we vectorize the tuple (a, B) and denote it by w, we have ||w — ||, < O(kvke), where both [|w]|2, @]z = 1,

. . . . . . . 2 . .
due to the scale invariance condition from Definition 3. Note that w is £ '53’“ -dimensional vector and defines the scale-
invariant quadratic metric elicitation problem. Now, we have to count the minimum number of w that are possible such that

[w — 1@, < O(kvke).

This translates to finding the covering number of a ball in || - ||z norm with radius 1, where the covering balls have radius
k+/ke. Let us denote the cover by {u;} ., and the ball with radius 1 as B. We then have:

N
Vol(B) =< Y Vol(kVkeB + u;)
1=1

= NVol(kVkeB)
N



Number of queries for QPME Number of queries for Fair-QPME

m
k i 2 3 4 5

2 265.43 2 332.10 | 867.65 1663.73 | 2738.59
3 669.29 3 796.37 | 2127.44 | 4094.31 6734.15
4 1205.91 4 1398.14 | 3808.67 | 7363.82 | 12180.84
5 1879.74 5 2130.92 | 5887.99 | 11454.18 | 18999.71

Table 1: Number of queries required for eliciting regular quadratic metrics (Def. 3) and fairness quadratic metrics (Def. 4) in
Section 6. The number of predictive rates and sensitive groups are denoted by k and m, respectively. Recall that a quadratic
metric has O(k?) unknowns. We see that the number of queries is of order O(k?) for the quadratic metric in rates, and
additionally, O(m?k?) for the fair (quadratic) metrics. Theorem 2 shows that one cannot improve on this query complexity.
Nonetheless, one may make more structural assumptions on the metric to bring down the number of queries in practice.

Thus the number of w that are possible are at least

o
c (k\[ke <N,
where c is a constant. Since each pairwise comparison provides at most one bit, at least O(k?) log(k%/gé) bits are required
to get a possible 1. We require O(k?) log(2) queries, which is near-optimal barring log terms. O

H EXTENDED EXPERIMENTS

The source code is provided along with the supplementary material. The experiments in this paper were conducted on a
machine with the following configuration: 2.6 GHz 6 code Intel i7 processor with 16GB RAM.

H.1 MORE DETAILS ON SIMULATED EXPERIMENTS ON QUADRATIC METRIC ELICITATION

Number of queries. First, we look at the number of queries that were actually required to elicit quadratic and fair (quadratic)
metrics in Section 6. Recall that the QPME procedure (Algorithm 1) requires running the LPME subrotuine (Algorithm 2)
k + 2 times. As discussed in Appendix A, each run of LPME requires at most 3 x 3 X k log(/2¢) queries. So, the maximum
number of queries required in eliciting a quadratic metric is (k + 2) x 3 x 3 x k x 8 for a binary search tolerance ¢ = 1072,
where we vary k € {2, 3,4, 5} in the experiments.

However, note that, the elicitation error shown in Figure 4 is averaged over 100 simulated oracles, each one with its own
simulated quadratic metric. Due to the nature of the binary search involved in the LPME subroutine (see Algorithm 2 and
Figure 1), not every reduction of the search interval requires three queries. Many times the interval can be shrunk in less
than three queries. The actual number of queries may vary across the oracles. The number of queries averaged over the 100
oracles corresponding to experiments in Section 6 is shown in Table 1.

Theorem 2 shows that our query complexity (which is linear in the number of unknowns) matches the lower bound for
the problem, which means that it is theoretically impossible to obtain a better complexity order for our problem setup. In
practice, it can be considerably reduced by making reasonable assumptions on the metric. For example, when the number of
classes is large, one may just cluster the classes from error perspective. For example, one may assume same error costs for
similar classes. This will reduce the number of unknowns to O(cg), where ¢ << k is the number of cluster of classes.

Comparison to a baseline. In Figures 4(a)—4(b), we show box plots of the /5 (Frobenius) norm between the true and elicited
linear (quadratic) coefficients. We generally find that QPME is able to elicit metrics close to the true ones.

To reinforce this point, we also compare the elicitation error of the QPME procedure and the elicitation error of a baseline
which assigns equal coefficients to a and B in Figure 2. We see that the elicitation error of the baseline is order of magnitude
higher than the elicitation error of the QPME procedure. This holds for varying k& showing that the QPME procedure is able
to elicit oracle’s multiclass quadratic metrics very well.

Effect of Assumption 4. The larger standard deviation for k¥ = 5 in Figure 4 is due to Assumption 4 failing to hold with
sufficiently large constants cg,c_1,¢; .. ., ¢4 in a small number of trials and the resulting estimates not being as accurate.
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Figure 2: Elicitation error in comparison to a baseline which assigns equal coefficients.

Table 2: Dataset statistics

Dataset k  #samples #features
default 2 30000 33
adult 2 43156 74
sensIT Vehicle | 3 98528 50
covtype 7 581012 54

We now analyze in greater detail the effect of this regularity assumption in eliciting quadratic metrics and understand how
the lower bounding constants impact the elicitation error. Assumption 4 effectively ensures that the ratios computed in (9)
are well-defined. To this end, we generate two sets of 100 quadratic metrics. One set is generated following Assumption 4
with one coordinate in the gradient being greater than 102, and the other is generated randomly without any regularity
condition. For both sets, we run QPME and elicit the corresponding metrics.
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Figure 3: Elicitation error for metrics following Assumption 4 vs elicitation error for completely random metrics.

In Figure 3, we see that the elicitation error is much higher when the regularity Assumption 4 is not followed, owing to the
fact that the ratio computation in (9) is more susceptible to errors when gradient coordinates approach zero in some cases
of randomly generated metrics. The dash-dotted curve (in red color) shows the trajectory of the theoretical bounds with
increasing k (within a constant factor). In Figure 3, we see that the mean of /5 (analogously, Frobenius) norm better follow
the theoretical bound trajectory in the case when regularity Assumption 4 is followed by the metrics.

We next analyze the ratio of estimated fractions to the true fractions used in (9) over 1000 simulated runs. Ideally, this ratio
should be 1, but as we see in Figure 4, these estimated ratios can be off by a significant amount for a few trials when the
metrics are generated randomly. The estimated ratios, however, are more stable under Assumption 4. Since we multiply
fractions in (9), even then we may observe the compounding effect of fraction estimation errors in the final estimates. Hence,
we see for k = 5 in Figure 4(a)-4(b), the standard deviation is high due to few trials where the lower bound of 10~2 on the
constants in Assumption 4 may not be enough. However, majority of the trials as shown in Figure 4(a)-4(b) and Figure 2
incur low elicitation error.

H.2 RANKING OF REAL-WORLD CLASSIFIERS

Performance metrics provide quantifiable scores to classifiers. This score is then often used to rank classifiers and select the
best set of classifiers in practice. In this section, we discuss the benefits of elicited metrics in comparison to some default
metrics while ranking real-world classifiers.
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Figure 4: Ratio of estimated to true fractions over 1000 simulated runs with and without Assumption 4.

Ranking in case of quadratic metrics: For this experiment, we work with four real world datasets with varying number
of classes k € {2,3,7}. See Table 2 for details of the datasets. We use 60% of each dataset to train classifiers. The rest
of the data is used to compute (testing) predictive rates. For each dataset, we create a pool of 80 classifiers by tweaking
hyper-parameters in some famous machine learning models that are routinely used in practice. Specifically, we create 20
classifiers each from logistic regression models [Kleinbaum et al., 2002], multi-layer perceptron models [Pal and Mitra,
1992], LightGBM models [Ke et al., 2017], and support vector machines [Joachims, 1999]. We compare ranking of these
80 classifiers provided by competing baseline metrics with respect to the ground truth ranking, which is provided by the
oracle’s true metric.

We generate a random quadratic metric ¢4 following Definition 3. We treat the true ¢9"* as oracle’s metric. It provides us
the ground truth ranking of the classifiers in the pool. We then use our proposed procedure QPME (Algorithm 1) to recover
the oracle’s metric. For comparison in ranking of real-world classifiers, we choose two linear metrics that are routinely
employed by practitioners as baselines. The first is accuracy ¢*“¢ = 1/ Vk (1,r), and the second is weighted accuracy,
where we just use the linear part (a, r) of the oracle’s true quadratic metric (a,r) + %rTBr. We repeat this experiment over
100 trials.

Classifier Ranking Evaluation - KDTAU

1000

0993

0998

>
Z 0996 N N 2 S
— Adult_(k=2) o N oo | = Adult_(k=2) N
0sss1 —— Default_(k=2) AT . == Default_(k=2) AN
vaoa | 1t Acoustic_(k=3) ‘\..\\ ors{ e Acoustic (k=3) T T==o_
—- Covtype_(k=5) Ssa. —- Covtype (k=5)  TT==_
elicited linear accuracy Dmeli(ited linear accuracy

Figure 5: Performance of competing metrics while ranking real-world classifiers. ‘elicited’ is the metric elicited by QPME,
‘linear’ is the metric that comprises only the linear part of the oracle’s true quadratic metric, and ‘accuracy’ is the linear
metric which weigh all classification errors equally (often used in practice).

We report NDCG (with exponential gain) [Valizadegan et al., 2009] and Kendall-tau coefficient [Shieh, 1998] averaged over
the 100 trials in Figure 5. We observe consistently for all the datasets that the elicited metrics using the QPME procedure
achieve the highest possible NDCG and Kendall-tau coefficient of 1. As we saw in Section 5, QPME may incur elicitation
error, and thus the elicited metrics may not be very accurate; however, Figure 5 shows that the elicited metrics may still
achieve near-optimal ranking results. This implies that when given a set of classifiers, ranking based on elicited metric scores
align most closely to true ranking in comparison to ranking based on default metric scores. Consequentially, the elicited
metrics may allow us to select or discard classifiers for a given task. This is advantageous in practice. For the covtype dataset,
we see that the linear metric also achieves high NDCG values, so perhaps ranking at the top is quite accurate; however
Kendall-tau coefficient is low suggesting that the overall ranking of classifiers is poor. We also observe that, in general, the
weighted version (linear metric) is better than accuracy while ranking classifiers.



Ranking in case of fair (quadratic) metrics: With regards to fairness, we performed a similar experiment as above for
comparing fair-classifiers’ ranking on Adult and Default datasets with gender as the protected group. There are two genders
provided in the datasets, i.e., m = 2. We simulate fairness metrics as given in Definition 4 that gives ground-truth ranking
of classifiers and evaluate the ranking by the elicited (fair-quadratic) metric using the procedure described in Section 4
(also depicted in Figure 3). In Table 3, we show the NDCG and KD-Tau values for our method and for three baselines: (a)
‘Linear with no fairness’, which is the metric that comprises only the linear part of the oracle’s true quadratic fair metric
from Definition 4 without the fairness violation, (b) ‘Accuracy with eq. odds’ is the metric which weigh all classification
errors and fairness violations equally, and (c) Fair Performance Metric Elicitation (FPME) procedure from [Hiranandani
et al., 2020].> We again see that the ranking by the metric elicited using the proposed fair-QPME procedure (Section 4) is
closest to the ground-truth ranking. The metric elicited by FPME [Hiranandani et al., 2020] ranks classifiers better than
‘Linear with no fairness’ and ‘Accuracy with equalized odds’; however, it is beaten by the proposed fair-QPME procedure.

Dataset — Adult Default
Method |, Ranking Measures — NDCG | KD-TAU | NDCG | KD-TAU
Linear with no fairness 0.9875 0.5918 0.9994 0.9057
Accuracy with equalized odds 0.9857 0.3763 0.9889 0.4953
Elicited via FPME [Hiranandani et al., 2020] | 0.9989 0.9611 0.9974 0.9650
Elicited via Fair-QPME (Proposed) 1.0000 0.9972 1.0000 0.9981

Table 3: Performance of competing metrics while ranking real-world classifiers for fairness. ‘Linear with no fairness’ is the
metric that comprises only the linear part of the oracle’s true quadratic fair metric from Definition 4 without the fairness
violation, ‘Accuracy with eq. odds’ is the metric which weigh all classification errors and fairness violations equally (often
used in practice), ‘Elicited via FPME [Hiranandani et al., 2020]’ is the metric elicited using the procedure from Hiranandani
et al. [2020], ‘Elicited via Fair-QPME’ is the metric elicited by the proposed (quadratic) fairness metric elicitation procedure
from Section 4 (also depicted in Figure 3),

Ranking in case of added structural assumptions on the metrics: Lastly, we discuss an experiment where we show how
one may make structural assumptions on the metric when the actual number of unknowns is large and still get comparable
results in practical settings. For this experiment, we assume that the oracle’s true metric is quadratic in general rate entries as
explained in Appendix E. Thus, the number of unknowns is O(q?), where ¢ = k% — k and is the number of off-diagonal
entries of the rate matrix. We can apply the QPME procedure as it is and elicit a quadratic metric in general rates with O(q?)
queries (see Appendix E), since there are O(g?) unknowns.

Note that, even if the oracle’s original metric is a quadratic metric in off-diagonal entries, as a heuristic, we could still use
our procedure to elicit a quadratic metric in diagonal rate entries. Moreover, we can use LPME procedure (Appendix A), too,
to elicit a linear metric in off-diagonals and diagonal rate entries depending on the assumption we make on the metric.

Thus, for the ranking based experiments explained in Figure 5, we additionally ran (a) linear elicitation with diagonal rates,
(b) linear elicitation with general rates, and (c) quadratic elicitation with diagonal rates, and compare their ranking with the
elicited quadratic metric in general rates. As seen in Table 4, the quadratic approximation in the diagonal rates performs
significantly better than eliciting a linear approximation in the general rates, while requiring the same query complexity
(O(k2)), and is close to the elicited quadratic metric in general rates, which require (O(k4)) queries. Hence, one can make
structural assumptions on the metric to reduce the query complexity and still get comparable results in practice.

Dataset — Adult dataset Default dataset

Elicited Metric|, Rank- Measure— | NDCG | KD-TAU | NDCG | KD-TAU
Linear-diagonal (O (k)) 0.9783 | 0.6053 | 0.9790 | 0.4536
Linear-general (O (k2)) 0.9908 | 0.7713 | 0.9863 | 0.6216
Quadratic-diagonal (O (k2 ) 0.9968 | 0.9611 | 1.0000 | 0.9979
Quadratic-general (O (k*)) 1.0000 | 0.9986 | 1.0000 | 0.9979

Table 4: Performance on ranking real-world classifiers when the oracle’s true metric is quadratic in general rate entries:
the elicited quadratic metric in diagonal entries perform better than elicited linear metric in general rate entries (while
requiring same no. of queries), and close to the elicited quadratic metric in general rates.

2While FPME [Hiranandani et al., 2020] does not elicit a quadratic metric, one can still compare the elicited metrics based on how
they rank candidate classifiers on real-world data.



I EXTENDED RELATED WORK

We discuss how the area of metric elicitation, in general, and our quadratic elicitation proposal, in particular, differ from two
related fields: (i) inverse reinforcement learning and (ii) ranking from pairwise comparisons using choice models.

I.1 INVERSE REINFORCEMENT LEARNING (RL)

The idea of learning a reward/cost function in the inverse RL problems is conceptually similar to metric elicitation. However,
there are many key differences. Studies such as [Ng et al., 2000, Wu et al., 2020, Abbeel and Ng, 2004] try to learn a linear
reward function either by knowing the optimal policy or expert demonstrations. Not only is the type of feedback in these
studies different from the pairwise feedback we handle, but the studies are focused on linear rewards. In contrast, our goal is
to use pairwise feedback to elicit quadratic metrics which are important for classification problems, especially, fairness.
Indeed nonlinear reward estimation in inverse RL problems has been tackled before [Levine et al., 2011, Fu et al., 2017],
but these are passive learning approaches and do not come with query complexity guarantees like we do. Because of the
use of a complex function class, these methods are not easy to analyze. There has been some work on actively estimating
the reward function in the inverse RL problems [Lopes et al., 2009]; this work involves discretizing the feature space and
using maximum entropy based ideas to elicit a distribution over rewards, which clearly uses a different set of modeling
assumptions than us. A recent work [Sadigh et al., 2017] elicits reward functions through active learning, but is again tied to
eliciting linear functions and provides limited theoretical guarantees; whereas, we specifically focus on quadratic elicitation
with rigorous guarantees.

In summary, our work is significantly different from inverse RL methods, in that unlike them, we are tied to a particular
geometry of the query space (the space of error statistics achieved by feasible classifiers), and elicit quadratic (or polynomial)
functions from pairwise comparisons, specifically, in an active learning manner.

LI.2 RANKING FROM PAIRWISE COMPARISONS

Our work is also quite different from the use of choice models such the Bradley-Terry-Luce (BTL) model for rank
aggregation. (i) Firstly, choice models such as BTL are commonly used to learn a aggregate global ranking of a finite set of
N items from pairwise comparisons. The underlying problem involves estimating a N-dimensional quality score vector
for the items [Shah et al., 2015]. In contrast, metric elicitation estimates an oracle’s classification metric, a function of a
classifier’s error statistics. The applications for the two problems are very different: while ranking aggregation strategies
using BTL are often prescribed for aggregating user opinions on a restaurant or product, metric elicitation seeks to find the
right objective to optimize for a classification task. (ii) Secondly, the noise model in BTL is stochastic and depends on the
distance between the quality of items; whereas, our noise model in Definition 5 is not stochastic and is oblivious to the
distance of rates unless the rates are very close. (iii) Thirdly, while there is some work on the extended BTL model where
items are represented by feature vectors [Niranjan and Rajkumar, 2017], and the goal is to learn weights on the features to
complete the ranking of the items, most of the work in this area considers a passive setting, where pairwise comparisons
are assumed to be iid. In contrast, our work involves actively learning nonlinear utilities with theoretical bounds on query
complexity. (iv) Lastly, the closest active learning work we could find with BTL models [Mohajer et al., 2017] does not
generalize to feature-dependent utilities and is proposed for finding the top-k items, which is entirely different from metric
elicitation.

Other fields that are less closely related to our work include learning scoring functions for supervised label ranking problems
[Fiirnkranz and Hiillermeier, 2010], and the more traditional metric learning literature, where the task is to learn a distance
metric that captures similarities between data points, with the goal of using it for downstream learning tasks [Kulis et al.,
2013].

J PRELIMINARY USER STUDY

We are actively conducting user studies for eliciting performance metrics. In this section, we provide a peek into our future
work. The goal of this preliminary study is to check workflow of the practical implementation of the metric elicitation
framework with real data, and to a certain extent, support or reject the hypothesis that the implicit user preferences can be
quantified using the pairwise comparison queries over confusion matrices or predictive rates. In addition, the goal includes
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Figure 6: Flow-chart and bar-chart based visualizations for (binary classification) confusion matrices in the recidivism
prediction task from Shen et al. [2020].

testing certain assumptions regarding the noise in the subject’s (oracle’s) responses, work around with finite samples,
eliciting actual performance metrics in real-life scenarios, and evaluating the quality of the recovered metric.

The following user study works with the space of confusion matrices, i.e., entries of the type P(Y =4, h = j) for 4, j € [k],
instead of the predictive rates. In the future, we plan on incorporating rates, i.e., entries of the type P(h = j|Y = i) for
i,j € [k], in the visualizations as well. Our contributions are summarized as follows:

* We create a web UI that uses existing visualizations of confusion matrices (predictive rates) that are refined to capture
preferences over pairwise comparisons.

e The UI implements the binary-search procedure from Algorithm 2 at the back end that make use of the real-time
responses over confusion matrices to elicit a linear performance metric for a binary classification task.

* We perform a user study with ten subjects and elicit their linear performance metrics using the proposed web UIL. We
compare the quality of the recovered metric by comparing their responses to the elicited metric’s responses over a set
of randomly chosen pairwise comparison queries.

J.1 CHOICE OF TASK AND DATASET USED

Our choice of task is cancer diagnosis [Yang and Naiman, 2014] for which we use the Breast Cancer Wisconsin (Original)
dataset from the UCI repository.® The dataset has been extensively used in the literature for binary classification, where the
label 1 denotes malignant cancer and label 0 denotes benign cancer. There are 699 samples in total, wherein each sample
has 9 features. The task for any classifier is to take the 9 features of a patient as input and predict whether or not the patient
has cancer. We divide this data into two equally sized parts — the training and the test data. Using the training data, we learn

a logistic regression model to obtain an estimate of the class-conditional probability, i.e., 7j(z) = P(y = 1/X). We then
create a sphere using Algorithm 3 inside the space of confusion matrices computed on the test data .

J.2 CHOICE OF VISUALIZATION

In modern times, ensuring effective public understanding of algorithmic decisions, especially, machine learning models
has become an imperative task. With this view in mind, we borrow the visualizations of confusion matrices for the binary
classifications setup from Shen et al. [2020]. The authors provide a concrete step towards the above goal by redesigning
confusion matrices to support non-experts in understanding the performance of machine learning models. The final
visualizations that we use from Shen et al. [2020] are created over multiple iterative user-studies. The visualizations are
shown in Figure 6 in the context of a recidivism prediction task. One is the flow-chart, which helps users in understanding
the direction of the data, and the other is the bar chart, which helps users in understanding the quantities involved.

However, in light of our preliminary discussions with Human-Computer Interaction (HCI) and machine learning researchers,
we make/recommend the following changes in the visualization for pairwise comparison purposes in the metric elicitation
framework.

1. Based on the observation that multiple visualizations of the information help in better user understanding, we choose to
use both flow-chart and bar-chart, together to depict a confusion matrix.

2. We transform the data statistics so that the numbers denote out-of-100 samples.

3The dataset can be downloaded from https:/tinyurl.com/dn2esyvw.
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Figure 7: A sample of a pairwise comparison query from a run of the binary-search based procedure Algorithm 2

3. We found that the total number of positive and negative labels along with total number of positive and negative
predictions are very helpful in comparing two confusion matrices. Therefore, we add the total numbers in the flow-chart
boxes and on axes in the bar-charts.

A sample of a pairwise comparison query with modified visualizations incorporating the points above is shown in Figure 7.
We next discuss the web user interface.

J.3 USER INTERFACE

We discuss our proposed web User Interface (UI) in detail and discuss our rationale behind its components. The UI has two
parts to it as explained below.

The first phase of the Ul is where we actually ask subjects for pairwise preferences over confusion matrices, and implement
our binary-search procedure from Algorithm 2. The subjects have to make a choice reflecting on the trade-off between false
positives and false negatives. Algorithm 2 takes in real-time preferences of the subjects, generates next set of queries based
on the current responses, and converge to a linear performance metric at the back end. We save this (linear) performance
metric for each subject. We stop the binary-search when the search interval becomes less than or equal to 0.05 (e in line 1 of
Algorithm 2).

In order to evaluate the quality of the recovered metric, in the second phase, we ask the subjects fifteen pairwise comparison
queries, each on a separate web page, right after the binary search algorithm has converged, and we have elicited the metric.
The subjects do not know this information and are shown evaluation queries in continuation to the previous phase (i.e., the
binary search). The query comprises of two randomly selected confusion matrices that lie inside the feasible region. This set
of queries is used to evaluate the effectiveness of the elicited metric.



J4 STUDY RESULTS

We compute the fraction of times our elicited metric’s preferences matches with the subject’s preferences on the fifteen

queries, i.e.,

27121 1[subject’s prefer. for query i == metric’s prefer. for query i
15

M= x 100. (23)

We show the elicited metric for the fifteen subjects and the measure M values in Table 5. We see for nine out of ten subjects
that more than 85% of the time our elicited metric’s preferences matches with the subject’s preferences on the fifteen
evaluation queries. For three subjects, our metric’s preference matches exactly for all the evaluation queries.

The absolute numbers for the M measure look good; however, how good they are is still a missing piece in this study
because of the lack of a baseline. In future, we plan to devise ways to develop a baseline for the metric elicitation task and
compare to that baseline on the measure M.

Table 5: The elicited linear performance metrics for the ten subjects along with the fraction of times (in %) the elicited
metric’s preferences matches with the subject’s preferences over the fifteen evaluation queries.

Subjects | Linear Performance Metric | M
S1 0.125 TN + 0.875 TP 87
S2 0.141 TN + 0.859 TP 100
S3 0.125 TN + 0.875 TP 93
S4 0.141 TN + 0.859 TP 100
S5 0.328 TN + 0.672 TP 73
S6 0.031 TN + 0.969 TP 87
S7 0.031 TN + 0.969 TP 100
S8 0.359 TN + 0.641 TP 87
S9 0.125 TN + 0.875 TP 93

S10 0.141 TN + 0.859 TP 87
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