
Fast Predictive Uncertainty for
Classification with Bayesian Deep Networks (Supplementary material)

Marius Hobbhahn1 Agustinus Kristiadi1 Philipp Hennig1,2

1University of Tübingen
2Max-Planck Institute for Intelligent Systems

1 APPENDIX A

FIGURES

The parameters of Figure ?? are from left to right α, β =
(0.8, 0.9), (4, 2,), (2, 7).

CHANGE OF VARIABLE FOR PDF

Let z be an n-dimensional continuous random variable with
joint density function px. If y = G(x), where G is a differ-
entiable function, then y has density py:

p(y) = f
(
G−1(y)

) ∣∣∣∣∣∣det
dG−1(z)

dz

∣∣∣∣∣
z=y

∣∣∣∣∣∣ (1)

where the differential is the Jacobian of the inverse of G
evaluated at y. This procedure, also known as ‘change of
basis’, is at the core of the Laplace bridge since it is used to
transform the Dirichlet into the softmax basis.

CORRECTION FOR SUM(Y)=0

We know that the product rule of Gaussians yields

p(x|Ax = y) =
p(x, y)

p(y)
(2)

= N (x;µ+ΣA>(AΣA>)−1(y −Aµ), (3)

Σ− ΣA>(AΣA>)−1AΣ)

In our particular setup we have

p(x) = N (x;µ,Σ) (4)

with constraint

p(I|x) = δ(1x> − 0) = lim
ε→∞

N (0; 1>x,
1

ε
) (5)

1 2 3 4 5 6 7 8 9 10

Sigma

10

9

8

7

6

5

4

3

2

1

m
u

Before correction

1 2 3 4 5 6 7 8 9 10

After correction

Figure 1: Contourplot showing the scaling behavior of µ
and Σ. In the left figure, we see that Sigma has nearly no
influence on the scaling. Our correction in the right figure
fixes that. Contour levels show the first entry of α on a log-
scale.

Therefore we get

p(x|I) = N (x;µ+Σ1(1>Σ1− 1

ε
)−1(0− 1>µ), (6)

Σ− Σ1(1>Σ1− 1

ε
)−11>Σ)

= N
(
x;µ− Σ11>µ

1>Σ1
,Σ− Σ11>Σ

1>Σ1

)
(7)

VARIANCE CORRECTION

As described in the main text, the original Laplace Bridge
scales worse with Σ than sampling and applying the soft-
max. In Figure 1 you can see a contourplot that shows the
scaling of mean and variance with and without correction.
As suggested, the Variance has nearly no influence on the
result before the correction but our correction fixes that.

Some reviewers wanted to understand how we derived the
equations for our correction, so here is a short informal
explanation. During the experimentation with the LB, we

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<marius.hobbhahn@gmail.com>?Subject=Your UAI 2022 paper

found that it doesn’t approximate the sample distribution
well when Σ gets large. We then understood why (as de-
tailed in the limitations section) and proposed a fix for these
scenarios without damaging its behavior in all other scenar-
ios. We experimented with multiple fixes and the result you
see in the paper is the one that fulfilled most of our criteria.
Therefore, the correction doesn’t come from a principled
theoretical derivation but is motivated by the theoretical
findings.

2 APPENDIX (DERIVATION OF LB)

Assume we have a Dirichlet in the standard basis with pa-
rameter vector α and probability density function:

Dir(π|α) :=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , (8)

We aim to transform the basis of this distribution via the
softmax transform to be in the new base π:

πk(z) :=
exp(zk)∑K
l=1 exp(zl)

, (9)

Usually, to transform the basis we would need the inverse
transformation H−1(z) as described in the main paper. How-
ever, the softmax does not have an analytic inverse. There-
fore David JC MacKay uses the following trick. Assume we
know that the distribution in the transformed basis is:

Dirz(π(z)|α) :=
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

πk(z)
αk , (10)

then we can show that the original distribution is the result
of the basis transform by the softmax.

The Dirichlet in the softmax basis: We show that the den-
sity over π shown in Equation 10 transforms into the Dirich-
let over z. First, we consider the special case where π is con-
fined to an I−1 dimensional subspace satisfying

∑
i πi = c.

In this subspace we can represent ϕ by an I−1 dimensional
vector ϕ such that

πi = ϕi i, ..., I − 1 (11)

πI = c−
I−1∑
i

ϕi (12)

and similarly we can represent z by an I − 1 dimensional
vector a:

zi = ai i, ..., I − 1 (13)

zI = 1−
I−1∑
i

ai (14)

then we can find the density over a (which is proportional to
the required density over z) from the density over ϕ (which
is proportional to the given density over π) by finding the
determinant of the (I − 1)× (I − 1) Jacobian J given by

Jik =
∂ϕi

∂al
=

I∑
j

∂πi

∂zj

∂zj
∂ak

= δikπi − πiπk + πiπI = πi(δik − (πk − πI))
(15)

We define two additional I − 1 dimensional helper vectors
z+k := zk−zI and nk := 1, and use det(I−xyT) = 1−x·y
from linear algebra. It follows that

det J =

I−1∏
i=1

πi × det[I − nπ+T

]

=

I−1∏
i=1

πi × (1− n · π+) (16)

=

I−1∏
i=1

πi ×

(
1−

∑
k

π+
k

)
= I

I∏
i=1

πi

Therefore, using Equation 10 we find that

P (π) =
P (z)

|detJ|
∝

I∏
i=1

παi−1
i (17)

This result is true for any constant c since it can be put
into the normalizing constant. Thereby we make sure that
the integral of the distribution is 1 and we have a valid
probability distribution.

3 APPENDIX (DERIVATION OF
INVERSION)

Through the figures of the 1D Dirichlet approximation in
the main paper we have already established that the mode
of the Dirichlet lies at the mean of the Gaussian distribution
and therefore π(y) = α∑

i αi
. Additionally, the elements of

y must sum to zero. These two constraints combined yield
only one possible solution for µ.

µk = logαk − 1

K

K∑
l=1

logαl (18)

Calculating the covariance matrix Σ is more complicated
but layed out in the following. The logarithm of the Dirichlet
is, up to additive constants

log pz(z|α) =
∑
k

αkπk (19)

Using πk as the softmax of y as shown in Equation 9 we
can find the elements of the Hessian L

Lkl = α̂(δklπ̂k − π̂kπ̂l) (20)

where α̂ :=
∑

k αk and π̂ = αk

α̂ for the value of π at
the mode. Analytically inverting L is done via a lengthy
derivation using the fact that we can write L = A+XBX>

and inverting it with the Schur-complement. You can find
the derivation in [Hennig, 2010]. This process results in the
inverse of the Hessian

L−1
kl = δkl

1

αk
− 1

K

[
1

αk
+

1

αl
− 1

K

(
K∑
u

1

αu

)]
(21)

We are mostly interested in the diagonal elements, since
we desire a sparse encoding for computational reasons and
we otherwise needed to map a K × K covariance matrix
to a K × 1 Dirichlet parameter vector which would be
a very overdetermined mapping. Note that K is a scalar
not a matrix. The diagonal elements of Σ = L−1 can be
calculated as

Σkk =
1

αk

(
1− 2

K

)
+

1

K2

k∑
l

1

αl
. (22)

To invert this mapping we transform Equation 18 to

αk = eµk

K∏
l

α
1/K
l (23)

by applying the logarithm and re-ordering some parts. In-
serting this into Equation 22 and re-arranging yields

K∏
l

α
1/K
l =

1

Σkk

[
e−µ

(
1− 2

K

)
+

1

K2

K∑
u

e−µu

]
(24)

which can be re-inserted into Equation 23 to give

αk =
1

Σkk

(
1− 2

K
+

eµk

K2

K∑
l

e−µk

)
(25)

which is the final mapping. With Equations 18 and 22 we are
able to map from Dirichlet to Gaussian and with Equation
25 we are able to map the inverse direction.

4 APPENDIX (EXPERIMENTAL
DETAILS)

The exact experimental setups, i.e. network architectures,
learning rates, random seeds, etc. can be found in the accom-
panying GitHub repository 1. This section is used to justify
some of the decisions we made during the process in more
detail, highlight some miscellaneous interesting things and
showcase the additional experiments promised in the main
paper.

MATHEMATICAL DESCRIPTION OF THE SETUP

In principle, the Gaussian over the weights required by
the Laplace Bridge for BNNs can be constructed by any
Gaussian approximate Bayesian method such as variational
Bayes [Graves, 2011, Blundell et al., 2015] and Laplace
approximations for NNs [MacKay, 1992, Ritter et al., 2018].
We will focus on the Laplace approximation, which uses
the same principle as the Laplace Bridge. However, in the
Laplace approximation for neural networks, the posterior
distribution over the weights of a network is the one that is
approximated as a Gaussian, instead of a Dirichlet distribu-
tion over the outputs as in the Laplace Bridge.

Given a dataset D := {(xi, ti)}Di=1 and a prior p(θ), let

p(θ|D) ∝ p(θ)p(D|θ) = p(θ)
∏

(x,t)∈D

p(y = t|θ,x) ,

(26)
be the posterior over the parameter θ of an L-layer net-
work fθ . Then we can get an approximation of the posterior
p(θ|D) by fitting a Gaussian N (θ|µθ,Σθ) where

µθ = θMAP ,

Σθ = (−∇2|θMAP log p(θ|D))−1 =: H−1
θ .

That is, we fit a Gaussian centered at the mode θMAP of
p(θ|D) with the covariance determined by the curvature at
that point. We assume that the prior p(θ) is a zero-mean
isotropic Gaussian N (θ|0, σ2I) and the likelihood function
is the Categorical density

p(D|θ) =
∏

(x,t)∈D

Cat(y = t|softmax(fθ(x))) .

For various applications in Deep Learning, an approxima-
tion with full Hessian is often computationally too expensive.
Indeed, for each input x ∈ RN , one has to do K backward

1https://github.com/mariushobbhahn/LB_
for_BNNs_official

https://github.com/mariushobbhahn/LB_for_BNNs_official
https://github.com/mariushobbhahn/LB_for_BNNs_official

Table 1: Comparing the extended probit approximation with the normalized version of the LB norm in the KFAC setting.
The probit approximation seems to break down in the MNIST scenarios.

KFAC Probit KFAC LB norm
Train Test MMC ↓ AUROC ↑ ECE ↓ NLL ↓ MMC ↓ AUROC ↑ ECE ↓ NLL ↓
MNIST MNIST 0.105 0.000 2.258 0.883 0.975 0.000 0.043 0.018
MNIST FMNIST 0.102 0.955 2.302 0.032 0.444 0.990 2.871 0.364
MNIST notMNIST 0.103 0.922 2.300 0.043 0.409 0.986 2.854 0.294
MNIST KMNIST 0.102 0.962 2.304 0.012 0.414 0.991 3.162 0.328

CIFAR10 CIFAR10 0.548 0.000 0.661 0.404 0.941 0.000 0.195 0.017
CIFAR10 CIFAR100 0.358 0.896 2.652 0.253 0.662 0.866 3.871 0.558
CIFAR10 SVHN 0.307 0.956 2.567 0.195 0.441 0.965 2.837 0.327

passes to compute the Jacobian J(x). Moreover, it requires
an O(PK) storage which is also expensive since P is often
in the order of millions. A cheaper alternative is to fix all
but the last layer of fθ and only apply the Laplace approxi-
mation on WL, the last layer’s weight matrix. This scheme
has been used successfully by Snoek et al. [2015], Wilson
et al. [2016], Brosse et al. [2020], etc. and has been shown
theoretically that it can mitigate overconfidence problems in
ReLU networks [Kristiadi et al., 2020]. In this case, given
the approximate last-layer posterior

p(WL|D) ≈ N (vec(WL)|vec(WL
MAP),H

−1
WL) , (27)

one can efficiently compute the distribution over the logits.
That is, let φ : RN → RQ be the first L − 1 layers of fθ,
seen as a feature map. Then, for each x ∈ RN , the induced
distribution over the logit WLφ(x) =: z is given by

p(z|x) = N (z|WL
MAPφ(x), (φ(x)

>⊗I)H−1
WL(φ(x)⊗I)) ,

(28)
where ⊗ denotes the Kronecker product.

An even more efficient last-layer approximation can be ob-
tained using a Kronecker-factored matrix normal distribu-
tion [Louizos and Welling, 2016, Sun et al., 2017, Ritter
et al., 2018]. That is, we assume the posterior distribution
to be

p(WL|D) ≈ MN (WL|WL
MAP,U,V) , (29)

where U ∈ RK×K and V ∈ RQ×Q are the Kronecker
factorization of the inverse Hessian matrix H−1

WL [Martens
and Grosse, 2015] and MN denotes the Matrix Normal
distribution. In this case, for any x ∈ RN , one can easily
show that the distribution over logits is given by

p(z|x) = N (z|WL
MAPφ(x), (φ(x)

>Vφ(x))U) , (30)

which is easy to implement and computationally cheap. Fi-
nally, and even more efficient, is a last-layer approximation
scheme with a diagonal Gaussian approximate posterior,
i.e. the so-called mean-field approximation. In this case, we
assume the posterior distribution to be

p(WL|D) ≈ N (vec(WL)|vec(WL
MAP), diag(σ2)) ,

(31)

where σ2 is obtained via the diagonal of the Hessian of the
log-posterior w.r.t. vec(WL) at vec(WL

MAP).

OOD DETECTION

The test scenarios are: A two-layer convolutional network
trained on the MNIST dataset [LeCun, 1998]. The OOD
datasets for this case are FMNIST [Xiao et al., 2017], notM-
NIST [Bulatov, 2011], and KMNIST [Clanuwat et al., 2018].
For larger datasets, i.e. CIFAR-10 [Krizhevsky et al., 2014],
SVHN [Netzer et al., 2011], and CIFAR-100 [Krizhevsky
et al., 2014], we use a ResNet-18 network [He et al., 2016].
In all scenarios, the networks are well-trained with 99%
test accuracy on MNIST, 95.4% on CIFAR-10, 76.6% on
CIFAR-100, and 100% on SVHN. For the sampling base-
line, we use 100 posterior samples.

All network have been trained with conventional setups,
i.e. we use ADAM with learning rate 1e − 3 and weight
decay 5e− 4 for the MNIST experiments and SGD with a
cosine annealing scheduler starting at learning rate 0.1 and
momentum 0.9 for the CIFAR and SVHN experiments.

PROBIT VS LB

The KFAC setting of the probit comparison can be found
in Table 1. Especially in the MNIST scenario the probit
approximation seems to break down since even in-dist de-
tection is at chance level. The LB, on the other hand, yields
reasonable results.

References

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In ICML, pages 1613–1622. PMLR, 2015.

Nicolas Brosse, Carlos Riquelme, Alice Martin, Sylvain
Gelly, and Éric Moulines. On last-layer algorithms
for classification: Decoupling representation from un-
certainty estimation. arXiv preprint arXiv:2001.08049,
2020.

Yaroslav Bulatov. notMNIST dataset, 2011. URL
http://yaroslavvb.blogspot.com/2011/
09/notmnist-dataset.html.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,
Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep
learning for classical Japanese literature. arXiv,
abs/1812.01718, 2018.

Alex Graves. Practical Variational Inference for neural net-
works. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages
2348–2356. Curran Associates, Inc., 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

P. Hennig. Approximate Inference in Graphical Models.
PhD thesis, University of Cambridge, November 2010.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig.
Being Bayesian, even just a bit, fixes overconfidence in
relu networks. In ICML, pages 5436–5446. PMLR, 2020.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The
CIFAR-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55, 2014.

Y. LeCun. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

Christos Louizos and Max Welling. Structured and efficient
Variational deep learning with matrix Gaussian posteriors.
In ICML, 2016.

David J. C. MacKay. A practical Bayesian framework
for backpropagation networks. Neural Comput., 4(3):
448âĂŞ472, May 1992. ISSN 0899-7667.

James Martens and Roger Grosse. Optimizing neural net-
works with Kronecker-factored approximate curvature.
In ICML, 2015.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in
natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A
scalable laplace approximation for neural networks. In
International Conference on Learning Representations,
2018.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Mostofa Patwary,

Mr Prabhat, and Ryan Adams. Scalable Bayesian opti-
mization using deep neural networks. In Francis Bach
and David Blei, editors, Proceedings of the 32nd ICML,
volume 37 of Proceedings of Machine Learning Research,
pages 2171–2180, Lille, France, 07–09 Jul 2015. PMLR.

Shengyang Sun, Changyou Chen, and Lawrence Carin.
Learning structured weight uncertainty in Bayesian neural
networks. In Artificial Intelligence and Statistics, pages
1283–1292, 2017.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov,
and Eric P. Xing. Deep kernel learning. In Arthur Gretton
and Christian C. Robert, editors, Proceedings of the 19th
International Conference on Artificial Intelligence and
Statistics, volume 51 of Proceedings of Machine Learning
Research, pages 370–378, Cadiz, Spain, 09–11 May 2016.
PMLR.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a novel image dataset for benchmarking machine
learning algorithms. arXiv, abs/1708.07747, 2017.

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

	Appendix A
	Appendix (Derivation of LB)
	Appendix (Derivation of Inversion)
	Appendix (Experimental Details)

