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1 DATASET DETAILS

ShapeNet We used an object image dataset derived from
a core subset of (public-domain) ShapeNet database of 3D
object models (Chang et al., 2015) used in SHREC2016 chal-
lenge1. The subset contained 55 object classes and did not
include material data. We selected 10 out of the pre-defined
classes: car, chair, table, airplane, lamp, boat, box, display,
truck, and vase. Our criterion of selection was those with a
large number of object identities but avoid including visu-
ally similar classes, e.g., chair, sofa, and bench. We rendered
each object in 30 views consisting of 15 azimuths (equally
dividing 360◦) and 2 elevations (0◦ and 22.5◦ downward) in
a single lighting condition; the images were gray-scale and
had size 64× 64 pixels. All the rendering used Blender soft-
ware2. We divided the data into training and test following
the split given in the original database.

MVC Cloth We used a subset of MVC Cloth image
dataset (Liu et al., 2016)3, which contains a number of pho-
tos of cloths worn by fashion models; the same cloth type is
shown in multiple viewing angles. The dataset provides no
class label, but provides 264 binary attribute labels that are
related to cloth kinds (Dresses, Denim, TShirts, etc.), cloth
styles (Short, Sleeveless, LongSleeves, etc.), cloth materials
(Cotton, Nylon, Black, White, etc.), and prices (hundred1U,
fiftyU, etc.). We rescaled the images to 64× 64 pixels and
split the data into training and test sets (each of size ∼112K
and ∼28K) so that the cloth types do not overlap between
these.

2 PLATFORM DETAILS

We used 3 computers with the following specifications: (1)
56 core CPUs (256G memory) with 4 V100 GPUs (16G

1https://shapenet.cs.stanford.edu/
shrec16/

2https://www.blender.org
3https://github.com/MVC-Datasets/MVC

memory each), (2) 56 core CPUs (256G memory) with
4 V100 GPUs (32G memory each), and (3) 96 core CPUs
(256G memory) with 4 A100 GPUs (40G memory each). All
code is implemented with Python (3.7.4) / Pytorch (1.7.1).

3 ARCHITECTURE DETAILS

In a CIGMO model, the categorizer deep net u consisted
of three convolutional layers each with 32, 64, and 128
filters (kernel 5× 5; stride 2; padding 2), followed by two
fully connected layers each with 500 intermediate units and
C output units. These layers were each intervened with
Batch Normalization and ReLU nonlinearity, except that
the last layer ended with Softmax. The shape and view
encoder deep nets had a similar architecture, except that the
last layer was linear for encoding the mean (g and hc) or
ended with Softplus for encoding the variance (r and sc).
The decoder deep nets fc had two fully connected layers
(103 input units and 500 intermediate units) followed by
three transposed convolutional layers each with 128, 64,
and 32 filters (kernel 6 × 6; stride 2; padding 2). These
layers were again intervened with Batch Normalization and
ReLU nonlinearity, but the last layer was Sigmoid. To save
the memory space, the shape encoders shared the first four
layers for all categories and for mean and variance. The
decoders shared all but the first layer for all categories.

4 ADDITIONAL RESULTS FOR
SHAPENET

In Section 3.2 and Section 3.3, we have raised several de-
sign alternatives in the model construction. The first choice
regards how to combine instance-specific categorical proba-
bility distributions and has three options: averaging (default),
normalized product, and logit averaging. The second choice
regards whether views are dependent on category or not (de-
fault). Table 1 summarizes performance results in invariant
clustering and one-shot identification tasks, changing the
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options from the default, for ShapeNet. Overall, the default
design tended to give slightly better performance than the
other options (though mostly statistically insignificant in
invariant clustering). In particular, we could not see any ad-
vantage of using category-dependent view representations
despite potentially different meanings of views. In addition,
Tables 2 and 3 compare the design options in terms of de-
gree of shape-view disentanglement and swapping errors,
respectively. The results again show that the default design
tended to give slightly better performance than the other
options (though often statistically insigificant). As an ad-
ditional remark, we found the product option numerically
rather unstable.
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Table 1: Comparison of design options in CIGMO in terms of (1) how to combine category distributions: averaging (AV;
default), product (PD), and logit-averaging (LA) and (2) whether views depend on the category or not (default). The
comparisons are made with invariant clustering accuracy (left half; %) and one-shot identification accuracy (right half; %)
for ShapeNet.

invariant clustering (%) one-shot identification (%)
(1) (2) 3 classes 5 classes 10 classes 3 classes 5 classes 10 classes

AV N 94.83 ± 6.06 89.36 ± 4.53 68.53 ± 4.24 27.33 ± 0.55 24.51 ± 0.68 21.79 ± 0.71
PD N 90.44 ± 9.11 80.96 ± 9.65 68.30 ± 3.64 26.64 ± 0.57∗ 23.55 ± 0.56∗ 20.63 ± 0.80∗

LA N 88.16 ± 15.89 89.16 ± 3.08 69.55 ± 3.26 26.52 ± 0.84∗ 23.57 ± 0.34∗ 20.58 ± 0.91∗

AV Y 92.32 ± 8.39 82.60 ± 6.53∗ 65.03 ± 6.62 26.54 ± 0.61∗ 24.16 ± 0.58 21.24 ± 1.00

Table 2: Comparison of different design options in terms of degree of shape-view disentanglement for ShapeNet, measured
as neural network classification accuracy (%) for object identity from the shape (left half; higher is better) or view variable
(right half; lower is better).

shape→ id view→ id
3 cats. 5 cats. 10 cats. 3 cats. 5 cats. 10 cats.

AV N 57.62 ± 0.93 50.91 ± 0.97 46.28 ± 0.87 0.26 ± 0.04 0.65 ± 0.05 0.67 ± 0.07
PD N 57.18 ± 1.30 49.13 ± 1.06∗ 44.17 ± 1.13∗ 0.27 ± 0.03 0.63 ± 0.08 0.69 ± 0.04
LA N 56.31 ± 1.90 49.34 ± 0.62∗ 43.35 ± 1.42∗ 0.29 ± 0.05 0.69 ± 0.10 0.73 ± 0.07
AV Y 55.30 ± 0.78∗ 48.57 ± 0.82∗ 44.28 ± 1.21∗ 0.28 ± 0.05 0.63 ± 0.14 0.63 ± 0.11

Table 3: Comparison of different design options in terms of swapping error for ShapeNet.

3 cats. 5 cats. 10 cats.

AV N 0.220 ± 0.025 0.300 ± 0.025 0.340 ± 0.035
PD N 0.245 ± 0.031 0.333 ± 0.037 0.361 ± 0.025
LA N 0.236 ± 0.031 0.301 ± 0.019 0.340 ± 0.025
AV Y 0.236 ± 0.047 0.318 ± 0.038 0.364 ± 0.060
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