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Abstract

We address differentially private stochastic ban-
dits. We present two (near)-optimal Thomp-
son Sampling-based learning algorithms: DP-
TS and Lazy-DP-TS. The core idea in achiev-
ing optimality is the principle of optimism in
the face of uncertainty. We reshape the poste-
rior distribution in an optimistic way as com-
pared to the non-private Thompson Sampling of
Agrawal and Goyal [2017]. Our DP-TS achieves
a

∑
j∈A:∆j>0

O
(

log(T )
min{ε,∆j}) log

(
log(T )
ε·∆j

))
regret

bound, where A is the arm set, ∆j is the sub-
optimality gap of a sub-optimal arm j, and ε is
the privacy parameter. Our Lazy-DP-TS gets rid
of the extra log factor by using the idea of drop-
ping observations. The regret of Lazy-DP-TS is∑
j∈A:∆j>0

O
(

log(T )
min{ε,∆j}

)
, which matches the re-

gret lower bound of Shariff and Sheffet [2018].
Additionally, we conduct experiments to compare
the empirical performance of our proposed algo-
rithms with the existing optimal algorithms for
differentially private stochastic bandits.

1 INTRODUCTION

We consider the setting of differentially private stochastic
multi-armed bandits[Mishra and Thakurta, 2015, Tossou
and Dimitrakakis, 2016, Shariff and Sheffet, 2018, Sajed
and Sheffet, 2019, Hu et al., 2021]. In the classical stochas-
tic multi-armed bandit problem, we have a fixed and finite
set of K arms and a stochastic environment. In each round
t = 1, 2, . . . , T , the environment generates a random re-
ward Xj(t) for arm j which is revealed and collected if
arm j is pulled in that round. For each arm j, the rewards
Xj(t) ∈ [0, 1] are i.i.d. over time according to a fixed but

unknown probability distribution with mean µj . The goal of
the learning algorithm is to pull arms sequentially to maxi-
mize the accumulated reward. The performance metric has
traditionally been pseudo-regret [Bubeck and Cesa-Bianchi,
2012] which is a measure of the difference of the expected
accumulated rewards compared to a given benchmark.

In the classical setting, the learning algorithm uses the true
revealed rewards from previous rounds to make decisions
on arms in future rounds. However, in many settings re-
wards may be private information that should be protected.
For instance, consider an online search advertisement sys-
tem where the objective is to display relevant ads for web
queries. In such a setting the system would display a few
advertisements to the user. When the user clicks on an ad, a
reward is collected by the system, which in accumulation
would allow the system and any external observers to learn
user preferences. Rewards that represent user preferences
are private information and may further allow inference on
the user’s other private characteristics.

Motivated by such applications, previous work [Mishra and
Thakurta, 2015, Tossou and Dimitrakakis, 2016, Sajed and
Sheffet, 2019, Hu et al., 2021] have studied the design of
bandit learning algorithms with differential privacy[Dwork
et al., 2014] for keeping reward information private. Dif-
ferential privacy has been used as a framework because it
provides robust privacy guarantees and a controlled tradeoff
with regret guarantees in the case of bandit learning.

Two of the most common algorithms in the stochastic bandit
setting are Upper Confidence Bound (UCB) sampling [Auer
et al., 2002] and Thompson Sampling [Agrawal and Goyal,
2017]. Mishra and Thakurta [2015] present the first differen-
tially private versions of these two algorithms and provide
regret bounds for their algorithms. This was followed by dif-
ferentially private algorithms in the contextual linear bandit
setting [Shariff and Sheffet, 2018] and optimal differentially
private algorithms based on Successive Elimination (DP-
SE) [Sajed and Sheffet, 2019] and UCB (Anytime-Lazy-
UCB) [Hu et al., 2021] in the stochastic bandit setting.
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However, to the best of our knowledge, there is still no opti-
mal Thompson Sampling-based algorithm for differentially
private stochastic bandits. Thompson Sampling-based algo-
rithms exhibit better performance than UCB or SE-based
methods, are applicable to a wider range of information
models, and are more widely implemented in practical sce-
narios [Chapelle and Li, 2011, Gopalan et al., 2014]. Given
their widespread implementation in practice, we provide
two (near)-optimal Thompson Sampling-based algorithms
for private stochastic bandits. The core concept in our algo-
rithms still relies on the principle of optimism in the face of
uncertainty. More specifically, we shift the posterior distri-
bution of an arm to the right as compared to the posterior
distribution in the non-private Thompson Sampling.

Our first algorithm, Differentially Private Thompson Sam-
pling (DP-TS), can be viewed as a differentially private
version of the standard Thompson Sampling for Bernoulli
bandits [Agrawal and Goyal, 2017]: the learning algo-
rithm makes a decision based on all observations ob-
tained from the beginning and updates the statistics of
the pulled arm at the end of each round. The regret
bound of DP-TS is Õ

(
K log(T )
min{ε,∆}

)
, where Õ(·) hides an

extra log(log(T )/(ε∆)) factor. Our second algorithm, Lazy
Differentially Private Thompson Sampling (Lazy-DP-TS),
drops observations during learning and updates the statistics
of the pulled arm in a delayed manner. With these modifi-
cations we achieve the optimal O

(
K log(T )
min{∆,ε}

)
regret bound.

Interestingly, as discussed in Section 3 and confirmed in
Section 4 with numerical experiments, DP-TS may perform
better than Lazy-DP-TS under some circumstances.

Contribution. We make the following key contributions. (1)
We present (near)-optimal Thompson Sampling-based learn-
ing algorithms for differentially private stochastic bandits:
DP-TS and Lazy-DP-TS; (2) The regret bound for DP-TS is∑
j∈A:∆j>0

O
(

max
{

log(T )
∆j

, log(T )
ε log

(
log(T )
ε·∆j

)})
, which

is optimal up to a log log(T ) factor (Theorem 2); (3) The
regret bound for Lazy-DP-TS is

∑
j∈A:∆j>0

O
(

log(T )
min{ε,∆j}

)
,

which is optimal (Theorem 4); (4) We show through numer-
ical experiments performance improvement of our proposed
learning algorithms as compared to the existing two optimal
algorithms, DP-SE and Anytime-Lazy-UCB.

2 PROBLEM DEFINITION AND
BACKGROUND

2.1 STOCHASTIC MULTI-ARMED BANDITS

We consider the stochastic multi-armed bandit setting, with
a fixed set A of K arms and a stochastic environment. At
each round t = 1, 2, . . . , T , the environment generates a
reward vector Xt := (X1(t), X2(t), . . . , XK(t)) with each

Xj(t) ∈ {0, 1} independently drawn from a Bernoulli distri-
bution1 with parameter µj ∈ (0, 1). The learning algorithm
pulls an arm Jt ∈ A and at the end of round t, observes and
obtains the reward of the pulled arm, XJt(t). The goal of
the algorithm to select an arm in each round such that the
accumulated reward over T rounds is maximized.

Without loss of generality, we assume that the optimal arm
is unique and let arm 1 be the unique optimal arm, i.e.,
µ1 > µj for all j ∈ A\{1}. Let ∆j := µ1 − µj be the
mean reward gap, which indicates the performance loss in
a single round when a sub-optimal arm j is pulled instead
of the best arm 1. We use (pseudo)-regretR(T ) to measure
the performance, expressed as

R(T ) = T · µ1 −
∑
j∈A

E
[
T∑
t=1

1 {Jt = j}
]
· µj

=
∑

j∈A:∆j>0

E
[
T∑
t=1

1 {Jt = j}
]
·∆j .

2.2 DIFFERENTIAL PRIVACY

Differential privacy is a widely accepted framework of pri-
vacy and is based on the notion of plausible deniability:
an adversary should learn nearly the same thing if one el-
ement in the dataset is changed or missing. In the context
of bandits, a dataset is the stream of reward vectors drawn
throughout the algorithm, and a change would refer to one
reward vector in the stream. More formally, let X1:t be
the sequence of reward vectors up to time t and let X ′1:t

be a neighbouring sequence which differs in at most one
reward vector, say, at any round s, s ≤ t. The output of a
bandit learning algorithm is the sequence of arm selections
at each round. In this context, differential privacy is defined
as follows, omitting the subscript t for clarity.

Definition 1. An online learning algorithm M is ε-
differentially private if, at every round t = 1, . . . T , for any
two neighbouring reward sequences X and X ′, and for any
set D of decisions made, it holds that P {M(X) ∈ D} ≤
eε · P {M(X ′) ∈ D}.

Remark. Our definition of differential privacy follows
the standard notion that was introduced in [Dwork et al.,
2014]. It can also be interpreted as and is very related to the
Max DivergenceD∞(Q,Q′) := max

y∈Support(Q′)
ln P(Q=y)

P(Q′=y) be-

tween two probability distributions Q and Q′. If we view Q
as the output distribution (the distribution of the sequentially
pulled arms) when working over the true reward sequences
X and view Q′ as the output distribution when working
over X ′, an ε-differentially private algorithm guarantees
that the maximum divergence between Q and Q′ is at most

1As shown in [Agrawal and Goyal, 2017], the Bernoulli reward
setting can be generalized to any bounded reward setting.



ε, i.e., ln
(

P{Q=y}
P{Q′=y}

)
≤ ε for all possible output y. Actu-

ally, the quantity ln
(

P{Q=y}
P{Q′=y}

)
is the privacy loss that is

occurred when an adversary witnesses the outcome y.

2.3 RELATED WORK

In the classical stochastic bandit setting, the UCB-based,
Thompson Sampling-based, and elimination-based algo-
rithms all achieve good theoretical guarantees. Essentially,
these algorithms rely on the empirical means to make deci-
sions and the regret bounds take the O(K log(T )/∆) form.

As shown in Proposition 2.1 of [Dwork et al., 2014], dif-
ferential privacy is invariant to post-processing, i.e., if a
learning algorithm takes the output of an ε-differentially
private algorithm as input, then the output of this learning
algorithm itself is also ε-differentially private. In design-
ing stochastic bandit algorithms with differential privacy, if
the internal algorithm to compute the empirical mean is de-
signed to be ε-differentially private, then following from the
post-processing property, we can claim the bandit algorithm
itself is ε-differentially private. This property has indeed
been used in the design of private algorithms in previous
work [Mishra and Thakurta, 2015, Tossou and Dimitrakakis,
2016, Sajed and Sheffet, 2019, Hu et al., 2021].

Mishra and Thakurta [2015] present the first differntially-
private versions of the UCB and Thompson Sampling-
based algorithms. However, the regret bounds they de-
rive, O

(
K log3(T )

ε·∆

)
and O

(
K log3(T )
ε2·∆2

)
, are far from the

Ω
(
K log(T )

∆ + K log(T )
ε

)
regret lower bound that is derived

later by Shariff and Sheffet [2018]. The key reason for the
sub-optimality is using the T -bounded Binary Mechanism2

[Dwork et al., 2010, Chan et al., 2011] to add random noise
to mask the empirical mean for an arm. Furthermore, since
their algorithms need to know the time horizon T in advance
to calibrate the distribution of the random noise, they can-
not be anytime learning algorithms. More importantly, their
Thompson Sampling-based algorithm has some operational
issues: in some rounds, the total reward ra(t) computed by
the tree-based mechanism can take negative values, resulting
in invalid parameters for the posterior distribution, the Beta
distribution. Note that the parameters of Beta distributions
must be non-negative. Our proposed learning algorithms
carefully use clipping to address this issue.

Recently, two optimal algorithms have been proposed for
differentially private stochastic bandits. Sajed and Sheffet
[2019] propose DP-SE, an optimal elimination-style algo-
rithm, and Hu et al. [2021] propose Anytime-Lazy-UCB, an
optimal UCB-based algorithm. The key idea in achieving op-
timality is to use fresh observations to compute the differen-

2Dwork et al. [2010], call it the Tree-based Mechanism, but
the core idea is identical.

tially private empirical means, thus minimizing the number
of noise variables needed. Although DP-SE, Anytime-Lazy-
UCB, and our proposed Lazy-DP-TS are all optimal, as will
be shown in Section 4, Lazy-DP-TS always outperforms the
other two algorithms.

3 ALGORITHMS AND ANALYSIS

We now present our algorithms for achieving differential
privacy in the stochastic bandit setting. The algorithms rely
on two key ideas. The first is to use the differential privacy
property of invariance to post-processing to make the arm
selection algorithm differentially private due to the internal
algorithm of computing empirical means being differentially
private. The second is based on the principle of optimism
in the face of uncertainty. Note that the decisions for the
Thompson Sampling-based algorithms fully depend on the
generated random samples from the posterior distributions.
Operating under the optimism principle, we reshape the
posterior distribution in an optimistic way: we shift the
posterior distribution in the private algorithm towards the
right as compared to the posterior distribution for the non-
private Thompson Sampling. This shifting makes it more
likely to draw a “good” posterior sample as compared to the
draw in the non-private setting.

While both our algorithms rely on these fundamental con-
cepts, the key difference between them lies in the design of
the internal algorithm to compute the differentially private
empirical means. Our first algorithm, Differentially Private
Thompson Sampling (DP-TS), uses all the observations
from the beginning in computing the differentially private
empirical means, whereas our second algorithm, Lazy Dif-
ferentially Private Thompson Sampling (Lazy-DP-TS) uses
only a subsequence of observations.

Suppose at a given time step, arm j has a sequence of
n observations (x1, x2, . . . , xn). In DP-TS, all n obser-
vations will be used to compute the differentially private
empirical mean for arm j. We partition (x1, x2, . . . , xn)
into (x1, x2, . . . , xm) and (xm+1, xm+1, . . . , xn), where
m = 2blog(n+1)c−1. This partition guarantees n−m ≤ m,
i.e., the length of the first subsequence is always no smaller
than the length of the second subsequence. The internal
algorithm composes two differentially private mechanisms,
each being 0.5ε-differentially private and acting on each
partition, respectively, to process these n observations.

The first mechanism is a modified version of the Loga-
rithmic Mechanism [Chan et al., 2011] and works over
(x1, x2, . . . , xm): a differentially private aggregated reward
of these m observations will be computed. According to the
original mechanism by Chan et al. [2011], random noise
would be added to the reward of an arm whenever the num-
ber of observations of that arm hits 2r, for all r ≥ 0, while
in our modified version, random noise is added whenever



the number of observations hits 2r+1−1, so that fresh noise
is added at longer epochs, resulting in less overall noise.
The second mechanism is the bounded Binary Mechanism
[Chan et al., 2011] and works over (xm+1, xm+2, . . . , xn):
random noise will be added based on the bounded Binary
Mechanism and a differentially private aggregated reward of
these n−m observations will be output. The differentially
private empirical mean is thus computed by aggregating the
outputs of these two mechanisms.

Note that a given observation may be used more than once
in the calculation of the empirical means over rounds, which
means more noise is required to maintain the same degree
of privacy. Based on this remark, we propose Lazy-DP-TS,
where the internal algorithm only uses a subsequence of all
the observations obtained so far to compute the differentially
private empirical mean and no observation can be reused,
i.e., once an observation has been used, it will be abandoned.
The length of the subsequences double each time, i.e., the
internal algorithm adds a random noise to every 2r, r ≥ 0
observations and outputs a differentially private empirical
mean. This restriction of using an observation only once
in the calculation of the empirical mean minimizes added
noise and is thus the key to the optimality of differentially
private online learning algorithms.

Notation. Let Beta(α, β) be a Beta distribution with pa-
rameters α, β and Lap(b) be a Laplace distribution centered
at 0 with scale b. The pdfs of Beta(α, β) and Lap(b) are
shown in Facts 1 and 2 in Appendix A. log(x) is the base-2
logarithm of x and ln(x) is the base-e logarithm of x.

3.1 DP-TS

We now present DP-TS, followed by its guarantees.

3.1.1 Algorithm

We present some notation specific to this algorithm –
used in this section and Appendix B. Oj(t − 1) :=∑t−1
s=1 1 {Js = j} counts the number of pulls of arm j by

the end of round t− 1 and µ̂j,Oj(t−1) is the empirical mean
over these Oj(t − 1) observations. Let µ̃j,Oj(t−1) be the
private empirical mean, i.e., µ̂j,Oj(t−1) plus some noise.

DP-TS is presented in Algorithm 1. Lines 2 to 4 initialize
the algorithm. We pull each arm once and set Ψj = {}
to hold future observations. Let Cj track the differentially
private aggregated reward computed by the modified Log-
arithmic Mechanism and Bj track the private aggregated
reward returned by the Binary Mechanism. Since for each
arm the modified Logarithmic Mechanism processes obser-
vations in epochs, we use rj to index the arm-specific epoch,
i.e., the modified Logarithmic Mechanism will add a noise
variable to mask the aggregated reward of 2rj observations

Algorithm 1 DP-TS

1: Input: Arm set A and privacy parameter ε
2: for t = 1, 2, . . . ,K do
3: Pull Jt ← t; Set OJt ← 1, ΨJt ← {}, CJt ←

XJt(t)+ Lap
(

1
0.5ε

)
, rJt ← 0, BJt ← 0, µ̃Jt,OJt ←

CJt+BJt
OJt

4: end for
5: for t = K + 1,K + 2, . . . do
6: for j ∈ A do
7: Set µj,Oj

= max
{

0,min
{
µ̃j,Oj +

6
√

8 log(Oj+1) log(t)
ε·Oj , 1

}}
8: Set α̃j ← µj,Oj ·Oj , β̃j ← (1− µj,Oj ) ·Oj
9: Sample θj(t) ∼ Beta(α̃j + 1, β̃j + 1)

10: end for
11: Pull arm Jt ∈ arg maxj∈A θj(t)
12: Set OJt ← OJt + 1; Append XJt(t) to ΨJt

13: if OJt =
rJt+1∑
s=0

2s then

14: Set CJt ← CJt +
∑

ΨJt + Lap
(

1
0.5ε

)
15: Set ΨJt ← {}, rJt ← rJt + 1, BJt ← 0
16: else
17: Invoke 2rJt+1-bounded Binary Mechanism with

Input (0.5ε,ΨJt) and Output BJt
18: end if
19: Set µ̃Jt,OJt ←

CJt+BJt
OJt

.
20: end for

at the end of epoch rj . We initialize rj = 0 and the initial-
ization phase adds random noise to the first observation.

Let υε,Oj(t−1),t :=
6
√

8 log(Oj(t−1)+1) log(t)
ε·Oj(t−1) . For all the

rounds t ≥ K + 1, we first compute µj,Oj(t−1) =

max
{

0,min
{
µ̃j,Oj(t−1) + υε,Oj(t−1),t, 1

}}
. Note that the

empirical means are clipped so that µj,Oj(t−1) ∈ [0, 1].

We set α̃j(t) := µj,Oj(t−1) · Oj(t − 1) and β̃j(t) :=(
1− µj,Oj(t−1)

)
·Oj(t− 1). We then generate a random

posterior sample θj(t) ∼ Beta
(
α̃j(t) + 1, β̃j(t) + 1

)
for

each arm and pull the arm with the highest sample, i.e.,
Jt ∈ arg maxj∈A θj(t). Since µj,Oj(t−1) ∈ [0, 1], the pa-
rameters of Beta distribution are valid.

To update the private empirical mean of the pulled arm, we
append XJt(t) to ΨJt . If the number of observations in ΨJt

hits 2rJt+1, we add random noise drawn from Lap
(

1
0.5ε

)
and update CJt . Since now all observations in ΨJt are used
by the modified Logarithmic Mechanism, we reset ΨJt and
BJt , and increment rJt by one. If the number of observa-
tions in ΨJt has not reached 2rJt+1, we invoke the 2rJt+1-
bounded Binary Mechanism [Chan et al., 2011] taking ΨJt

as input and preserving 0.5ε-differential privacy. Note the
number of observations in ΨJt is at most 2rJt+1.



Remark. (a) rj is determined by Oj(t− 1) as rj will only
increment by one whenever the number of observations in
Ψj hits 2rj+1. Indeed, rj = blog(Oj(t− 1) + 1)c − 1. (b)
Regarding the noise variables included in the differentially
private empirical mean, there are exactly rj+1 i.i.d. random
variables that are drawn from Lap

(
1

0.5ε

)
and at most rj + 1

i.i.d. random variables that are drawn from Lap
(
rj+1
0.5ε

)
.

We now compare Algorithm 1 to the non-private Thomp-
son Sampling by Agrawal and Goyal [2017]. Let α′j(t) :=
µ̂j,Oj(t−1) · Oj(t − 1) be the number of successes and
β′j(t) :=

(
1− µ̂j,Oj(t−1)

)
· Oj(t − 1) be the num-

ber of failures among Oj(t − 1) Bernoulli trials. Re-
call that in the non-private Thompson Sampling, we
draw θ′j(t) ∼ Beta

(
α′j(t) + 1, β′j(t) + 1

)
. By adding

υε,Oj(t−1),t to µ̃j,Oj(t−1), we have, with high probability,
µj,Oj(t−1) ≥ µ̂j,Oj(t−1), i.e., the posterior distribution for
the differentially private version is shifted towards the right
as compared to the non-private version.

3.1.2 Analysis

We present privacy and regret guarantees for Algorithm 1.

Theorem 1. Algorithm 1 is ε-differentially private.

Proof. We first show the internal algorithm to compute the
empirical mean, i.e., from Lines 12 to 19, is ε-differentially
private. Then, from Proposition 2.1 of Dwork et al. [2014],
we conclude that Algorithm 1 is ε-differentially private.
Note that Lines 6 to 11 can be viewed as post-processing
since in these steps, the learning algorithm does not touch
any revealed observations. Suppose reward sequences X
and X ′ differ in round h, i.e., the reward vectors Xh =
(X1(h), . . . , XK(h)) and X ′h = (X ′1(h), . . . , X ′K(h)) are
not the same. Note that changing from Xh to X ′h has no im-
pact on other arms except arm Jh as only the reward of the
pulled arm, Jh, is revealed in round h. Let Jh = j. At the
end of round h, the differentially private empirical mean of
arm j will be updated. According to Algorithm 1, changing
from Xj(h) to X ′j(h) impacts Cj by at most 1. From Theo-
rem 3.6 of Dwork et al. [2014], we know the internal algo-
rithm to compute Cj (Line 14) is 0.5ε-differentially private.
From Theorem 3.5 of Chan et al. [2011], we know the inter-
nal algorithm to compute Bj (Line 17) is 0.5ε-differentially
private. Composing these two internal algorithms together,
from Theorem 3.14 in [Dwork et al., 2014], we conclude
that the internal algorithm (Line 19) to compute the differen-
tially private empirical mean is ε-differentially private.

Theorem 2. The regretRDP-TS(T ) of Algorithm 1 is at most∑
j∈A:∆j>0

O
(

max
{

log(T )
∆j

, log(T )
ε log

(
log(T )
ε·∆j

)})
.

Remark. Several remarks are in order. (a): DP-TS is opti-
mal up to a log log(T ) factor. (b): When setting ε → ∞,

Algorithm 1 boils down to the same algorithm as the one
by Agrawal and Goyal [2017]. However, our derived regret
bound, Theorem 2, is only order-optimal instead of asymp-
totically optimal. Note that the regret bound of the non-
private Thompson Sampling can be asymptotically optimal,
i.e., a regret bound attaining the best possible coefficient for
the leading term asymptotically. (c): Algorithm 1 also has an

O

(√
KT log(T ) + K log(T )

ε log

(√
T log(T )√
Kε

))
problem-

independent regret bound. Note that it is known that Thomp-
son Sampling is able to achieve the Ω

(√
KT

)
mini-

max lower bound for non-private stochastic bandits [Jin
et al., 2021]. Therefore, the O

(√
KT log(T )

)
term in

Theorem 2 is
√

log(T ) far from being minimax optimal.
Note that the price of introducing differential privacy is
Ω
(
K log(T )

ε

)
[Shariff and Sheffet, 2018]. This lower bound

implies DP-TS is log

(√
T log(T )√
Kε

)
far from being optimal

in the private setting. The detailed proof for the problem-
independent result is deferred to Appendix C.

We now provide a proof sketch for Theorem 2. The detailed
proof is deferred to Appendix B. Let Ft−1 collect all the
history information containing the pulled arms, the rewards
associated with the pulled arms, and the added noise. Define
F0 = {}. Let yj := µ1 − ∆j

6 and define Eθj (t) as the
event that {θj(t) ≤ yj}. Let Cj(t − 1) be the event that{∣∣µj − µ̂j,Oj(t−1)

∣∣ ≤√ 3 log(t)
Oj(t−1)

}
. Let Gj(t − 1) be the

event that
{∣∣µ̂j,Oj(t−1) − µ̃j,Oj(t−1)

∣∣ ≤ υε,Oj(t−1),t

}
.

Proof sketch of Theorem 2. We upper bound E[Oj(T )]. Let

Lj := max
{

108 log(T )
∆2
j

, 72 log(T )
ε·∆j

log
(

72 log(T )
ε·∆j

)}
. We sep-

arate all T rounds into two regimes based on whether
Oj(t−1) ≥ Lj . For all rounds t s.t.Oj(t−1) < Lj , the to-
tal regret is at mostLj ·∆j . In a round whenOj(t−1) ≥ Lj ,
w.t.p., we have µj,Oj(t−1) ≤ µj+

4∆j

6 , which impliesEθj (t)
is a low probability event. Meanwhile, w.h.p., we also have
µ1,O1(t−1) ≥ µ̂1,O1(t−1), which allows us to reduce the
proof to the non-private setting.

With these ideas in hand, we have
∑T
t=1 E [1 {Jt = j}]

≤ Lj +

T∑
t=1

P
{
Cj(t− 1)

}
+

T∑
t=1

P
{
Gj(t− 1)

}
︸ ︷︷ ︸

=:ω0

+

T∑
t=1

P
{
Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1), Eθj (t)

}
︸ ︷︷ ︸

=:ω1

+

T∑
t=1

P
{
Jt = j, Eθj (t)

}
︸ ︷︷ ︸

=:ω2

.

(1)



Via well-known concentration inequalities, we have ω0 ≤
O(1) (shown in Lemmas 8 and 9 in Appendix B). For ω1,
we use the argument that if events Cj(t − 1) and Gj(t −
1) are true simultaneously and arm j has been pulled at
least Lj times, we have µj,Oj(t−1) ≤ µj +

4∆j

6 . Since

θj(t) ∼ Beta
(
α̃j(t) + 1, β̃j(t) + 1

)
, from the properties

of the Beta distribution, we know that it is very unlikely to
draw θj(t) > µj +

5∆j

6 . Lemma 11 in Appendix B shows
that ω1 ≤ O(1).

The key challenge is to upper bound ω2. We first reduce
the proof to the non-private Thompson Sampling. Then, we
reuse Lemmas 2.9 and 2.10 in [Agrawal and Goyal, 2017]
to conclude the proof. Now, we show how to reduce the
proof to the non-private setting. By introducing G1(t− 1)
and G1(t− 1), term ω2 is at most

T∑
t=1

P
{
Jt = j,G1(t− 1), Eθj (t)

}
+

T∑
t=1

P
{
G1(t− 1)

}
.

For the second term above, it is at most O(1) (shown in
Lemma 9). For the first term above, we have

T∑
t=1

P
{
Jt = j,G1(t− 1), Eθj (t)

}
≤ E

[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
1−P{θ1(t)≤yj |Ft−1} {Jt = 1, G1(t− 1)}

]
≤ E

[
T∑
t=1

P{θ′1(t)≤yj |Ft−1}
1−P{θ′1(t)≤yj |Ft−1} {Jt = 1}

]
,

(2)
where θ′1(t) ∼ Beta

(
α′j(t) + 1, β′j(t) + 1

)
, the non-private

posterior distribution for arm j conditioned on Ft−1.

The first inequality in (2) links the probability of pulling
a sub-optimal j to the probability of pulling the best arm
by using Lemma 12 that we develop in Appendix B. The
last inequality uses the fact that if µ1,O1(t−1) ≥ µ̂1,O1(t−1),
we have P {θ1(t) ≤ yj | Ft−1} ≤ P {θ′1(t) ≤ yj | Ft−1},
i.e., Beta

(
α̃j(t) + 1, β̃j(t) + 1

)
stochastically dominates

Beta
(
α′j(t) + 1, β′j(t) + 1

)
. Since the proof now is reduced

to the non-private setting, slightly modifying Lemmas 2.9
and 2.10 in [Agrawal and Goyal, 2017] concludes the proof.
Lemma 10 in Appendix B shows ω2 ≤ O

(
log(T )

∆2
j

)
.

3.2 LAZY-DP-TS

We now present Lazy-DP-TS and its guarantees. The idea
to achieve optimality is limiting the number of times an
observation is used in computing the empirical mean to one.

3.2.1 Algorithm

We first present some notation specific to this algorithm –
used in this section and Appendix D. Let Oj(t− 1) denote
the number of observations that are used to compute the

Algorithm 2 Lazy-DP-TS

1: Input: Arm set A and privacy parameter ε
2: for t = 1, 2, . . . ,K do
3: Pull Jt ← t; Set OJt ← 1, µ̃Jt,OJt ← XJt(t) +

Lap
(

1
ε

)
, rJt ← 0, ΨJt ← {}

4: end for
5: for t = K + 1,K + 2, . . . do
6: for j ∈ A do
7: Set µj,Oj = max

{
0,min

{
µ̃j,Oj + 3 log(t)

ε·Oj , 1
}}

8: Set α̃j ← µj,Oj ·Oj , β̃j ← (1− µj,Oj ) ·Oj
9: Sample θj(t) ∼ Beta(α̃j + 1, β̃j + 1)

10: end for
11: Pull Jt ∈ arg maxj∈A θj(t)
12: Append XJt(t) to ΨJt

13: if number of observations in ΨJt hits 2rJt+1 then

14: Set OJt ← 2rJt+1, µ̃Jt,OJt ←
∑

ΨJt+Lap( 1
ε )

OJt
15: Set rJt ← rJt + 1, ΨJt ← {}
16: end if
17: end for

differentially private empirical mean and µ̂j,Oj(t−1) denote
the empirical mean of these Oj(t − 1) observations. Let
µ̃j,Oj(t−1) be the differentially private empirical mean.

Lazy-DP-TS is presented in Algorithm 2. Lines 2 to 4 are
the initialization. We pull each arm once and add random
noise that is drawn from Lap

(
1
ε

)
to the obtained observation

to initialize the differentially private empirical mean. We
still use 2rj to track the number of observations that have
been used to compute the differentially private empirical
mean for arm j. Initially, we set rj = 0 and Ψj = {} to
hold future observations.

For all rounds t ≥ K + 1, we first compute µj,Oj(t−1) =

max
{

0,min
{
µ̃j,Oj(t−1) + 3 log(t)

ε·Oj(t−1) , 1
}}

and then com-

pute α̃j(t) := µj,Oj(t−1) · Oj(t − 1) and β̃j(t) :=(
1− µj,Oj(t−1)

)
· Oj(t − 1). Next, we generate a poste-

rior sample θj(t) ∼ Beta
(
α̃j(t) + 1, β̃j(t) + 1

)
for each

arm and pull the arm with the highest posterior sample, i.e.,
Jt ∈ arg maxj∈A θj(t).

To process XJt(t), we append it in ΨJt . However, we may
not update the differentially private empirical mean of the
pulled arm in round t. We will only update it when the
number of observations in ΨJt hits 2rJt+1 and the updated
differentially private empirical mean will be based on ob-
servations in ΨJt only, i.e., the updated differentially pri-
vate empirical mean is computed by adding a noise vari-
able drawn from Lap

(
1
ε

)
to these fresh 2rJt+1 observations.

Since now all observations in ΨJt are used, we reset ΨJt

and increment rJt by one.

Remark. (a) The number of observations used to compute



the differentially private empirical mean doubles each time,
i.e.,Oj(t−1) takes values from 2rj , rj ≥ 0. (b) The number
of noise variables included in the private empirical mean of
arm j is always 1 and it is drawn from Lap

(
1
ε

)
.

3.2.2 Analysis

We now present privacy and regret guarantees for Algo-
rithm 2.

Theorem 3. Algorithm 2 is ε-differentially private.

Proof. The internal algorithm to compute the differen-
tially private empirical mean is shown in Lines 12 to 16
in Algorithm 2. Lines 5 to 11 can be viewed as post-
processing. Now, we show that the internal algorithm
is ε-differentially private. Suppose reward sequences X
and X ′ differ in round h, i.e., the reward vectors Xh =
(X1(h), . . . , XK(h)) and X ′h = (X ′1(h), . . . , X ′K(h)) are
not the same. The changing from Xh to X ′h can only impact
arm Jh. Let Jh = j. Since arm j’s differentially private
means are always based on fresh observations, the changing
from Xh to X ′h can only impact the differentially private ag-
gregated reward of arm j once and by at most 1. By adding
a noise variable drawn from Lap

(
1
ε

)
to
∑

Ψj , from Theo-
rem 3.6 in [Dwork et al., 2014], we know that the internal
algorithm to compute the differentially private empirical
mean is ε-differentially private.

Theorem 4. The regretRLazy-DP-TS(T ) of Algorithm 2 is at

most
∑

j∈A:∆j>0

O
(

log(T )
min{ε,∆j}

)
.

Remark. Several remarks are in order. (a): Lazy-DP-TS
is (order)-optimal as its regret upper bound matches the

Ω

( ∑
j∈A:∆j>0

log(T )
∆j

+ log(T )
ε

)
regret lower bound of Shar-

iff and Sheffet [2018]. Our Lazy-DP-TS preserves the same
regret guarantee as the one for Anytime-Lazy-UCB by
Hu et al. [2021] and DP-SE by Sajed and Sheffet [2019].
However, as will be shown in Section 4, Lazy-DP-TS
has better practical performance than Anytime-Lazy-UCB
and DP-SE. Since Algorithm 2 drops observations as it
learns, even if we set ε → ∞, the regret bound can never
be asymptotically optimal. (b): Algorithm 2 also has an
O
(√

KT log(T ) + K log(T )
ε

)
problem-independent regret

bound. Since the price of introducing differential privacy is
Ω
(
K log(T )

ε

)
, the O

(
K log(T )

ε

)
term in Theorem 4 cannot

be improved as it matches the lower bound of introduc-
ing differential privacy. Therefore, Lazy-DP-TS is mini-
max optimal up to a

√
log(T ) factor in both private setting

and non-private setting. The detailed proof for the problem-
independent result is deferred to Appendix E.

We now present a proof sketch for Theorem 4. The detailed
proof is deferred to Appendix D. We still define Cj(t−1) as
the event that the confidence interval of the empirical mean
holds and Gj(t− 1) as the event that the noise injected is
not too much. Let Ft−1 collect all the history information
and set yj := µ1 − ∆j

6 . Let event Eθj (t) := {θj(t) ≤ yj}.

Proof sketch of Theorem 4. We still upper bound the ex-
pected number of pulls of a sub-optimal arm j. However,
we cannot separate all T rounds into two regimes since
Algorithm 2 drops observations. Instead, we perform a de-
composition as follows.

T∑
t=1

E [1 {Jt = j}]

≤
T∑
t=1

P
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}
︸ ︷︷ ︸

=:ω1

+

T∑
t=1

P
{
Jt = j, Eθj (t), G1(t− 1)

}
︸ ︷︷ ︸

=:ω2

+O(1) .

(3)

Lemma 13 and Lemma 14 in Appendix D together
show that the O(1) term in (3) is an upper bound on
T∑
t=1

P
{
Cj(t− 1)

}
+ P

{
Gj(t− 1)

}
+ P

{
G1(t− 1)

}
.

To upper bound ω1, we let Lj := 72·log(T )
∆j ·min{ε,∆j} and dj :=

log (Lj). Recall that for arm j, the numbers of observations
that are used to compute the differentially private empirical
means are 2rj for 0 ≤ rj ≤ log(T ). Let τrj be the round
such that at the end of round τrj , the learning algorithm
will use 2rj observations to update the differentially private
empirical mean for arm j. We separate 0 ≤ rj ≤ log(T )
into two parts. The first part is when 0 ≤ rj ≤ dj . Based
on the definition of τrj , we know that the total number of

pulls of arm j is at most
dj∑
s=0

2s ≤ O
(

log(T )
∆j ·min{ε,∆j}

)
in all

rounds up to (and including) τdj . When dj < rj ≤ log(T ),
we have 2rj > Lj , i.e., we have accumulated “enough”
observations for arm j. For a fixed rj , with high probability,
the expected number of pulls of arm j is at most O(1) in
all rounds t ∈

{
τrj + 1, . . . , τrj+1

}
. Then, we know that

the total expected number of pulls is at most O(log(T )) in
all rounds from τdj + 1 up to T . Lemma 16 in Appendix D

shows ω1 ≤ O
(

log(T )
∆j ·min{ε,∆j}

)
.

The challenge still lies in upper bounding ω2. We again use
the ideas shown in (2) to reduce the proof to the non-private
setting. We have

ω2 ≤ E
[
T∑
t=1

P{θ′1(t)≤yj |Ft−1}
1−P{θ′1(t)≤yj |Ft−1} {Jt = 1}

]
. (4)

However, now we cannot reuse Lemmas 2.9 and 2.10
from [Agrawal and Goyal, 2017] directly due to the fact



that the observations for arm 1 are also dropped during the
learning. To tackle this challenge, we separate all T rounds
into multiple intervals based on whether arm 1’s empirical
mean is updated or not. Let τr be the round such that at the
end of round τr, the learning algorithm will use 2r obser-
vations for arm 1 to update arm 1’s empirical mean, i.e., in
all rounds t ∈ {τr + 1, . . . , τr+1}, the posterior distribution
for θ′1(t) stays the same. Then, we have

ω2 ≤ E

[
log(T )∑
r=0

τr+1∑
t=τr+1

P{θ′1(t)≤yj |Ft−1}
P{θ′1(t)>yj |Ft−1} {Jt = 1}

]
=

log(T )∑
r=0

E
[
P{θ′1(τr+1)≤yj |Fτr}
P{θ′1(τr+1)>yj |Fτr}

τr+1∑
t=τr+1

{Jt = 1}
]

≤
log(T )∑
r=0

2r+1 · E
[
P{θ′1(τr+1)≤yj |Fτr}
P{θ′1(τr+1)>yj |Fτr}

]
.

(5)
The last inequality uses the fact that the number of pulls
for arm 1 in all rounds t ∈ {τr + 1, . . . , τr+1} is at
most 2r+1 based on the definition of τr+1. Let d1 :=

log
(

8
µ1−yj

)
. We now analyze two cases separately based

on whether 0 ≤ r ≤ bd1c or r ≥ dd1e. By using
Lemma 2.9 of Agrawal and Goyal [2017] and other analy-

sis, we have
bd1c∑
r=0

2r+1E
[
P{θ′1(τr+1)≤yj |Fτr}
P{θ′1(τr+1)>yj |Fτr}

]
≤ O

(
1

∆2
j

)
and

log(T )∑
r=dd1e

2r+1E
[
P{θ′1(τr+1)≤yj |Fτr}
P{θ′1(τr+1)>yj |Fτr}

]
≤ O

(
log(T )

∆2
j

)
.

Lemma 15 in Appendix D shows ω2 ≤ O
(

log(T )
∆2
j

)
.

4 EXPERIMENTAL RESULTS
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Figure 1: ε = 500

We compare the practical performance among DP-TS, Lazy-
DP-TS, DP-SE, and Anytime-Lazy-UCB under the exper-
imental setting that has been used in [Sajed and Sheffet,
2019], i.e., we have K = 5 arms with mean rewards setting
to 0.75, 0.625, 0.5, 0.375, 0.25 and the privacy parameter ε
setting to 0.1, 0.25, 0.5, 1.0, 500. We set T = 105. Figure 1
shows the results of the setting where ε = 500. It is not
surprising that DP-TS outperforms Lazy-DP-TS as when ε
is very large, DP-TS is asymptotically optimal while Lazy-
DP-TS can only be order-optimal. Also, just as expected,
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Figure 2: ε = 1.0
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Figure 3: ε = 0.5
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Figure 4: ε = 0.25
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Figure 5: ε = 0.10

Thompson Sampling-based algorithms outperform the UCB-
based and elimination-style algorithms. Figures 2 to 5 show
the results of the settings where ε = 1.0, 0.5, 0.25, 0.1, we
skip the plots of DP-TS as the practical performance of
DP-TS is inferior to the remaining three optimal algorithms
when ε is very small. From the experimental results we
can see that Lazy-DP-TS always outperforms DP-SE and



Anytime-Lazy-UCB. More experimental results, including
comparison of private and non-private algorithms, can be
found in Appendix F.

5 CONCLUSION

We have presented optimal Thompson Sampling-based algo-
rithms for differentially private stochastic bandits, filling a
gap in the literature for differentially private online learning.
The ideas used in this paper also contribute to developing op-
timal algorithms for other settings such as differentially pri-
vate combinatorial multi-armed bandits [Chen et al., 2020].
Note that both the UCB and elimination-based algorithms
are deterministic. So far, our proposed algorithms have not
used the unique feature that only Thompson Sampling-based
algorithms have, the randomness inherent in the learning
algorithms. An interesting future direction is the design of
optimal private Thompson Sampling-based algorithms us-
ing the fact that a random posterior sample may provide a
degree of differential privacy for free [Wang et al., 2015,
Foulds et al., 2016].
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APPENDIX

The organization of the appendix is as follows.

1. Appendix A: Useful facts and inequalities ;

2. Appendix B: Proofs for Theorem 2 ;

3. Appendix C: Proofs for Problem-independent regret bound for Algorithm 1 ;

4. Appendix D: Proofs for Theorem 4 ;

5. Appendix E: Proofs for Problem-independent regret bound for Algorithm 2 ;

6. Appendix F: Additional experimental results .

A USEFUL FACTS AND INEQUALITIES

Fact 1. (Beta distribution). The probability density function of a Beta distribution with parameters α, β > 0, i.e., Beta(α, β),
is

f(x;α, β) =
xα−1(1− x)β−1∫ 1

0
xα−1(1− x)β−1dx

. (6)

Fact 2. (Laplace distribution). The probability density function of a Laplace distribution (centered at 0) with scale b, i.e.,
Lap(b), is

f(x; b) =
1

2b
e−
|x|
b . (7)

Fact 3. (Hoeffding’s inequality). Let X1, X2, . . . , Xn be n independent random variables with common range [0, 1]. Let

X =
n∑
j=1

Xj . Then, for all a > 0, we have

P {|X − E[X]| ≥ a} ≤ 2e−2a2/n . (8)

Fact 4. (Chernoff-Hoeffding bound). Let X1, X2, . . . , Xn be n independent random variables with each Xj ∈ {0, 1}. Let

X = 1
n

n∑
j=1

Xj and µ = E [X]. Then, for any 0 < λ < 1− µ, we have

P {X ≥ µ+ λ} ≤ e−n·dKL(µ+λ,µ) , (9)

and for any 0 < λ < µ, we have
P {X ≥ µ− λ} ≤ e−n·dKL(µ−λ,µ) , (10)

where dKL(x, y) := x ln
(
x
y

)
+ (1−x) ln

(
1−x
1−y

)
is the KL-divergence between two Bernoulli distributions with parameters

x and y.

Fact 5. For all positive integers α, β, we have

F Beta
α,β (y) = 1− F B

α+β−1,y(α− 1) , (11)

where F Beta
α,β (·) is the cdf of a Beta distribution with parameters α, β and F B

n,p(·) is the cdf of a Binomial distribution with
parameters n, p.

Fact 6. Let Y ∼ Lap(b), for any δ > 0, we have

P
{
|Y | ≥ b ln

(
1

δ

)}
≤ δ . (12)



Fact 7. (Corollary 2.9 in [Chan et al., 2011]). Let Y1, Y2, . . . YN be N i.i.d. random variables that are drawn according to

distribution Lap (b). Let Y :=
N∑
i=1

Yi. Suppose 0 < δ < 1 and v > b ·max
{√

N,
√

ln
(

2
δ

)}
. Then, we have

P

{
|Y | > v

√
8 ln

(
2

δ

)}
≤ δ . (13)

B PROOFS FOR THEOREM 2

Recall that Oj(t − 1) is the number of observations for arm j obtained from the very beginning until the end of round
t− 1; µ̂j,Oj(t−1) is the empirical mean for arm j by the end of round t− 1; µ̃j,Oj(t−1) is the differentially private empirical

mean. Also, recall that Cj(t− 1) is the event such that
{∣∣µj − µ̂j,Oj(t−1)

∣∣ ≤√ 3 log(t)
Oj(t−1)

}
; Gj(t− 1) is the event such that{∣∣µ̂j,Oj(t−1) − µ̃j,Oj(t−1)

∣∣ ≤ 6
√

8 log(Oj(t−1)+1) log(t)
ε·Oj(t−1)

}
.

We now present two lemmas to show that, for every arm including the best arm, the probability that the complementary
event of Cj(t− 1) or Gj(t− 1) occurs is very low.

Lemma 8. For any arm j, we have

P
{
Cj(t− 1)

}
≤ O

(
1

t2

)
. (14)

Lemma 9. For any arm j, we have

P
{
Gj(t− 1)

}
≤ O

(
1

t2

)
. (15)

For a sub-optimal arm j, recall that Lj = max
{

108 log(T )
∆2
j

, 72 log(T )
ε·∆j

log
(

72 log(T )
ε·∆j

)}
and yj = µ1 − ∆j

6 . Also, recall that

Eθj (t) is the good event that the posterior sample of a sub-optimal arm j in round t is not too close to the mean reward of the
best arm, i.e., event Eθj (t) = {θj(t) ≤ yj}.

We now present two key lemmas in order to complete the proof of Theorem 2. Lemma 10 states that the learning algorithm
will only make a small amount of mistakes, i.e., at most O

(
log(T )

∆2
j

)
mistakes, for pulling a sub-optimal arm j instead of the

optimal arm, if the posterior samples of a sub-optimal arm j are always far from the mean reward of the best arm. Lemma 11
states that once a sub-optimal arm j has been pulled enough, i.e., at least Lj times, it is very unlikely to draw the posterior
sample of arm j close to the mean reward of the best arm.

Lemma 10. For any sub-optimal arm j, we have

E

[
T∑
t=1

1
{
Jt = j, Eθj (t)

}]
≤ O

(
log(T )

∆2
j

)
. (16)

Lemma 11. For any sub-optimal arm j, we have

E

[
T∑
t=1

1
{
Jt = j,Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1), Eθj (t)

}]
≤ O(1) . (17)

After these preparations, we now prove Theorem 2.



Proof of Theorem 2. We do the regret decomposition first and have

RDP-TS(T ) =
∑

j∈A:∆j>0

E
[
T∑
t=1

1 {Jt = j}
]
·∆j

≤
∑

j∈A:∆j>0

Lj ·∆j +
∑

j∈A:∆j>0

E
[
T∑
t=1

1 {Jt = j,Oj(t− 1) > Lj}
]
·∆j

≤
∑

j∈A:∆j>0

Lj ·∆j +
∑

j∈A:∆j>0

E

[
T∑
t=1

1 {Jt = j,Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1)}

]
︸ ︷︷ ︸

=:η

·∆j

+
∑

j∈A:∆j>0

T∑
t=1

P
{
Cj(t− 1)

}
︸ ︷︷ ︸
≤O( 1

t2
), Lemma 8

·∆j +
∑

j∈A:∆j>0

T∑
t=1

P
{
Gj(t− 1)

}
︸ ︷︷ ︸
≤O( 1

t2
), Lemma 9

·∆j .

(18)

We simply upper bound the indicator function directly for the first term in (18). For the third term, we apply Lemma 8 to
upper bound it and for the last term, we apply Lemma 9 to upper bound it.

We now further decompose the η term in (18) based on Eθj (t) and Eθj (t). We have

η = E
[
T∑
t=1

1 {Jt = j,Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1)}
]

≤ E

[
T∑
t=1

1
{
Jt = j, Eθj (t)

}]
︸ ︷︷ ︸
≤O
(

log(T )

∆2
j

)
, Lemma 10

+E

[
T∑
t=1

1
{
Jt = j,Oj(t− 1) > Lj , Eθj (t), Cj(t− 1), Gj(t− 1)

}]
︸ ︷︷ ︸

≤O(1), Lemma 11

. (19)

By using Lemma 10, we know the first term in (19) is at most O
(

log(T )
∆2
j

)
; by using Lemma 11, we know the second term in

(19) is at most O(1). Then, we have η ≤ O
(

log(T )
∆2
j

)
. By plugging the upper bound of η into (18), we have

RDP-TS ≤
∑

j∈A:∆j>0

Lj ·∆j +O
(

log(T )
∆2
j

)
·∆j +

T∑
t=1

O
(

1
t2

)
≤

∑
j∈A:∆j>0

O
(

max
{

log(T )
∆j

, log(T )
ε log

(
log(T )
ε·∆j

)})
+O(1) ,

(20)

which concludes the proof.

We now present the proofs of Lemma 8 and Lemma 9.

Proof of Lemma 8. To prove this lemma, only Hoeffding’s inequality (shown in Fact 3) is needed. We have

P
{
Cj(t− 1)

}
≤ P

{∣∣µj − µ̂j,Oj(t−1)

∣∣ >√ 3 log(t)
Oj(t−1)

}
≤ P

{∣∣µj − µ̂j,Oj(t−1)

∣∣ >√ 4 ln(t)
Oj(t−1)

}
≤

t−1∑
h=1

P
{
|µj − µ̂j,h| >

√
4 ln(t)
h

}
≤

t−1∑
h=1

2e−2h
4 ln(t)
h

≤ t · 2
t3

≤ O
(

1
t2

)
.

(21)



Proof of Lemma 9. We use Corollary 2.9 in [Chan et al., 2011] to prove this lemma. Corollary 2.9 of Chan et al. [2011]
itself is shown in Fact 7. Let Âj,Oj(t−1) := µ̂j,Oj(t−1) ·Oj(t−1) be the true aggregated reward over Oj(t−1) observations.
Let Ãj,Oj(t−1) := µ̃j,Oj(t−1) ·Oj(t− 1) be the differentially private aggregated reward.

We have

P
{
Gj(t− 1)

}
= P

{∣∣µ̃j,Oj(t−1) − µ̂j,Oj(t−1)

∣∣ > 6
√

8 log(Oj(t−1)+1)·log(t)
ε·Oj(t−1)

}
= P

{∣∣∣Ãj,Oj(t−1) − Âj,Oj(t−1)

∣∣∣ > 6
√

8 log(Oj(t−1)+1)·log(t)
ε

}
≤

t−1∑
h=1

P
{∣∣∣Ãj,h − Âj,h∣∣∣ > 6

√
8 log(h+1)·log(t)

ε

}
.

(22)

For a fixed h, according to Algorithm 1, we know rj = blog(h+ 1)c − 1 ≤ blog(t)c − 1.

The first
rj∑
s=0

2s observations will use the modified Logarithmic Mechanism to inject noise. That is also to say, we add rj + 1

random variables and each is independently drawn from Lap
(

1
0.5ε

)
. Let Yj,1 :=

rj∑
n=0

Yn be the aggregated noise injected

by the modified Logarithmic Mechanism, where each Yn ∼ Lap
(

1
0.5ε

)
. Let Ĉj,0:rj be the true aggregated reward of the

first
rj∑
s=0

2s observations. Let C̃j,0:rj be the differentially private aggregated reward of the first
rj∑
s=0

2s observations, i.e.,

C̃j,0:rj := Ĉj,0:rj + Yj,1.

The remaining h −
rj∑
s=0

2s ≤ 2rj+1 observations will use the 2rj+1-bounded Binary Mechanism to inject noise. Let

Yj,2 :=
∑

n∈Bj,s
Zn be the aggregated noise injected by the 2rj+1-bounded Binary Mechanism, where Bj,s is the set of

p-sums involved and each Zn is i.i.d. from Lap
(
rj+1
0.5ε

)
. Note that the size of Bj,s is at most rj + 1. Let B̂j,rj+1 be the true

aggregated reward of these observations. Let B̃j,rj+1 be the differentially private aggregated reward of these observations,
i.e., B̃j,rj+1 := B̂j,rj+1 + Yj,2.

Then, we have

(22) ≤
t−1∑
h=1

P
{∣∣∣Ãj,h − Âj,h∣∣∣ > 6

√
8 log(h+1)·log(t)

ε

}
≤

t−1∑
h=1

P
{∣∣∣C̃j,0:rj − Ĉj,0:rj

∣∣∣+
∣∣∣B̃j,rj+1 − B̂j,rj+1

∣∣∣ > 6
√

8 log(h+1)·log(t)
ε

}
≤

t−1∑
h=1

(
P
{∣∣∣C̃j,0:rj − Ĉj,0:rj

∣∣∣ > 6
√

8 log(h+1)·log(t)
ε

}
+ P

{∣∣∣B̃j,rj+1 − B̂j,rj+1

∣∣∣ > 6
√

8 log(h+1)·log(t)
ε

})
.

(23)

We upper bound each term in (23) separately and have

P
{∣∣∣C̃j,0:rj − Ĉj,0:rj

∣∣∣ > 6
√

8 log(h+1)·log(t)
ε

}
= P

{
|Yj,1| > 6

√
8 log(h+1)·log(t)

ε

}
≤ P

{
|Yj,1| > 6

√
8·log(t)
ε

}
= P

{
|Yj,1| > log(e)

1

0.5ε

√
ln(t3)

√
8 ln(t3)

}
︸ ︷︷ ︸

Fact 7

≤ 2
t3 ,

(24)



and
P
{∣∣∣B̃j,rj+1 − B̂j,rj+1

∣∣∣ > 6
√

8 log(h+1)·log(t)
ε

}
= P

{
|Yj,2| > 6

√
8·log(h+1)·log(t)

ε

}
≤ P

{
|Yj,2| > log(e)

blog(h+ 1)c
0.5ε

√
ln(t3)

√
8 ln(t3)

}
︸ ︷︷ ︸

Fact 7

≤ 2
t3 .

(25)

Regarding how to apply Fact 7, we have rj + 1 = blog(h+ 1)c and max
{√

rj + 1,
√

ln (t3)
}

=

max
{√
blog(h+ 1)c,

√
ln (t3)

}
=
√

ln(t3). Note that
√
blog(h+ 1)c ≤

√
blog(t)c ≤

√
ln(t3) when t ≥ 2.

By plugging (24) and (25) into (23), we conclude the proof.

Before presenting the proof for Lemma 10, we first present Lemma 12, a lemma that will be used for the proof of Lemma 10.
Lemma 12 itself is very similar to Lemma 2.8 in [Agrawal and Goyal, 2017].

Recall that Ft−1 collects all the history information until the end of round t−1, which contains the pulled arms, the revealed
rewards, and the injected noise. Define F0 = {}.

Lemma 12. For any sub-optimal j and any instantiation Ft−1 of Ft−1, we have

P
{
Jt = j, Eθj (t), G1(t− 1) | Ft−1 = Ft−1

}
≤ P{θ1(t)≤yj |Ft−1=Ft−1}

P{θ1(t)>yj |Ft−1=Ft−1}P
{
Jt = 1, Eθj (t), G1(t− 1) | Ft−1 = Ft−1

}
.

(26)

We defer the proof of Lemma 12 to the end of this section.

We now start the proof for Lemma 10.

Proof of Lemma 10. We have

LHS in (16) = E
[
T∑
t=1

1
{
Jt = j, Eθj (t)

}]
≤ E

[
T∑
t=1

1
{
Jt = j, Eθj (t), G1(t− 1)

}]
+ E

[
T∑
t=1

1
{
G1(t− 1)

}]
︸ ︷︷ ︸

≤O(1), Lemma 9

≤ E
[
T∑
t=1

1
{
Jt = j, Eθj (t), G1(t− 1)

}]
+O(1)

= E

 T∑
t=1

P
{
Jt = j, Eθj (t), G1(t− 1) | Ft−1

}︸ ︷︷ ︸
Lemma 12

+O(1)

≤ E
[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · P

{
Jt = 1, Eθj (t), G1(t− 1) | Ft−1

}]
+O(1)

≤ E
[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · P {Jt = 1, G1(t− 1) | Ft−1}

]
+O(1)

= E

[
T∑
t=1

P {θ1(t) ≤ yj | Ft−1}
P {θ1(t) > yj | Ft−1}

· 1 {Jt = 1, G1(t− 1)}

]
︸ ︷︷ ︸

=:λ

+O(1) .

(27)

Let τk be the round such that in round τk, the k-th pull for arm 1 happens. That is also to say, in all rounds t =
τk + 1, τk + 2, . . . , τk+1, there is no new observation for arm 1 and O1(t− 1) = k. Hence, arm 1’s differentially private
empirical mean cannot be updated. It is important to note that although arm 1’s differentially private empirical mean cannot



be updated during all the rounds in {τk + 1, τk + 2, . . . , τk+1}, it does not mean the posterior distributions θ1(t) stay the
same for all t ∈ {τk + 1, τk + 2, . . . , τk+1}.

We separate all T rounds into multiple intervals based on whether arm 1 is pulled or not. According to Algorithm 1, we
know λ1 = 1.

Now, we start to reduce the proof to the non-private setting.

We have

λ = E
[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · 1 {Jt = 1, G1(t− 1)}

]
≤

T∑
k=1

E
[

τk+1∑
t=τk+1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · 1 {Jt = 1, G1(t− 1)}

]

≤
T∑
k=1

E

P
{
θ1(τk+1) ≤ yj | Fτk+1−1

}
P
{
θ1(τk+1) > yj | Fτk+1−1

} · 1 {G1(τk+1 − 1)}︸ ︷︷ ︸
=:ρ


≤

T∑
k=1

E
[
P{θ′1(τk+1)≤yj |Fτk+1−1}
P{θ′1(τk+1)>yj |Fτk+1−1}

]
,

(28)

where θ′1(τk+1) ∼ Beta (µ̂j,k · k + 1, (1− µ̂j,k) · k + 1).

The last inequality in (28) uses the following arguments. We categorize all the instantiations Fτk+1−1 of Fτk+1−1 into two
types.

For the instantiation Fτk+1−1 of Fτk+1−1 such that 1 {G1(τk+1 − 1)} = 0, we have ρ = 0.

For the instantiation Fτk+1−1 of Fτk+1−1 such that 1 {G1(τk+1 − 1)} = 1, we have

µ1,O1(τk+1−1) = max
{

0,min
{
µ̃1,O1(τk+1−1) + 6

√
8 log(O1(τk+1−1)+1) log(τk+1)

ε·O1(τk+1−1) , 1
}}

= max
{

0,min
{
µ̃1,k + 6

√
8 log(k+1) log(τk+1)

ε·k , 1
}}

≥ max
{

0,min
{(
µ̂1,k − 6

√
8 log(k+1) log(τk+1)

ε·k

)
+ 6
√

8 log(k+1) log(τk+1)
ε·k , 1

}}
= max {0,min {µ̂1,k, 1}}
= µ̂1,k .

(29)

From the fact that Beta
(
µ1,O1(τk+1−1) · k + 1, (1− µ1,O1(τk+1−1)) · k + 1

)
first-order stochastically dominates

Beta (µ̂1,k · k + 1, (1− µ̂1,k) · k + 1), we have

P
{
θ1(τk+1) ≤ yj | Fτk+1−1 = Fτk+1−1

}
≤ P

{
θ′1(τk+1) ≤ yj | Fτk+1−1 = Fτk+1−1

}
, (30)

which means
P{θ1(τk+1)≤yj |Fτk+1−1=Fτk+1−1}
P{θ1(τk+1)>yj |Fτk+1−1=Fτk+1−1} ≤

P{θ′1(τk+1)≤yj |Fτk+1−1=Fτk+1−1}
P{θ′1(τk+1)>yj |Fτk+1−1=Fτk+1−1} . (31)

Now, the proof is reduced to the non-private setting.

From Lemma 2.10 in [Agrawal and Goyal, 2017], we have

λ ≤
T∑
k=1

E
[
P{θ′1(τk+1)≤yj |Fτk+1−1}
P{θ′1(τk+1)>yj |Fτk+1−1}

]
≤ 24

(µ1−yj)2 +
∑

k≥ 8
µ1−yj

Θ

(
e−(µ1−yj)2·k· 12 + e−2(µ1−yj)2·k

(k+1)·(µ1−yj)2 + 1

e
(µ1−yj)2·k

4 −1

)
≤ O

(
log(T )

(µ1−yj)2

)
≤ O

(
log(T )

∆2
j

)
,

(32)

which concludes the proof.



Proof of Lemma 11. Recall that Ft−1 collect all the history information by the end of round t− 1. We have

E
[
T∑
t=1

1
{
Jt = j,Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1), Eθj (t)

}]
=

T∑
t=1

E
[
1 {Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1)} · 1

{
Jt = j, Eθj (t)

}]
=

T∑
t=1

E
[
E
[
1 {Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1)} · 1

{
Jt = j, Eθj (t)

}
| Ft−1

]]

=
T∑
t=1

E

1 {Oj(t− 1) > Lj , Cj(t− 1), Gj(t− 1)}︸ ︷︷ ︸
=:χ

·E
[
1
{
Jt = j, Eθj (t)

}
| Ft−1

]
︸ ︷︷ ︸

=:Γ

 .

(33)

Recall that Lj = max

108
log(T )

∆2
j︸ ︷︷ ︸

=:Hj

, 72
√

8
log(T )

ε ·∆j
log

(
72
√

8
log(T )

ε ·∆j

)
︸ ︷︷ ︸

=:Qj

 and let Hj := 108 log(T )
∆2
j

and Qj :=

72
√

8 log(T )
ε·∆j

log
(

72
√

8 log(T )
ε·∆j

)
. Then, we have Lj ≥ Hj and Lj ≥ Qj .

We categorize all the instantiations Ft−1 of Ft−1 into two types based on whether the indicator function χ returns 1 or 0.
Let FBeta

α,β (·) be the cdf of a Beta distribution with parameters α and β and let FBn,p(·) be the cdf of a Binomial distribution
with parameters n and p.

For the Ft−1 such that the indicator function χ returns 0, we have Γ = 0.

For the Ft−1 such that the indicator function χ returns 1, we have

Γ = E
[
1
{
Jt = j, Eθj (t)

}
| Ft−1 = Ft−1

]
= P

{
Jt = j, Eθj (t) | Ft−1 = Ft−1

}
≤ P {θj(t) > yj | Ft−1 = Ft−1}
= 1− FBeta

µj,Oj(t−1)·Oj(t−1)+1,
(

1−µj,Oj(t−1)

)
·Oj(t−1)+1

(yj)

≤(a) 1− FBeta(
µj+

4∆j
6

)
·Oj(t−1)+1,

(
1−
(
µj+

4∆j
6

))
·Oj(t−1)+1

(yj)

≤ 1− FBeta⌈(
µj+

4∆j
6

)
·Oj(t−1)

⌉
+1,Oj(t−1)−

⌈(
µj+

4∆j
6

)
·Oj(t−1)

⌉
+1

(yj)

=(b) FBOj(t−1)+1,yj

(⌈(
µj +

4∆j

6

)
·Oj(t− 1)

⌉)
≤ FBOj(t−1)+1,yj

((
µj +

4∆j

6 + 1
Oj(t−1)

)
·Oj(t− 1)

)
≤(c) FBOj(t−1)+1,yj

((
µj +

4∆j

6 +
∆j

12

)
· (Oj(t− 1) + 1)

)
≤(d) e

−(Oj(t−1)+1)·dKL

(
µj+

4∆j
6 +

∆j
12 ,yj

)
≤(f) e−Hj ·2

∆2
j

144

≤ 1
T .

(34)

By plugging the upper bound of Γ into (33), we conclude the proof.

We now present the detailed reasons about why each step holds in (34).

Let α̃j := µj,Oj(t−1) ·Oj(t− 1) + 1 and β̃j :=
(

1− µj,Oj(t−1)

)
·Oj(t− 1) + 1. Let α′j :=

(
µj +

4∆j

6

)
·Oj(t− 1) + 1

and β′j :=
(

1− µj − 4∆j

6

)
· Oj(t − 1) + 1. The inequality (a) in (34) uses the fact that FBeta

α′j ,β
′
j
(yj) ≤ FBeta

α̃j ,β̃j
(yj) if

α′j ≥ α̃j , β′j ≤ β̃j . The equality (b) uses the relationship between the cdfs of Beta distribution and Binomial distribution,
which is shown in Fact 5. The inequality (c) uses the fact that 1

Oj(t−1) ≤
1
Hj <

∆j

12 . The inequality (d) uses Chernoff-



Hoeffding bound that is shown in Fact 4. The inequality (f) uses the fact thatHj ≤ Oj(t−1)+1 and the Pinsker’s inequality,
i.e., dKL(x, y) ≥ 2(x− y)2, where x, y are the parameters of Bernoulli distributions.

To show that α′j ≥ α̃j and β′j ≤ β̃j , it suffices to show µj,Oj(t−1) ≤ µj +
4∆j

6 .

Recall that instantiation Ft−1 is the one such that the indicator function χ returns 1. Then, we know the following are true
simultaneously:

1. Oj(t− 1) > Lj ≥ Hj ;

2. Oj(t− 1) > Lj ≥ Qj ;

3.
∣∣µ̂j,Oj(t−1) − µ̃j,Oj(t−1)

∣∣ ≤ 6
√

8 log(Oj(t−1)+1) log(t)
ε·Oj(t−1) ;

4.
∣∣µj − µ̂j,Oj(t−1)

∣∣ ≤√ 3 log(t)
Oj(t)

.

Let f(x) =
√

3·log(t)
x + 2·6

√
8·log(x+1)
ε · log(t)

x , where x ≥ e. We now show f(x) ≤ 4∆j

6 when x > Lj .

When x ≥ Lj , it means x ≥ Qj and x ≥ Hj . Then, we have

f(x) =
√

3·log(t)
x + 2·6

√
8·log(x+1)
ε · log(t)

x

<
√

3·log(t)
x + 3·6

√
8·log(x)
ε · log(t)

x

<
√

3·log(t)
Hj +

3·6
√

8·log(Qj)
ε · log(t)

Qj

≤
√

3·log(T )
108 log(T )

∆2
j

+ 3·6
√

8·log(T )
ε

log
(

72
√

8
log(T )
ε·∆j

log
(

72
√

8
log(T )
ε·∆j

))
72
√

8
log(T )
ε·∆j

log
(

72
√

8
log(T )
ε·∆j

)
≤ 4∆j

6 .

(35)

Now, we have

µj,Oj(t−1) = max
{

0,min
{
µ̃j,Oj(t−1) +

6
√

8 log(Oj(t−1)+1) log(t)
ε·Oj(t−1) , 1

}}
≤ max

{
0,min

{
µ̂j,Oj(t−1) +

2·6
√

8 log(Oj(t−1)+1) log(t)
ε·Oj(t−1) , 1

}}

≤ max


0,min


µj +

√
3 log(t)

Oj(t− 1)
+

2 · 6
√

8 log (Oj(t− 1) + 1) log(t)

ε ·Oj(t− 1)︸ ︷︷ ︸
f(Oj(t−1))≤

4∆j
6

, 1




≤ µj +

4∆j

6 .

(36)

Proof of Lemma 12. The LHS in (26) is

P
{
Jt = j, Eθj (t), G1(t− 1) | Ft−1 = Ft−1

}
≤ P {G1(t− 1), θj(t) ≤ yj ,∀j ∈ A | Ft−1 = Ft−1}
= P {θ1(t) ≤ yj , G1(t− 1) | Ft−1 = Ft−1} · P {θj(t) ≤ yj ,∀j ∈ A\{1} | Ft−1 = Ft−1}
= E [1 {θ1(t) ≤ yj , G1(t− 1)} | Ft−1 = Ft−1] · P {θj(t) ≤ yj ,∀j ∈ A\{1} | Ft−1 = Ft−1}
= 1 {G1(t− 1)}E [1 {θ1(t) ≤ yj} | Ft−1 = Ft−1] · P {θj(t) ≤ yj ,∀j ∈ A\{1} | Ft−1 = Ft−1}
= 1 {G1(t− 1)}P {θ1(t) ≤ yj | Ft−1 = Ft−1} · P {θj(t) ≤ yj ,∀j ∈ A\{1} | Ft−1 = Ft−1} .

(37)

We also have

P
{
Jt = 1, Eθj (t), G1(t− 1) | Ft−1 = Ft−1

}
≥ P {G1(t− 1), θ1(t) > yj ≥ θj(t),∀j ∈ A\{1} | Ft−1 = Ft−1}
= P {θ1(t) > yj , G1(t− 1) | Ft−1 = Ft−1} · P {yj ≥ θj(t),∀j ∈ A\{1} | Ft−1 = Ft−1}
= 1 {G1(t− 1)}P {θ1(t) > yj | Ft−1 = Ft−1} · P {θj(t) ≤ yj ,∀j ∈ A\{1} | Ft−1 = Ft−1} .

(38)



For the instantiation Ft−1 such that 1 {G1(t− 1)} = 0, it is trivial to prove since both sides in (26) are 0. For the instantiation
Ft−1 such that 1 {G1(t− 1)} = 1, by combining (37) and (38), we conclude the proof. Note that for any yj ∈ (0, 1), we
have P {θ1(t) > yj | Ft−1 = Ft−1} > 0.

C PROOFS FOR PROBLEM-INDEPENDENT REGRET BOUND FOR ALGORITHM 1

Recall that the problem-dependent regret bound for Algorithm 1 is

∑
j∈A:∆j>0

O

(
max

{
log(T )

∆j
,

log(T )

ε
log

(
log(T )

ε ·∆j

)})
. (39)

Now, let ∆ :=
√

K log(T )
T be the critical gap. Then, we can express the regret as

RDP-TS(T ) ≤ T ·∆ +
∑

j∈A:∆j>∆

O
(

max
{

log(T )
∆j

, log(T )
ε log

(
log(T )
ε·∆j

)})
≤

√
KT log(T ) +K ·O

(
max

{
log(T )

∆ , log(T )
ε log

(
log(T )
ε·∆

)})
=

√
KT log(T ) +O

(
max

{
K log(T )√
K log(T )

T

, K log(T )
ε log

(
log(T )

ε·
√
K log(T )

T

)})
≤ O(

√
KT log(T )) +O

(
K log(T )

ε log

(√
T log(T )

ε
√
K

))
.

(40)

D PROOFS FOR THEOREM 4

Recall that Oj(t − 1) is the number of “effective” observations for arm j at the end of round t − 1, i.e., the number of
observations that is used to compute the differentially private empirical mean for arm j. From Algorithm 2, we know that it
can only take values of 2r, r ≥ 0.

Recall yj = µ1 − ∆j

6 , and Eθj (t) is the event such that θj(t) ≤ yj and Eθj (t) is the complementary event of Eθj (t).

LetCj(t−1) be the event such that
{∣∣µj − µ̂j,Oj(t−1)

∣∣ ≤√ 3 log(t)
Oj(t−1)

}
andCj(t− 1) be the complementary event ofCj(t−

1). Let Gj(t − 1) be the event such that
{∣∣µ̂j,Oj(t−1) − µ̃j,Oj(t−1)

∣∣ ≤ 3 log(t)
ε·Oj(t−1)

}
and Gj(t− 1) be the complementary

event of Gj(t− 1).

The following two lemmas show that Gj(t− 1) and Cj(t− 1) are low probability events for all j ∈ A.

Lemma 13. For any arm j ∈ A, we have

T∑
t=1

E
[
1
{
Cj(t− 1)

}]
≤ O(1) . (41)

Lemma 14. For any arm j ∈ A, we have

T∑
t=1

E
[
1
{
Gj(t− 1)

}]
≤ O(1) . (42)

To prove Theorem 4, we prepare the following two lemmas which are similar to Lemma 10 and Lemma 11.



Lemma 15. For any sub-optimal arm j, we have

T∑
t=1

E
[
1
{
Jt = j, Eθj (t)

}]
≤ O

(
log(T )

∆2
j

)
. (43)

Lemma 16. For any sub-optimal arm j, we have

T∑
t=1

E
[
1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]
≤ O

(
log(T )

∆j ·min {ε,∆j}

)
. (44)

After these preparations, we now prove Theorem 4.

Proof of Theorem 4. For each sub-optimal arm j, we upper bound its expected number of pulls.

We have
T∑
t=1

E [1 {Jt = j}]

≤
T∑
t=1

E
[
1
{
Jt = j, Eθj (t)

}]
︸ ︷︷ ︸
≤O
(

log(T )

∆2
j

)
, Lemma 15

+

T∑
t=1

E
[
1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]
︸ ︷︷ ︸

≤O
(

log(T )

∆j ·min{ε,∆j}

)
, Lemma 16

+

T∑
t=1

E
[
1
{
Cj(t− 1)

}]
︸ ︷︷ ︸

≤O(1), Lemma 13

+

T∑
t=1

E
[
1
{
Gj(t− 1)

}]
︸ ︷︷ ︸

≤O(1), Lemma 14

≤ O
(

log(T )
∆j ·min{ε,∆j}

)
,

(45)

which concludes the proof.

We now present the proofs for Lemma 13 to Lemma 16.

Proof of Lemma 13. We prove this lemma by using Hoeffding’s inequality (shown in Fact 3). We have

T∑
t=1

E
[
1
{
Cj(t− 1)

}]
=

T∑
t=1

P
{∣∣µ̂j,Oj(t−1) − µj

∣∣ >√ 3 log(t)
Oj(t−1)

}
≤

T∑
t=1

log(t−1)∑
r=0

P
{
|µ̂j,2r − µj | >

√
3 log(t)

2r

}
≤

T∑
t=1

log(t−1)∑
r=0

P
{
|µ̂j,2r − µj | >

√
4 ln(t)

2r

}
≤

T∑
t=1

log(t−1)∑
r=0

2e−2·2r 4 ln(t)
2r

≤ O(1) ,

(46)

which concludes the proof.

Proof of Lemma 14. We prove this lemma by using the measure concentration of Laplace random variables that is shown in



Fact 6. We have

T∑
t=1

E
[
1
{
Gj(t− 1)

}]
=

T∑
t=1

P
{∣∣µ̂j,Oj(t−1) − µ̃j,Oj(t−1)

∣∣ > 3 log(t)
ε·Oj(t−1)

}
≤

T∑
t=1

log(t−1)∑
r=0

P
{
|µ̂j,2r − µ̃j,2r | > 3 log(t)

ε·2r

}
≤

T∑
t=1

log(t−1)∑
r=0

P
{
|2r · µ̂j,2r − 2r · µ̃j,2r | > 4 ln(t)

ε

}
≤

T∑
t=1

log(t−1)∑
r=0

e−4 ln(t)

≤ O(1) ,

(47)

which concludes the proof.

Proof of Lemma 15. The key challenge is to reduce the proof to the non-private setting. Since Algorithm 2 drops observations
along with the learning, we cannot reuse the proofs for Theorem 2. We need to use novel arguments to complete the proof.

We have

LHS in (43) = E
[
T∑
t=1

1
{
Jt = j, Eθj (t)

}]
(Add G1(t− 1) and G1(t− 1) in the indicator function)

≤ E

[
T∑
t=1

1
{
Jt = j, Eθj (t), G1(t− 1)

}]
︸ ︷︷ ︸

=:ζ

+E

[
T∑
t=1

1
{
G1(t− 1)

}]
︸ ︷︷ ︸

≤O(1), Lemma 14

.
(48)

We now show that the first term ζ in (48) is upper bounded by O
(

log(T )
∆2
j

)
. From Lemma 14, we know that the second term

is upper bounded by O(1).

Recall Ft−1 collects all the history information by the end of round t− 1 containing the pulled arms, the rewards associated
with the pulled arms, and the noise random variables and we set F0 = {}.

To upper bound ζ in (48), let λr be the round such that at the end of round λr, we use 2r fresh observations to update
arm 1’s differentially private empirical mean. Note that based on the definition of λr, we know that in all rounds t ∈
{λr + 1, λr + 2, . . . , λr+1}, the number of observations for arm 1 is exactly 2r and the differentially private empirical
mean for arm 1 stays the same. Note that θ1(t) ∼ Beta

(
µ1,O1(t−1) ·O1(t− 1) + 1,

(
1− µ1,O1(t−1)

)
·O1(t− 1) + 1

)
.

According to Algorithm 2, we know λ0 = 1.



For the ζ term in (48), we have

ζ = E
[
T∑
t=1

1
{
Jt = j, Eθj (t), G1(t− 1)

}]

= E

 T∑
t=1

P
{
Jt = j, Eθj (t), G1(t− 1) | Ft−1

}︸ ︷︷ ︸
Lemma 12


≤ E

[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · P

{
Jt = 1, Eθj (t), G1(t− 1) | Ft−1

}]
≤ E

[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · 1 {Jt = 1, G1(t− 1)}

]
= E

[
T∑
t=1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · 1 {Jt = 1} · 1 {G1(t− 1)}

]
(Separate T rounds into multiple intervals based on whether the differentially private empirical mean for 1 changes)

≤ E


log(T )∑
r=0

λr+1∑
t=λr+1

P {θ1(t) ≤ yj | Ft−1}
P {θ1(t) > yj | Ft−1}

· 1 {Jt = 1} · 1 {G1(t− 1)}︸ ︷︷ ︸
=:ρ


︸ ︷︷ ︸

=:ψ

.

(49)
We now start to reduce the proof to the non-private setting. Regarding term ρ in (49), we can categorize all the instantiations
Ft−1 of Ft−1 into two types based on whether 1 {G1(t− 1)} returns 1 or not.

For the instantiation Ft−1 such that 1 {G1(t− 1)} = 0, we have ρ = 0.

For the instantiation Ft−1 such that 1 {G1(t− 1)} = 1, we have

P {θ1(t) ≤ yj | Ft−1 = Ft−1}
P {θ1(t) > yj | Ft−1 = Ft−1}

≤ P {θ′1(t) ≤ yj | Ft−1 = Ft−1}
P {θ′1(t) > yj | Ft−1 = Ft−1}

, (50)

where θ′1(t) ∼ Beta
(
µ̂1,O1(t−1) ·O1(t− 1) + 1, (1− µ̂1,O1(t−1)) ·O1(t− 1) + 1

)
.

The inequality in (50) uses the following arguments. If eventG1(t−1) is true, we have µ̃1,O1(t−1) ≥ µ̂1,O1(t−1)− 3 log(t)
ε·O1(t−1) ,

which implies µ1,O1(t−1) ≥ µ̂1,O1(t−1). Note that Beta
(
µ1,O1(t−1) ·O1(t− 1) + 1, (1− µ1,O1(t−1)) ·O1(t− 1) + 1

)
first-order stochastically dominates Beta

(
µ̂1,O1(t−1) ·O1(t− 1) + 1, (1− µ̂1,O1(t−1)) ·O1(t− 1) + 1

)
.

Then, we have

ψ = E

[
log(T )∑
r=0

λr+1∑
t=λr+1

P{θ1(t)≤yj |Ft−1}
P{θ1(t)>yj |Ft−1} · 1 {Jt = 1} · 1 {G1(t− 1)}

]

≤ E

[
log(T )∑
r=0

λr+1∑
t=λr+1

P{θ′1(t)≤yj |Ft−1}
P{θ′1(t)>yj |Ft−1} · 1 {Jt = 1}

]

= E

[
log(T )∑
r=0

λr+1∑
t=λr+1

P{θ′1(λr+1)≤yj |Fλr}
P{θ′1(λr+1)>yj |Fλr}

· 1 {Jt = 1}

]

= E


log(T )∑
r=0

P{θ′1(λr+1)≤yj |Fλr}
P{θ′1(λr+1)>yj |Fλr}

·
λr+1∑

t=λr+1

1 {Jt = 1}︸ ︷︷ ︸
≤2r+1


≤

log(T )∑
r=0

2r+1 · E
[
P{θ′1(λr+1)≤yj |Fλr}
P{θ′1(λr+1)>yj |Fλr}

]
,

(51)

which now the proof is reduced to the non-private setting.

The second equality in (51) uses the fact that the distribution of θ′1(t) stays the same for all rounds t = λr + 1, . . . , λr+1.
Recall that θ′1(t) ∼ Beta

(
µ̂1,O1(t−1) ·O1(t− 1) + 1, (1− µ̂1,O1(t−1)) ·O1(t− 1) + 1

)
and we know O1(t− 1) = 2r and



µ̂1,O1(t−1) = µ̂1,2r for all t ∈ {λr + 1, . . . , λr+1}. The last inequality in (51) uses the fact that the number of pulls of arm
1 is at most 2r+1 during all the rounds in {λr + 1, . . . , λr+1} based on the definition of λr+1.

Let d1 := log
(

8
µ1−yj

)
. We now analyze the following two cases separately based on whether r ≤ d1 or r > d1. The

intuitive understanding of this separation is when r = 0, 1, . . . , bd1c, we have 2r ≤ 2d1 ≤ 8
µ1−yj . This means the number

of observations for arm 1 is not “enough” for making arm 1’s posterior distribution concentrated on its mean.

For all 0 ≤ r ≤ d1, from Lemma 2.9 in [Agrawal and Goyal, 2017], we have

E
[
P {θ′1(λr + 1) ≤ yj | Fλr}
P {θ′1(λr + 1) > yj | Fλr}

]
≤ 3

µ1 − yj
. (52)

When dd1e ≤ r ≤ log(T ), we have 2r ≥ 2d1 ≥ 8
µ1−yj . For all dd1e ≤ r ≤ log(T ), from Lemma 2.9 in [Agrawal and

Goyal, 2017], we have

E
[
P{θ′1(λr+1)≤yj |Fλr}
P{θ′1(λr+1)>yj |Fλr}

]
≤ Θ

(
e−(µ1−yj)2·2r· 12 + e−2(µ1−yj)2·2r

(2r+1)·(µ1−yj)2 + 1

e
(µ1−yj)2·2r

4 −1

)
. (53)

By applying (52) and (53) into (51), we have

ψ ≤
log(T )∑
r=0

2r+1 · E
[
P{θ′1(λr+1)≤yj |Fλr}
P{θ′1(λr+1)>yj |Fλr}

]
≤

d1∑
r=0

2r+1 · 3
µ1−yj +

log(T )∑
r=dd1e

2r+1 ·Θ

(
e−(µ1−yj)2·2r· 12 + e−2(µ1−yj)2·2r

(2r+1)·(µ1−yj)2 + 1

e
(µ1−yj)2·2r

4 −1

)
≤ O

(
1

(µ1−yj)2

)
+
∫ log(T )

dd1e Θ
(

2r · e−(µ1−yj)2·2r· 12
)
dr +O

(
log(T )

(µ1−yj)2

)
≤ O

(
log(T )

(µ1−yj)2

)
≤ O

(
log(T )

∆2
j

)
,

(54)

which concludes the proof.

Proof of Lemma 16. Let λr be the round such that at the end of round λr, we use 2r fresh observations to update arm j’s
differentially private empirical mean. Note that in all rounds t ∈ {λr + 1, λr + 2, . . . , λr+1}, the number of observations
for arm j is exactly 2r and the differentially private empirical mean for arm j stays the same. According to Algorithm 2, we
know that λ0 = j. Recall Lj = 72·log(T )

∆j ·min{ε,∆j} and let dj := log (Lj).



We have

LHS in (44)

=
T∑
t=1

E
[
1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]
(Separate all T rounds into intervals based on whether the differentially private empirical mean for arm j changes)

≤
log(T )∑
r=0

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]
(Break

log(T )∑
r=0

into
bdjc∑
r=0

+
log(T )∑
r=ddje

)

≤
bdjc∑
r=0

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}] log(T )∑
r=ddje

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]

≤
bdjc∑
r=0

E

[
λr+1∑

t=λr+1

1 {Jt = j}

]
+

log(T )∑
r=ddje

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]

≤
bdjc∑
r=0

2r+1 +
log(T )∑
r=ddje

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]

≤ O
(

log(T )
∆j ·min{ε,∆j}

)
+

log(T )∑
r=ddje

E

 λr+1∑
t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}
︸ ︷︷ ︸

=:η

.

(55)

We now show η ≤ O (log(T )). We have

η =
log(T )∑
r=ddje

E

[
λr+1∑

t=λr+1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Eθj (t)

}]
≤

log(T )∑
r=ddje

E
[
T∑
t=1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Oj(t− 1) = 2r, Eθj (t)

}]
.

(56)

The inequality in (56) uses the fact that for all t ∈ {λr + 1, . . . , λr+1}, the number of effective observations is exactly 2r.

Recall Ft−1 collects all the history information by the end of round t− 1. Then, we have

η ≤
log(T )∑
r=ddje

E
[
T∑
t=1

1
{
Jt = j, Cj(t− 1), Gj(t− 1), Oj(t− 1) = 2r, Eθj (t)

}]
=

log(T )∑
r=ddje

T∑
t=1

E
[
E
[
1
{
Jt = j, Cj(t− 1), Gj(t− 1), Oj(t− 1) = 2r, Eθj (t)

}
| Ft−1

]]

≤
log(T )∑
r=ddje

T∑
t=1

E

1 {Cj(t− 1), Gj(t− 1), Oj(t− 1) = 2r}︸ ︷︷ ︸
=:χ

E
[
1
{
Eθj (t)

}
| Ft−1

]
︸ ︷︷ ︸

=:γ

 .

(57)

The last inequality in (57) uses the fact that 1 {Cj(t− 1), Gj(t− 1), Oj(t− 1) = 2r} is determined by Ft−1.

We categorize all the instantiations Ft−1 of Ft−1 into two types based on whether the indicator function χ returns 1 or 0.
Let FBeta

α,β (·) be the cdf of a Beta distribution with parameters α and β and let FBn,p(·) be the cdf of a Binomial distribution
with parameters n and p.

For the Ft−1 such that the indicator function χ returns 0, we have γ = 0.



For the Ft−1 such that the indicator function χ returns 1, we have,

γ = E
[
1
{
Eθj (t)

}
| Ft−1 = Ft−1

]
= P

{
Eθj (t) | Ft−1 = Ft−1

}
= P {θj(t) > yj | Ft−1 = Ft−1}
= 1− FBeta

µj,Oj(t−1)·Oj(t−1)+1,(1−µj,Oj(t−1))·Oj(t−1)+1(yj)

≤(a) 1− FBeta(
µj+

4∆j
6

)
·2r+1,

(
1−
(
µj+

4∆j
6

))
·2r+1

(yj)

≤ 1− FBeta⌈(
µj+

4∆j
6

)
·2r
⌉
+1,2r−

⌈(
µj+

4∆j
6

)
·2r
⌉
+1

(yj)

=(b) FB2r+1,yj

(⌈(
µj +

4∆j

6

)
· 2r
⌉)

≤ FB2r+1,yj

((
µj +

4∆j

6

)
· 2r + 1

)
= FB2r+1,yj

((
µj +

4∆j

6 + 1
2r

)
· 2r
)

≤(c) FB2r+1,yj

((
µj +

4∆j

6 +
∆j

12

)
· (2r + 1)

)
≤(d) e

−(2r+1)·dKL

(
µj+

4∆j
6 +

∆j
12 ,yj

)
≤(f) e−2dj ·2

∆2
j

144

≤ 1
T .

(58)

Since now we have shown γ ≤ 1
T , we know η ≤ O(log(T )). By plugging the upper bound of η into (55), we conclude the

proof.

We now provide detailed explanations about why each key steps holds in (58). The inequality (a) uses the fact that
FBeta
µj,Oj(t−1)·Oj(t−1)+1,(1−µj,Oj(t−1))·Oj(t−1)+1(yj) ≥ FBeta(

µj+
4∆j

6

)
·2r+1,

(
1−
(
µj+

4∆j
6

))
·2r+1

(yj) if µj,Oj(t−1) ≤ µj +
4∆j

6 .

The equality (b) uses the relationship between the cdfs of Beta distribution and Binomial distribution, which is shown in
Fact 5. The inequality (c) uses the facts 1

2r ≤
1
Lj <

∆j

12 and 2r < 2r + 1. Note that the cdf is non-decreasing. The inequality
(d) uses the Chernoff-Hoeffding bound, which is shown in Fact 4. The inequality (f) uses the fact that 2dj ≤ 2r + 1 and
Pinsker’s inequality, i.e., dKL(x, y) ≥ 2(x− y)2.

We know prove our claim that µj,Oj(t−1) ≤ µj +
4∆j

6 , when r ≥ dj . When r ≥ dj , we have 2r ≥ 2dj ≥ Lj ≥ 72 log(T )
∆2
j

.
Then, we have

µj,Oj(t−1) = max
{

0,min
{
µ̃j,2r + 3 log(t)

ε·2r , 1
}}

≤ max
{

0,min
{
µ̂j,2r + 6 log(t)

ε·2r , 1
}}

≤ max

{
0,min

{
µj + 3 log(t)

ε·2r +
√

3 log(t)
2r , 1

}}
≤ max

{
0,min

{
µj + 6 log(t)

ε· 72 log(t)
ε·∆j

+
√

3 log(t)
72 log(t)

∆2
j

, 1

}}
≤ max

{
0,min

{
µj +

6∆j

72 +
√

3
72∆j , 1

}}
≤ µj +

4∆j

6 .

(59)

E PROOFS FOR PROBLEM-INDEPENDENT REGRET BOUND FOR ALGORITHM 2

Recall that the problem-dependent regret bound for Algorithm 2 is

∑
j∈A:∆j>0

O

(
log(T )

min {ε,∆j}

)
. (60)



Let ∆ :=
√

K log(T )
T be the critical gap. Then, we can express the regret as

RLazy-DP-TS(T ) ≤ T ·∆ +
∑

j∈A:∆j>∆

O
(

log(T )
min{ε,∆j}

)
≤ T ·

√
K log(T )

T +O
(
K log(T )

∆ + K log(T )
ε

)
≤ O

(√
KT log(T ) + K log(T )

ε

)
.

(61)

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDITIONAL EXPERIMENT 1
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Figure 6: ε = 500
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Figure 7: ε = 1.0

Now, we provide more experimental results under the same setting that has been used in Section 4, i.e., K = 5 arms with
mean rewards setting to 0.75, 0.625, 0.5, 0.375, 0.25. We compare the practical performance of the non-private Thompson
Sampling to differentially private Thompson Sampling with privacy parameter setting to ε = 0.1, 0.25, 0.5, 1, 500. Figure 6
shows the experimental results for Non-private Thompson Sampling of Agrawal and Goyal [2017], DP-TS, and Lazy-DP-TS
when setting ε = 500. From the results we can see that even though we set a very large ε value, we still need to pay some
cost for maintaining privacy. Figures 7 to 10 show the experimental results in the settings where ε = 1.0, 0.5, 0.25, 0.1.
From the experimental results we can see that the practical performance of Lazy-DP-TS is far better than DP-TS.
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Figure 8: ε = 0.5

0 2 4 6 8 10

t 10
5

0

2

4

6

8

R
e
g
re

t

10
4

Non-private TS

Lazy-DP-TS

DP-TS

Figure 9: ε = 0.25
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Figure 10: ε = 0.1

F.2 ADDITIONAL EXPERIMENT 2

We set T = 105 and K = 5. The mean rewards are set to 0.8, 0.05, 0.05, 0.05, 0.05, i.e., the mean reward gap is 0.75 for all
sub-optimal arms. Now, only privacy parameter ε can impact the practical performance. We study the practical performance
by setting ε = 0.5, 1.00, 500. Figure 11 shows the results of the setting where ε = 500. DP-TS still outperforms Lazy-DP-TS
due to the fact that when ε is very large, DP-TS is asymptotically optimal while Lazy-DP-TS can only be order-optimal. We



skip the plot of DP-SE as it is far inferior to the remaining three algorithms under this experimental setting. Figure 12 and
Figure 13 show the results of the settings where ε = 1.0 and ε = 0.5, i.e., the values of ε are set to be close to the mean
reward gap. From the experimental results we can see that the Lazy-DP-TS, Anytime-Lazy-UB, and DP-SE all perform
better than the near-optimal DP-TS. However, Lazy-DP-TS still has better performance than the remaining two optimal
algorithms.
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Figure 11: ε = 500
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Figure 12: ε = 1.0
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Figure 13: ε = 0.5
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