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1 ENTROPY OF STUDENT’S
T-DISTRIBUTION

While the entropy of the Student’s t-distribution is well
known, we derive it for completeness. Student’s probability
distribution defined in terms of location γ, scale factor σ2

st

and νst degrees of freedom is

p(y; γ, σ2
st, νst) = St(y; γ, σ2

st, νst)

=
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2 )√
νst πσ2

st Γ(
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2 )

(
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1
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σ2
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)− νst+1
2

,
(1)

where Γ i a gamma function. Student’s t-distribution can be
written in terms of beta function B = Γ(x)Γ(y)

Γ(x+y) if we take
advantage of the fact that Γ( 12 ) =

√
π
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In the main text of the manuscript, we used empirical esti-
mate of Student’s t-distribution, which corresponds to eval-
uation at the highest mode y = γ. Empirical estimation of
probability becomes:

pemp(y = γ;σ2
st, νst) ≈ St(y = γ;σst, νst)

=
1√

νst σ2
st B(

1
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νst

2 )
.

(3)

If we introduce a new variable t = y−γ
σst

, Student’s t-
distribution converts into the standard form with probability
density

p(t; νst) = St(t; νst) =
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1.1 PROPOSITION

Proposition: Entropy of the generalized and standard Stu-
dent’s t-distributions are related via the formula

H(y;σ2
st, νst) = H(t; νst) +

1

2
log σ2

st . (5)

Proof: The transformation t = g(y) = y−γ
σst

is bijective and
invertible with the inverse transformation y = g−1(t) =
σst t+ γ. The Jacobin of the transformation g is d

dy g(y) =
1

σst
. According to the change of variables probability density

formula

py (y;σ
2
st, νst) = pt (g(y); νst) |

d
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g(y) |. (6)

The equation for the entropy transformation (equation 5)
follows directly from the definition of the entropy.

To find the generalized entropy, we just need to calculate
the entropy of the standard Student’s t-distribution
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(7)
To find the second integral, we make a substitution x = t2

νst

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).



and obtain
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where digamma function is defined as Ψ(x) = Γ′(x)

Γ(x) .
Putting all the terms together, the entropy of the standard
Student’s t-distribution becomes
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The final formula for the entropy of the labels y is given by
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2 PSEUDO-LABELING, ENTROPY
MINIMIZATION AND ALEATORIC
UNCERTAINTY

In the main section of the text, we have considered the
case where observed targets (y1, · · · , yi) ∼ N (µ, σ2) are
drawn from the Normal distribution with unknown mean
and variance µ and σ2 and we have imposed a prior on them.
The problem is significantly simplified if we treat µ and σ2

in a deterministic way, such that our model f outputs two
parameters µ and σ2. The model here is able to estimate
aleatoric (data) uncertainty σ2 but unable to model epistemic
(model) uncertainty. By minimizing negative log-likelihood,
the loss is significantly simpler than in Eq. 4 in the main
text.

Li = −logN (yi;µi, σ
2
i ) =

2πσ2
i

2
+

(yi − µi)
2

2σ2
i

. (11)

Empirical estimate of the entropy on the unlabeled data set
becomes

H(Y | U) =
∑
xi∈U

Ey∼pθ(y |xi)[−log pθ(y |xi)]

≈ −
∑
xi∈U

Eemp
i [log pθ(y |xi)]

(12)

with log probability weights Eemp
i = 1√

2πσ2
i

. One can no-

tice that the weights are inversely related to aleatoric uncer-
tainties Ei ∼ (σ2

i )
− 1

2 .
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