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A PROOF OF THE ROW ORDER INDETERMINACY (THEOREM 1)

Theorem 1. If the row order of the 2-by-2 mixing matrix A of a binary ICA model is reversed, then the source means µuz
and variances Σu

z can be adjusted such that the implied distributions for the observed binary xu remain identical.

Proof. Consider two binary ICA models M = (A, {µuz}u, {Σu
z}u) and M̂ = (Â, {µ̂uz}u, {Σ̂

u

z}u) that have n = 2

observed variables. Let Â be A with rows switched. We define parameters {µ̂uz}u, {Σ̂u

z}u and scaling matrices {Qu}u
such that Equations 10 and 11 in the main paper are satisfied and therefore the binary distributions implied by both models
for each segment are identical. First, let Σ̂

u

z = Σu
z . This and the row switching of A means that the covariance matrix of qu

has just the order switched: Σ̂
u

q[2, 2] = Σu
q[1, 1], Σ̂

u

q[1, 1] = Σu
q[2, 2], Σ̂

u

q[1, 2] = Σu
q[1, 2] (since this matrix is symmetric).

The equations implied by Equation 9 in the main paper for each u are:

Qu[1, 1]2Σu
q[1, 1] = Σu

q[2, 2],

Qu[2, 2]2Σu
q[2, 2] = Σu

q[1, 1],

Qu[1, 1] ·Qu[2, 2] ·Σu
q[1, 2] = Σu

q[1, 2].

These can be solved by setting

Qu[1, 1] =
√

Σu
q[2, 2]/Σu

q[1, 1],

Qu[2, 2] =
√

Σu
q[1, 1]/Σu

q[2, 2].

Finally, solve for µ̂uq from Equation 10 since A, Â,Qu are invertible.

B PROOF OF THE CORRELATION IDENTIFIABILITY (THEOREM 2)

Theorem 2. Two binary ICA models imply different distributions for binary observations xu (in a given segment u) if the
correlation matrices for qu are not equal.

We will first present the result assuming zero means for qu since it is more approachable to the reader. Appendix Figure 1
explains this case visually. The full technical proof is given afterwards. Appendix Figures 2 and 3 explain the general case
visually.

Proof assuming zero means. We can focus here on bivariate models as the multivariate normal for qu can be straightfor-
wardly marginalized to the bivariate case. Suppose the two models respectively imply:

qu ∼ N (0,Σu
q), q̂u ∼ N (0, Σ̂

u

q), (1)
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Figure 1: Bivariate standard normal n and colors indicating which binary assignments are implied with α = 0.5 (left) and
with β = −0.5 (center). For this case with zero means, with higher correlation value α we get more 00 and 11 assignments
as can be seen from the rightmost plot. Grey points in the rightmost plot do not imply extra 00 or 11 assignments with either
correlation value and are irrelevant for the proof.

Due to Equations 10 and 11 in the main paper we can also assume we are dealing with “standardized” models where the
diagonals of the covariances are units for both models.

The correlation/covariance matrices for q and q̂ are:

Σu
q =

(
1 α
α 1

)
, Σ̂

u

q =

(
1 β
β 1

)
.

We study the difference in the implied binary distribution by the two models by creating the Gaussian distributions for
qu and q̂u from a single standard multivariate Gaussian source. The distributions can be formed from a standard normal
n ∼ N(0, I), for example by multiplying with matrices

A =

(
1 0

α
√

1− α2

)
, Â =

(
1 0

β
√

1− β2

)
such that

q = An, q̂ = Ân.

We will assume α > β without loss of generality. Let’s look at which values for n result in different assignments for the
binary variables. Recall that the assignment is determined deterministically by the quadrant qu and q̂u land in. Intuitively,
the model with higher correlation α implies more similar values for the binary variables. For the α-model (with A):

xu1 =

{
0, if n1 > 0

1, if n1 < 0
, xu2 =

{
0, if − n2 < α√

1−α2
n1

1, if − n2 > α√
1−α2

n1
.

And for the β-model (with Â):

xu1 =

{
0, if n1 > 0

1, if n1 < 0
, xu2 =

0, if − n2 < β√
1−β2

n1

1, if − n2 > β√
1−β2

n1
.

Note that due to the construction both models agree on the value of the binary variable xu1 .

With β we get extra assignments such that xu1 = xu2 = 0 if:

n1 > 0 AND − n2 ∈
[

α√
1− α2

n1,
β√

1− β2
n1

]
(2)



Since α > β and x/
√

1− x2 is increasing, the interval for n2 is empty, and no n implies xu1 = xu2 = 0 with β if not with α.
Suppose n is such that

n1 > 0 AND − n2 ∈
[

β√
1− β2

n1,
α√

1− α2
n1

]
.

The binary values implied are xu1 = xu2 = 0 with α and xu1 = 0, xu2 = 1 with β. Since α > β and x/
√

1− x2 is increasing,
the interval for n2 has non-zero measure. Thus there is a nonzero measure for obtaining extra xu1 = xu2 = 0 with α. See
Figure 1 for pictorial representation of the situation when α = 0.5, β = −0.5.

Proof. We can focus here on bivariate models as the multivariate normal for qu can be straightforwardly marginalized to
the bivariate case. Suppose the two models respectively imply:

qu ∼ N (µuq,Σ
u
q), q̂u ∼ N (µ̂uq, Σ̂

u

q), (3)

Then the marginals are:

P (xu1 = 1) = Φ(0|µ1, σ
2
1) = Φ

(
−µ1

σ1
|0, 1

)
,

P (x̂u1 = 1) = Φ(0|µ̂1, σ̂
2
1) = Φ

(
− µ̂1

σ̂1
|0, 1

)
,

where µ1, µ̂1, σ1, and σ̂1 denote the parameters in Equation 3. For the models to imply the same distributions the marginals
need to be the same. The same applies for xu2 with parameters µ2, µ̂2, σ2, and σ̂2. Since Φ is monotonically increasing, we
can assume from here on:

µ1σ̂1 = µ̂1σ1, µ2σ̂2 = µ̂2σ2.

Due to Equations 10 and 11 in the main paper we can also assume we are dealing with “standardized” models where the
diagonals of the covariances are units for both models. We get:

µ1 = µ̂1, µ2 = µ̂2, σ̂1 = σ1 = σ̂2 = σ2 = 1.

The correlation/covariance matrices for q and q̂ are:

Σu
q =

(
1 α
α 1

)
, Σ̂

u

q =

(
1 β
β 1

)
We study the difference in the implied binary distribution by the two models by creating the Gaussian distributions for
qu and q̂u from a single standard multivariate Gaussian source. The distributions can be formed from a standard normal
n ∼ N (0, I), for example by multiplying with matrices

A =

(
1 0

α
√

1− α2

)
, Â =

(
1 0

β
√

1− β2

)
such that

q = An + µ, q̂ = Ân + µ̂,

where µ = µ̂ due to the earlier. We will assume α > β without loss of generality. Let’s look at which values for n result in
different assignments for the binary variables. Recall that the assignment is determined deterministically by the quadrant qu

and q̂u land in. Intuitively, the model with higher correlation α implies more similar values for the binary variables. For the
α model:

xu1 =

{
0, if n1 > −µ1

1, if n1 < −µ1

, xu2 =

{
0, if − n2 < α√

1−α2
n1 + 1√

1−α2
µ2

1, if − n2 > α√
1−α2

n1 + 1√
1−α2

µ2

.

And for the β model:

x̂u1 =

{
0, if n1 > −µ1

1, if n1 < −µ1

, x̂u2 =

0, if − n2 < β√
1−β2

n1 + 1√
1−β2

µ2

1, if − n2 > β√
1−β2

n1 + 1√
1−β2

µ2

.



Due to the construction both models agree on the value of the binary variable xu1 .

In the zero-mean case presented above, we got more 00 and 11 assignments with the higher correlation α than with the
lower correlation β (Figure 1). Here we can only prove that we always get more 00 or 11 assignments, since changing the
mean complicates matters (Figures 2 and 3). This is still enough for showing that the distributions are different. First, we
show that the lower correlation β cannot give extra 00 and 11 assignments in comparison to α (separately for positive and
negative α).

Case α > 0 With β we get additional assignments such that xu1 = xu2 = 0 if:

n1 > −µ1 AND − n2 ∈
[

α√
1− α2

n1 +
1√

1− α2
µ2,

β√
1− β2

n1 +
1√

1− β2
µ2

]
(4)

Replacing n1 with smaller −µ1 in the lower bound gives a necessary condition for this:

−n2 ∈
[
− α√

1− α2
µ1 +

1√
1− α2

µ2,
β√

1− β2
n1 +

1√
1− β2

µ2

]
(5)

With β we get additional assignments xu1 = xu2 = 1 if:

n1 < −µ1 AND − n2 ∈
[

β√
1− β2

n1 +
1√

1− β2
µ2,

α√
1− α2

n1 +
1√

1− α2
µ2

]
(6)

Replacing n1 with larger −µ1 in the upper bound gives a necessary condition:

−n2 ∈
[

β√
1− β2

n1 +
1√

1− β2
µ2,−

α√
1− α2

µ1 +
1√

1− α2
µ2

]
(7)

Since the lower bound of Equation 5 matches the upper bound of Equation 7, and the bound is constant with respect to n,
both necessary conditions cannot be fulfilled given any fixed model. Therefore, the conditions the latter were necessary
to, Equation 4 and Equation 6 respectively, will not be satisfied either for any fixed model. Note that either Equation 4 or
Equation 6 can be satisfied alone.

Case α < 0 Also β < 0 here. With β we get additional assignments such that xu1 = xu2 = 0 if:

n1 > −µ1 AND − n2 ∈
[

α√
1− α2

n1 +
1√

1− α2
µ2,

β√
1− β2

n1 +
1√

1− β2
µ2

]
(8)

Replacing βn1 with larger −βµ1 in the upper bound gives a necessary condition for this is:

−n2 ∈
[

α√
1− α2

n1 +
1√

1− α2
µ2,−

β√
1− β2

µ1 +
1√

1− β2
µ2

]
(9)

With β we get additional assignments xu1 = xu2 = 1 if:

n1 < −µ1 AND − n2 ∈
[

β√
1− β2

n1 +
1√

1− β2
µ2,

α√
1− α2

n1 +
1√

1− α2
µ2

]
(10)

Replacing βn1 with smaller −βµ1 in the lower bound gives a necessary condition:

−n2 ∈
[
− β√

1− β2
µ1 +

1√
1− β2

µ2,
α√

1− α2
n1 +

1√
1− α2

µ2

]
(11)

Since the upper bound of Equation 9 matches the lower bound of Equation 11, and the bound is constant with respect to n,
both necessary conditions cannot be fulfilled given any fixed model. Therefore the conditions the previous were respectively
necessary to, Equation 8 and Equation 10, will not be satisfied either for any fixed model. Note that either Equation 8 or
Equation 10 can be satisfied alone.
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Figure 2: Bivariate standard normal n and colors indicating which binary assignments are implied with α = 0.5 (left)
and with β = −0.5 (center). For this case with µ1 = −1, µ2 = −1, with higher correlation value α we (provably) get
more 00 assignments as can be seen from the rightmost plot. Grey points in the rightmost plot do not imply extra 00 or 11
assignments with either correlation value and are irrelevant for the proof.

Extra 00 with α Suppose Equation 4 or Equation 8 is not satisfied. This means that no n implies xu1 = xu2 = 0 with β if
not with α. Suppose n is such that

n1 > max

(
−µ1, µ2

(
1√

1− β2
− 1√

1− α2

)/( α√
1− α2

− β√
1− β2

))
and

−n2 ∈
[

β√
1− β2

n1 +
1√

1− β2
µ2,

α√
1− α2

n1 +
1√

1− α2
µ2

]
.

The binary values implied are xu1 = xu2 = 0 with α and xu1 = 0, xu2 = 1 with β. Furthermore, the following shows that
interval for −n2 has non-zero measure. The first multiplication is permitted as the x/

√
1− x2 is increasing and α > β.

n1 > µ2

(
1√

1− β2
− 1√

1− α2

)
/

(
α√

1− α2
− β√

1− β2

)
|| ·
(

α√
1− α2

− β√
1− β2

)
(

α√
1− α2

− β√
1− β2

)
n1 > µ2

(
1√

1− β2
− 1√

1− α2

)
α√

1− α2
n1 >

β√
1− β2

n1 + µ2

(
1√

1− β2
− 1√

1− α2

)
α√

1− α2
n1 +

1√
1− α2

µ2 >
β√

1− β2
n1 + µ2

(
1√

1− β2
− 1√

1− α2

)
+

1√
1− α2

µ2

=
β√

1− β2
n1 +

1√
1− β2

µ2.

Thus there is a nonzero measure for obtaining extra xu1 = xu2 = 0 with α. See Figure 2 for pictorial representation of the
situation when α = 0.5, β = −0.5, µ1 = −1, µ2 = −1.

Extra 11 with α Suppose Equation 6 or Equation 10 is not satisfied. This means that no n implies xu1 = xu2 = 1 with β if
not with α. Suppose n is such that

n1 < min

(
−µ1, µ2(

1√
1− β2

− 1√
1− α2

)/(
α√

1− α2
− β√

1− β2
)

)
and

−n2 ∈
[

α√
1− α2

n1 +
1√

1− α2
µ2,

β√
1− β2

n1 +
1√

1− β2
µ2

]
.
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Figure 3: Bivariate standard normal n and colors indicating which binary assignments are implied with α = 0.5 (left) and
with β = −0.5 (center). For this case with µ1 = 1, µ2 = 1, with higher correlation value α we (provably) get more 11
assignments as can be seen from the rightmost plot. Grey points in the rightmost plot do not imply extra 00 or 11 assignments
with either correlation value and are irrelevant for the proof.

The binary values implied are xu1 = xu2 = 1 with α and xu1 = 1, xu2 = 0 with β. Furthermore, the following shows that
interval for −n2 has non-zero measure. The first multiplication is permitted as the x/

√
1− x2 is increasing and α > β.

n1 < µ2

(
1√

1− β2
− 1√

1− α2

)/( α√
1− α2

− β√
1− β2

)
|| ·
(

α√
1− α2

− β√
1− β2

)
(

α√
1− α2

− β√
1− β2

)
n1 < µ2

(
1√

1− β2
− 1√

1− α2

)
α√

1− α2
n1 <

β√
1− β2

n1 + µ2

(
1√

1− β2
− 1√

1− α2

)
α√

1− α2
n1 +

1√
1− α2

µ2 <
β√

1− β2
n1 + µ2(

1√
1− β2

− 1√
1− α2

) +
1√

1− α2
µ2

=
β√

1− β2
n1 +

1√
1− β2

µ2.

Thus there is a nonzero measure for obtaining extra xu1 = xu2 = 1 with α. See Figure 3 for pictorial representation of the
situation when α = 0.5, β = −0.5, µ1 = 1, µ2 = 1.

C PROOF OF THEOREM 3

Theorem 3. If two modelsM and M̂ with n = nz imply the same correlation matrices for qu (in a given segment) then
the means µuz can be adjusted such that the implied binary distributions are identical.

Proof. If the models imply sample correlations for qu they satisfy Equation 11. Thus determine the positive diagonal
matrices Qu from Equation 11 in the main paper, from the diagonal. Then solve for µuz from Equation 10 in the main paper
since A and Qu are invertible. Since the equations are satisfied, the implied binary distributions are identical.

D EVALUATION: MEAN COSINE SIMILARITY

In the binary case, it is more relevant to evaluate the estimated mixing matrix than the sources, since the binarization
process adds much more noise than simply adding Gaussian noise to the observations. For this purpose, a similar procedure
to mean correlation coefficent (MCC) is applied between the estimated mixing matrix and the true mixing matrix.



When there are only two components, the mixing matrix A ∈ R2×2 can be written considering its column vectors
A = [a1,a2]. Each vector contains only two elements, so the correlation coefficient cannot be used, since r(v1,v2) =
1 ∀ v1,v2 ∈ R2. In addition, even if n > 2, the MCC is undesired because by subtracting the means of each vector, the
correlation between “shifted” vectors is the same as if they were not shifted: r(v1 + d,v2) = r(v1,v2) for any d ∈ R2.

Therefore, we employ the Mean Cosine Similarity (MCS) instead of the MCC. The MCS uses the cosine similarity –
instead of the correlation coefficient – to determine whether the vectors of the true and estimated matrices are aligned:

cos(a1,a2) =
a1 · a2

‖a1‖‖a2‖
(12)

Let us denote the ith column of a matrix A ∈ Rn×ns as A[, i]. In the MCS calculation, we aim to compare each column
of A with each column of the estimated matrix Â, thus getting a pair-wise cosine similarity. For simplicity, we consider
a column permutation p of matrix Â as Â[, p[i]]. We compute the mean cosine similarity across all the columns for each
permutation, and take the maximum, hence defining the MCS as:

MCS(A, Â) = max
p

(
1

ns

ns∑
i=1

| cos(A[, i], Â[, p[i]]) |
)
. (13)

Instead of actually going through the permutation, the computation can be efficiently performed via a linear assignment
problem or a linear program.

E VARIATIONAL AUTOENCODER FOR BINARY DATA (LINEAR IVAE)

Estimation The variational autoencoder1 iVAE [Khemakhem et al., 2019] aims to estimate the observed data distribution
p(x|u) =

∫
p(x|z)p(z|u)dz. Given a dataset D = {(xi,ui)}i, let qD(x,u) be the empirical data distribution. The model

learns by maximizing a lower bound L of the data log-likelihood

EqD(x,u)[log pθ(x|u)] ≥ L(θ,φ). (14)

The loss function is:
L(θ,φ) := EqD(x,u)[Eqφ(z|x,u)[log pθ(x, z|u)− log qφ(z|x,u)]]

= EqD(x,u)[Eqφ(z|x,u)[log pθ(x|z,u)] + Eqφ(z|x,u)[log pθ(z|u)]− Eqφ(z|x,u)[log qφ(z|x,u)]].
(15)

To compute the loss function, the expectation over the data distribution is implemented as an average over data samples. In
order to deal with expectation over qφ(z|x,u), we use the reparametrization trick and draw vectors z from qφ(z|x,u).

To further develop iVAEs for binary data–which we refer to as linear iVAE in this paper—, we notice that we are working
with a factorized Bernoulli observational model. The loss terms developed previously in the continuous iVAE model can
remain the same for the inference model and the prior model. However, the loss term referring to the mixing model should
be modified, since the data follows a multivariate Bernoulli distribution. We draw z(i) ∼ qφ(z|x,u) using the output
of the inference model in the reparameterization trick z(i) = g(x,u) + v(x,u)� ε(i). Thus, the loss term relating to the
mixing model can be given as:

Eqφ(z|x,u)[log pθ(x|z,u)] = Eqφ(z|x,u)[log pθ(x|z)] ≈ 1

l

l∑
j=1

log pθ(x|z(i)) =
1

l

l∑
i=1

n∑
j=1

log pθ(xj |z(i))

=
1

l

l∑
i=1

n∑
j=1

[
xj log y

(i)
j + (1− xj) log(1− y(i)j )

]

=
1

l

l∑
i=1

n∑
j=1

log Bernoulli(xj ; y
(i)
j ),

(16)

where yj is the probability of the observation being 1, 0 ≤ yj ≤ 1, and it is modeled by applying an element-wise sigmoid
function to the continuous output of the linear mixing model. Notice that y(i) is a function of the estimated sources z(i)

drawn from the estimated posterior. Hence, the expectation is approximated by computing the log-probability mass function
of a Bernoulli distribution given such probability yj .

1The notation here differs slightly from the previous in order to follow the notation in [Khemakhem et al., 2019] more closely.
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Figure 4: Binary linear iVAE illustration. In VAE terminology: the inference model is equivalent to the encoder, and the
mixing model is equivalent to the decoder. The iVAE uses an additionally observed variable u to estimate the inference
model. Additionally, the iVAE estimates a “prior" model for such additionally observed variables. Different from the
continuous iVAE, the mixing model does not model the noise explicitly. Also in contrast to the continuous iVAE, the outputs
of the model are the estimated probabilities, not the estimated observations. To obtain the probability of each element being
1, a Sigmoid function is applied element-wise to the output of the mixing model. Variables in bold under the model names
denote the transformations learned by the model and are described in detail in the text.

Binary model In the model defined, all the transformations are linear, and the sources are drawn from a Gaussian
distribution given their segment. Compared to the continuous iVAE, which uses nonlinear transformations in all the models,
the binary model is linear and introduces changes to the mixing model and to the prior model. The prior model now estimates
not only the log-variances but also the means.

When the observed variables are binary, we use a “Bernoulli MLP” [Kingma and Welling, 2014, Rezende et al., 2014]
as a decoder in the mixing model, which aims to estimate parameters from a Bernoulli distribution instead of a Normal
distribution. The mixing model is modified from the continuous case by applying a sigmoid function element-wise to the
output of the mixing model. In addition, in the binary case, we do not have an explicit factor accounting for the noise in the
mixture, as illustrated in Figure 4.

Following, we describe the model in more detail. First of all, we notice that for simplicity and numerical stability when
modeling the variances in both the inference model and the prior model, the transformations model the log-variances, which
can easily be converted to the variances via exponentiation. With this trick, even a linear transformation can suffice for
modeling the log-variances, thus making the model simpler.

The prior model is composed of a transformation modeling the prior mean, and a transformation modeling the prior
log-variance. The prior mean is modeled by

η : Rm → Rns u 7→ η(u) (17)

where η is an affine transformation. So the vector of means is given by η(u) = Wηu + bη, with matrix weights
Wη ∈ Rns×m, and a bias vector bη ∈ Rns . The prior log-variance is modeled by

λ : Rm → Rns u 7→ λ(u) (18)

where λ is an affine transformation. The vector of log-variances is given by λ(u) = Wλu + bλ, in which Wλ ∈ Rns×m

are the weights, and bλ ∈ Rns are the biases. Notice that λ is unrelated to the notation from the exponential family, since
we are modeling both the means and variances.

The mixing model learns a transformation

f : Rns → Rn z 7→ f(z) (19)

where f is a linear transformation resulting in the the continuous output f(z) = Wfz, in which Wf ∈ Rn×ns is the matrix
of weights. Then, the probability of the estimated observed variables is given by

y = Sigmoid(Wfz). (20)

It is important to notice that each element of y is an individual probability of the particular observed variable being 1,
{yi = P (xi = 1)}ni=1.



The inference model has a transformation modeling the mean, and a transformation modeling the log-variance of the data.
The data mean is modeled by

g : Rn+m → Rns (x,u) 7→ g(x,u) (21)

where g is an affine transformation. We denote the concatenation of the vectors x and u as x||u. The vector of means is
given by g(x,u) = Wg(x||u) + bg, for a matrix Wg ∈ Rns×(n+m), and a bias vector bg ∈ Rns . The data log-variance
is modeled by

v : Rn+m → Rns (x,u) 7→ v(x,u) (22)

where v is an affine transformation. The vector of log-variances is given by v(x,u) = Wv(x||u) + bv, where Wv ∈
Rns×n+m are the weights and bv ∈ Rns the biases.

F FURTHER DETAILS

The experiments were run in computer clusters employing Intel Xeon E5-2680 v4 processors. The running times in Figure 5
(right) in the main paper (as well as all the results in all other experiments) were obtained using a single processor for a
specific run.
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