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A THEORETICAL GUARANTEES IN THE TABULAR SETTING

In the tabular setting, we use m independent trajectories for each (s, a) pair. By Hoeffding’s inequality and union
bound across all states and actions, the sampling error can be bounded by 1

1−γ

√
log(2SA/δ)

2m (similar to the proof
of Lemma B.5). Since all action-value functions can be represented in the tabular setting, the bias error term
εb = 0, and hence ε̃ = 1

1−γ

√
log(2SA/δ)

2m . Compared to the linear function approximation setting in Section 5 that
has a computational complexity proportional to O(d2), the computational cost in the tabular setting is O(SA).
However, the approximation error is smaller than that in Lemma B.5.

Now that we have bounded the approximation errors in the tabular setting, we instantiate Theorem 3.1 for GDA
in Section 4.2.1. Plugging in the value of U , the primal and dual regret from Equation (5) and ε̃, we obtain the
following corollary.

Corollary A.1. For the gradient descent ascent updates in Equations (6) and (7) with the specified step-sizes,
U = 2

ζ (1−γ) , using m trajectories, the average optimality gap (OG) and constraint violation (CV) can be bounded
as:

OG ≤

(
(1+U)

√
2 log |A|

1−γ + U

)
(1− γ)

√
T

+ εs(1 + 2U)
1− γ

,

CV ≤
ζ

(
(1+U)

√
2 log |A|

1−γ + U

)
√

T
+ εs(1 + 2U),

where εs = 1
1−γ

√
log(2SA/δ)

2m .
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Proof. To get the result we replace the regrets for primal and dual of GDA (Orabona, 2019, Theorem 6.8) in
Theorem 3.1 and get the required results. Specifically we set

Rp(π∗, T ) ≤ 1 + U

1− γ

√
2 log |A|

√
T ,

and
Rd(0, T ),Rd(U, T ) ≤ U

1− γ

√
T .

Hence, the average optimality gap for GDA is O
(

1
(1−γ)3

√
T

+ εs
(1−γ)2

)
, while the average constraint violation

scales as O
(

1
(1−γ)2

√
T

+ εs
1−γ

)
. Compared to the tabular result in Ding et al. (2020), the above bound on the

optimality gap is worse by a factor of O(1/1−γ) and matches their bound on the constraint violation. On the
other hand, in the tabular setting without sampling error (when εs = 0), Xu et al. (2021, Theorem 3) obtain
an O

(
1

(1−γ)1.5
√

T

)
bound on both the optimality gap and constraint violation. However, in order to set this

bound, they require the knowledge of KL(π∗||π0) to set the algorithm hyper-parameters. This information is not
available, making it difficult to implement their algorithm.

Now, we instantiate Theorem 3.1 for the coin-betting algorithms in Section 4.2.2. Plugging in the value of U , the
primal and dual regret and ε̃, we obtain the following corollary.

Corollary A.2. Using the primal updates in Equation (8), and the dual updates in Equation (9), with
U = 2

ζ (1−γ) , using m trajectories, the average optimality gap (OG) and constraint violation (CV) for CBP can
be bounded as:

OG ≤

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
(1− γ)

√
T

+ εs(1 + 2U)
1− γ

,

CV ≤
ζ

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
√

T
+ ζ εs(1 + 2U),

where εs = 1
1−γ

√
log(2SA/δ)

2m and Ψ = 4U
√

log((T + 1)U) + 1.

Proof. To get the result we replace the regrets for primal and dual of CB in Theorem 3.1 and get the required
results. Specifically from (Orabona and Pal, 2016, Corollary 6) and (Orabona and Tommasi, 2017, Theorem 8),
we get the upper-bound for primal regret and the dual regret:

Rp(π∗, T ) ≤ 3(1 + U)
1− γ

√
T
√

1 + KL(π0||π∗),

and

Rd(λ, T ) ≤ 1
1− γ

+
∥∥λ− λ0∥∥√( 1

(1− γ)2 + GT

1− γ

)
ΓT

where ΓT = log
(

1 + (GT (1− γ) + 1)2
∥∥λ− λ0

∥∥2
)

and GT =
∑T

i=0 |V̂ πi
c (ρ) − b|. Since |V̂ πi

c (ρ) − b| ≤ 1
1−γ we

have GT ≤ T/1− γ and
∥∥λ− λ0

∥∥ ≤ 2U for all λ. Using these upperbound and replace in Rd(λ, T ) we get:

Rd(λ, T ) ≤
4U
√

(T + 1) log((T + 1)U) + 1
1− γ



B MAIN PROOFS

The following well known result will be useful:

Lemma B.1 (Value difference lemma). For any value function V π (reward or cost), and any two memoryless
policies π and π′,

V π′
− V π = (I − γPπ′)−1 [Tπ′V π − V π]

where Tπ′V π = [rπ′ + γPπ′V π] is the Bellman operator for policy π′.

Proof. As is well known, V π′ = (I − γPπ′)−1
rπ′ . Hence,

V π′
− V π = (I − γPπ′)−1

rπ′ − V π

= (I − γPπ′)−1 (rπ′ − (I − γPπ′) V π)
= (I − γPπ′)−1 (rπ′ + γPπ′V π − V π)
= (I − γPπ′)−1 [Tπ′V π − V π]

Let us now turn to the proof of Theorem 3.1:
Theorem B.2. Assuming that

∥∥∥Qt
r − Q̂t

r

∥∥∥
∞
≤ ε̃ and

∥∥∥Qt
c − Q̂t

c

∥∥∥
∞
≤ ε̃, for a generic algorithm producing a

sequence of polices {π0, π1, . . . , πT −1} and dual variables {λ0, λ1, . . . , λT −1} such that for all t, λt is constrained
to lie in the [0, U ] where U > λ∗, OG and CV can be bounded as:

OG ≤ R
p(π∗, T ) + (1− γ)Rd(0, T )

(1− γ)T + ε̃ g(U),

CV ≤ R
p(π∗, T ) + (1− γ)Rd(U, T )

(U − λ∗)(1− γ)T + ε̃ g(U)
(U − λ∗) ,

where g(U) :=
[

1+U
1−γ + U

]
.

Proof. We will begin with bounding the value differences in the Lagrangian using Lemma B.1. Let T r
π∗ and T c

π∗

be the Bellman operators of the optimal policy for the reward and cost respectively. Then,

[V π∗

r − V πt
r ] + λt [V π∗

c − V πt
c ] = (I − γPπ∗)−1 [ [T r

π∗V πt
r − V πt

r ] + λt [T c
π∗V πt

c − V πt
c ]
]

Let Mπ be the state-action operator applied Q functions such that Mπ(Q)(s) =
∑

a π(a|s)Q(s, a). Observe that
T r

π∗V πt
r = Mπ∗Qπt

r and V πt
r = Mπt

Qπt
r . The expressions for the constraint rewards are analogous. Rewriting the

above expression,

[V π∗

r − V πt
r ] + λt [V π∗

c − V πt
c ] = (I − γPπ∗)−1

[
[Mπ∗Qπt

r −MπtQ
πt
r ] + λt [Mπ∗Qπt

c −MπtQ
πt
c ]
]

= (I − γPπ∗)−1
[
[Mπ∗ −Mπt

] [Qπt
r + λtQ

πt
c ]
]

= (I − γPπ∗)−1
[
[Mπ∗ −Mπt

] [Q̂πt
r + λtQ̂

πt
c ]
]

+ (I − γPπ∗)−1
[
[Mπ∗ −Mπt ] [Qπt

r − Q̂πt
r + λt(Qπt

c − Q̂πt
c )]
]

︸ ︷︷ ︸
Error



Let us first bound the maximum norm of the “Error” term,

∥Error∥∞ =
∥∥∥∥(I − γPπ∗)−1

[
[Mπ∗ −Mπt ] [Qπt

r − Q̂πt
r + λt(Qπt

c − Q̂πt
c )]
]∥∥∥∥

∞

≤ 1
1− γ

∥∥∥[Qπt
r − Q̂πt

r + λt(Qπt
c − Q̂πt

c )]
∥∥∥

∞

≤ 1
1− γ

∥∥∥Qπt
r − Q̂πt

r

∥∥∥
∞

+ λt

∥∥∥Qπt
c − Q̂πt

c ]
∥∥∥

∞

By assumption,
∥∥∥Qπt

r − Q̂πt
r

∥∥∥
∞

,
∥∥∥Qπt

r − Q̂πt
r

∥∥∥
∞
≤ ε.

=⇒ ∥Error∥∞ ≤
ε

1− γ
(1 + λt)

Since the dual variables are projected onto the [0, U ] interval, λt ≤ U , implying that

∥Error∥∞ ≤
ε

1− γ
(1 + U)

Substituting in this bound on the error, using the convention that left-multiplication by a measure means
integration with respect to it,

[V π∗

r (ρ)− V πt
r (ρ)] + λt [V π∗

c (ρ)− V πt
c (ρ)] ≤ ρ (I − γPπ∗)−1

[
[Mπ∗ −Mπt

] [Q̂πt
r + λtQ̂

πt
c ]
]

+ ε

1− γ
(1 + U)

≤ 1
1− γ

νρ,π∗

[
[Mπ∗ −Mπt ] [Q̂πt

r + λtQ̂
πt
c ]
]

+ ε

1− γ
(1 + U) ,

where νρ,π∗ = (1− γ)ρ (I − γPπ∗)−1 is the discounted probability measure over the states obtained when starting
from ρ and following π∗. Summing from t = 0 to T − 1 and dividing by T .

1
T

νρ,π∗

T −1∑
t=0

[
[V π∗

r (ρ)− V πt
r (ρ)] + λt [V π∗

c (ρ)− V πt
c (ρ)]

]
≤ νρ,π∗

(1− γ)T

T −1∑
t=0

[
[Mπ∗ −Mπt ][Q̂πt

r + λtQ̂
πt
c ]
]

+ ε

1− γ
(1 + U)

Now, observe that

νρ,π∗

T −1∑
t=0

[
[Mπ∗ −Mπt

][Q̂πt
r + λtQ̂

πt
c ]
]

=
T −1∑
t=0
⟨π∗(·|s)− πt(·|s), Q̂πt

r (s, ·) + λtQ̂
πt
c (s, ·)]⟩s∼νρ,π∗ = Rp(π∗, T )

Putting everything together,

1
T

T −1∑
t=0

[V π∗

r (ρ)− V πt
r (ρ)] + 1

T

T −1∑
t=0

λt [V π∗

c (ρ)− V πt
c (ρ)] ≤ R

p(π∗, T )
(1− γ)T + ε

1− γ
(1 + U) . (B.1)

The above result bounds the sub-optimality in the Lagrangian. Next, we will see how this result implies a bound
on the sub-optimality in the objective and the constraint violation. To bound the reward sub-optimality, we will
upper bound the negative of the second term on the left-hand side in the above equation, i.e., we upper bound
1
T

∑T −1
t=0 λt [V πt

c (ρ)− V π∗

c (ρ)]. We have,

1
T

T −1∑
t=0

λt [V πt
c (ρ)− V π∗

c (ρ)] ≤ 1
T

T −1∑
t=0

λt [V πt
c (ρ)− b] (since V π∗

c (ρ) ≥ b)

= 1
T

T −1∑
t=0

λt [V πt
c (ρ)− V̂ πt

c (ρ)] + 1
T

T −1∑
t=0

λt[V̂ πt
c (ρ)− b]

= 1
T

T −1∑
t=0

λt [V πt
c (ρ)− V̂ πt

c (ρ)] + R
d(0, T )

T

≤ Uε + R
d(0, T )

T
. (B.2)



Using Equations (B.1) and (B.2),

OG = 1
T

T −1∑
t=0

[V π∗

r (ρ)− V πt
r (ρ)] ≤ R

p(π∗, T ) + (1− γ)Rd(0, T )
(1− γ)T + ε

1− γ
(1 + U) + Uε (B.3)

This proves the first part of the theorem. We now bound the constraint violation. For an arbitrary λ,

1
T

T −1∑
t=0

[(λt − λ)(V πt
c (ρ)− b)] = 1

T

T −1∑
t=0

[
(λt − λ)(V πt

c (ρ)− V̂ πt
c (ρ))

]
+ 1

T

T −1∑
t=0

[
(λt − λ)(V̂ πt

c (ρ)− b)
]

= 1
T

T −1∑
t=0

[
(λt − λ)(V πt

c (ρ)− V̂ πt
c (ρ))

]
+ R

d(λ, T )
T

,

implying

1
T

T −1∑
t=0

[(λt − λ)(V πt
c (ρ)− b)] ≤ Uε + R

d(λ, T )
T

. (B.4)

Adding Equation (B.4) and Equation (B.1) and reordering the terms gives

1
T

T −1∑
t=0

(V π∗

r (ρ)− V πt
r (ρ)) + λ

T

T −1∑
t=0

(b− V πt
c (ρ))

≤ 1
T

T −1∑
t=0

λt(b− V π∗

c (ρ))︸ ︷︷ ︸
≤0 since V π∗

c (ρ) ≥ b.

+ R
p(π∗, T ) + (1− γ)Rd(λ, T )

(1− γ)T + ε

1− γ
(1 + U) + Uε︸ ︷︷ ︸

h(λ)

=⇒ 1
T

T −1∑
t=0

(V π∗

r (ρ)− V πt
r (ρ)) + λ

T

T −1∑
t=0

(b− V πt
c (ρ)) ≤ h(λ)

We consider two cases: (i) if
∑T −1

t=0 (b − V πt
c (ρ)) ≥ 0, we set λ = U , else, if (ii)

∑T −1
t=0 (b − V πt

c (ρ)) < 0, we set
λ = 0. Using these choices, and since Rd(λ, T ) is linearly increasing in λ,

1
T

T −1∑
t=0

(V π∗

r (ρ)− V πt
r (ρ)) + U

T

[
T −1∑
t=0

(b− V πt
c (ρ))

]
+

≤ h(U)

Now take the policy π′ such that V π∗

r (ρ) − V π′

r (ρ) = 1
T

∑T −1
t=0 (V π∗

r (ρ) − V πt
r (ρ)) and V π∗

c (ρ) − V π′

c (ρ) =
1
T

∑T −1
t=0 (b− V πt

c (ρ)). Then,

[V π∗

r (ρ)− V π′

r (ρ)] + U
[
b− V π′

c (ρ)
]

+
≤ h(U) .

Using Lemma B.3 with C = U > λ∗ and β = h(U), we get

CV = 1
T

[
T −1∑
t=0

b− V πt
c (ρ)

]
+

=
[
b− V π′

c (ρ)
]

+

≤ h(U)
U − λ∗ = R

p(π∗, T ) + (1− γ)Rd(U, T )
(U − λ∗)(1− γ)T + 1

(U − λ∗)

[
ε

(1− γ) (1 + U) + Uε

]
,

which completes the proof subject to proving Lemma B.3.

Lemma B.3 (Constraint violation bound). For any C > λ∗ and any π̃ s.t. V π∗

r (ρ)−V π̃
r (ρ)+C[b−V π̃

c (ρ)]+ ≤ β,
we have [b− V π̃

c (ρ)]+ ≤ β
C−λ∗ .



Proof. Define ν(τ) = maxπ{V π
r (ρ) | V π

c (ρ) ≥ b + τ} and note that by definition, ν(0) = V π∗

r (ρ) and that ν is a
decreasing function for its argument.

Let V π,λ
l (ρ) = V π

r (ρ) + λ(V π
c (ρ)− b). Then, for any policy π s.t. V π

c (ρ) ≥ b + τ , we have

V π,λ∗

l (ρ) ≤ max
π′

V π′,λ∗

l (ρ)

= V π∗

r (ρ) (by strong duality)
= ν(0) (from above relation)

=⇒ ν(0)− τλ∗ ≥ V π,λ∗

l (ρ)− τλ∗ = V π
r (ρ) + λ∗ (V π

c (ρ)− b− τ)︸ ︷︷ ︸
Positive

=⇒ ν(0)− τλ∗ ≥ max
π
{V π

r (ρ) | V π
c (ρ) ≥ b + τ} = ν(τ) .

=⇒ τλ∗ ≤ ν(0)− ν(τ) . (B.5)

Now we choose τ̃ = −(b− V π̃
c (ρ))+.

(C − λ∗)|τ̃ | = λ∗τ̃ + C|τ̃ | (since τ̃ ≤ 0)
≤ ν(0)− ν(τ̃) + C|τ̃ | (Equation (B.5))
= V π∗

r (ρ)− V π̃
r (ρ) + C|τ̃ |+ V π̃

r (ρ)− ν(τ̃) (definition of ν(0))
= V π∗

r (ρ)− V π̃
r (ρ) + C(b− V π̃

c (ρ))+ + V π̃
r (ρ)− ν(τ̃)

≤ β + V π̃
r (ρ)− ν(τ̃) .

Now let us bound ν(τ̃):

ν(τ̃) = max
π
{V π

r (ρ) | V π
c (ρ) ≥ b− (b− V π̃

c (ρ))+}

≥ max
π
{V π

r (ρ) | V π
c (ρ) ≥ V π̃

c (ρ)} (tightening the constraint)

ν(τ̃) ≥ V π̃
r (ρ) =⇒ (C − λ∗)|τ̃ | ≤ β =⇒ (b− V π̃

c (ρ))+ ≤
β

C − λ∗

B.1 PROOF OF LEMMA 4.1

Lemma B.4. The objective Equation (1) satisfies strong duality, and the optimal dual variables are bounded as
λ∗ ≤ 1

ζ(1−γ) , where ζ := maxπ V π
c (ρ)− b > 0.

Proof. Starting from the Lagrangian form in Equation (3),

V ∗
r (ρ) := max

π
min
λ≥0

V π
r (ρ) + λ[V π

c (ρ)− b]

Using the linear programming formulation of CMDPs in terms of the state-occupancy measures µ, we know that
both the objective and the constraint are linear functions of µ, and strong duality holds w.r.t µ. Since µ and π
have a one-one mapping, we can switch the min and the max (Paternain et al., 2019), implying,

V ∗
r (ρ) = min

λ≥0
max

π
V π

r (ρ) + λ[V π
c (ρ)− b]

= max
π

V π
r (ρ) + λ∗[V π

c (ρ)− b] .

Define π̃ := arg maxπ V π
c (ρ). Then,

V ∗
r (ρ) ≥ V π̃

r (ρ) + λ∗[V π̃
c (ρ)− b]

=⇒ λ∗ ≤ V ∗
r (ρ)− V π̃

r (ρ)
[V π̃

c (ρ)− b] ≤ 1
(1− γ)ζ .



B.2 PROOFS FOR SECTION 5

Lemma B.5. For policy π, any distribution ω and subset C, if we use m trajectories to estimate the action-value
function for each (s, a) ∈ C, and solve Equation (10) to compute θ̂π

r , then for any (s, a) ∈ (S ×A) pair, the error
|⟨ϕ(s, a), θ̂π

r ⟩ −Qπ
r | can be upper-bounded by

εb(1 + ∥ϕ(s, a)∥G†
ω

) +
∥ϕ(s, a)∥G†

ω

1− γ

√
log(2|C|/δ)

2m
,

where Gω =
∑

(s,a)∈C ω(s, a)ϕ(s, a)ϕ(s, a)T and A† is pseudoinverse of A.

Proof. By solving θ̂π
r = arg minθ

∑
z∈C ω(z) [⟨θ, ϕ(z)⟩ − qr(z)]2 ( Equation (10)), we get that

θπ
r = G†

ω

∑
(s,a)∈C

ω(s, a)ϕ(s, a) qπ
r (s, a)

and lets denote z = (s, a), ϕ(z) = ϕ(s, a) and ε(z) = qr(z) − Qπ
r (z) + Qπ

r (z) − ⟨ϕ(z), θ∗
r⟩ and θ∗

r :=
arg minθ max(s,a) ∥Qπ

r (s, a)− ⟨θ, ϕ(s, a)⟩∥ is the optimal parameter for the given policy π.

Therefore we can write qr(z) = ε(z) + ⟨ϕ(z), θ∗
r⟩

|⟨ϕ(z), θπ
r ⟩ −Qπ

r | = |⟨ϕ(z), θπ
r ⟩ − ⟨ϕ(z), θ∗

r⟩+ ⟨ϕ(z), θ∗
r⟩ −Qπ

r |
≤ |⟨ϕ(z), θπ

r ⟩ − ⟨ϕ(z), θ∗
r⟩|+ εb [εb from Assumption 5.1]

Now we need to bound the first term of above inequality. Based on the definition of ε(z), we can write
θπ

r = G†
ω

∑
z′∈C(⟨ϕ(z′), θ∗

r⟩+ ε(z′)) ω(z′)ϕ(z′). Using this equality we can get easily that:

|⟨ϕ(z), θπ
r ⟩ − ⟨ϕ(z), θ∗

r⟩| = |
∑
z′∈C

ε(z′)ω(z′)ϕ(z)T G†
ωϕ(z′)|

≤
∑
z′∈C
|ε(z′)||ω(z′)ϕ(z)T G†

ωϕ(z′)|

≤ |max
z′∈C

ε(z′)|
∑
z′∈C
|ω(z′)ϕ(z)T G†

ωϕ(z′)|

To bound the sum term we can(∑
z′∈C

ω(z′)|ϕ(z)T G†
ωϕ(z′)|

)2

≤
∑
z′∈C

ω(z′)
(
|ϕ(z)T G†

ωϕ(z′)|
)2 (Jensen’s inequality)

= ϕ(z)T G†
ω

(∑
z′∈C

[
ω(z′)ϕ(z′)ϕ(z′)T

])
G†

ωϕ(z)

= ∥ϕ(z)∥2
G†

ω

To finish the proof we need to bound |maxz′∈C ε(z′)|. Based on the definition of ε(z′) we have

|ε(z′)| ≤ |qr(z′)−Qπ
r (z′)|+ |Qπ

r (z′)− ⟨ϕ(z′), θ∗
r⟩|

≤ |qr(z)−Qπ
r (z)|+ εb

≤ 1
1− γ

√
log(2/δ)

2m
+ εb

where the second inequality is due to function approximation error (Assumption 5.1) and the last inequality
comes from Hoeffding’s inequality. Specifically, since the m trajectories are independent, and the action-value
functions lie in the [0, 1/1−γ] range, we use Hoeffding’s inequality to conclude that the sampling error for each



z ∈ C can be upper-bounded by 1
1−γ

√
log(2/δ)

2m . Since we desire uniform control over all states and actions in C, by

union bound, with probability 1− δ, |qr(z)−Qπ
r (z)| ≤ 1

1−γ

√
log(2|C|/δ)

2m . Putting everything together we get the
result.

Corollary B.6. Under Assumption 5.1, OG and CV of CBP can be bounded as:

OG ≤

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
(1− γ)

√
T

+ ε̃(1 + 2U)
1− γ

,

CV ≤
ζ

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
√

T
+ ζ ε̃(1 + 2U),

where U = 2
ζ(1−γ) , ε̃ = εb(1 +

√
d) +

√
d

1−γ

√
log(2d(d+1)/δ)

2m and Ψ = 4U
√

log((T + 1)U) + 1.

Proof. The proof is similar to the proof of Corollary A.2 but with a different ε̃.



C ADDITIONAL IMPLEMENTATION DETAILS

In Appendix C.1, we describe a more practical variant of CBP and in Appendix C.2, we describe the offline
G-experimental design procedure required to form the coreset C for CBP. Details about the synthetic tabular
environment are presented in Appendix C.3 whereas Appendix C.4 details the hyperparameters used across the
different experiments.

C.1 PRACTICAL COIN-BETTING POLITEX ALGORITHM

We present the practical version of CBP which uses a parameter αλ in Algorithm 1.

Algorithm 1: Practical Coin-Betting Politex
1 Input: αλ > 0 (parameter), π0 (policy initialization), λ0 (dual variable initialization), m (Number of

trajectories), T (Number of iterations), Feature map Φ.
2 Initialize: L0 = 0
3 Compute coreset C and distribution ω

4 Solve the unconstrained problem maxπ V̂ π
c (ρ) to estimate ζ in Lemma 4.1 and set U = 2

ζ(1−γ) .

5 for t← 0 to T − 1 do
6 For every (s, a) ∈ C, use m trajectories starting from (s, a) using policy πt and estimate the action-value

functions qr(s, a) and qc(s, a).

7 Compute and store θ̂πt
r and θ̂πt

c using Equation (10).
8 for every s encountered in the trajectory generated by πt, and for every a do

9 Compute Q̂t
r(s, a) = ⟨θ̂πt

r , ϕ(s, a)⟩; Q̂t
c(s, a) = ⟨θ̂πt

c , ϕ(s, a)⟩ and Q̂t
l(s, a) = Q̂t

r(s, a) + λt Q̂t
c(s, a).

10 Update policy,

Ât
l(s, a) = 1− γ

1 + U

[
Q̂t

l(s, a)−
〈

Q̂t
l(s, ·), πt(·|s)

〉]
Ãt

l(s, a) = Ât
l(s, a) I{wt(s, a) > 0}+ [Ât

l(s, a)]+ I{wt(s, a) ≤ 0}

wt+1(s, a) =
∑t

i=0 Ãi
l(s, a)

(t + 1) + T/2

(
1 +

t∑
i=0

Ãi
l(s, a) wi(s, a)

)

πt+1(a|s) =
{

π0(a|s), if
∑

a π0(a|s) [wt+1(s, a)]+ = 0
π0(a|s) [wt+1(s,a)]+∑
a

π0(a|s) [wt+1(s,a)]+
, otherwise.

11 end
12 Update dual variable,

V̂ t
c (ρ) = ⟨ρ(·), ⟨Q̂t

c(s, ·), πt(·|s)⟩⟩
gt = b− V̂ t

c (ρ)
Lt = max(Lt−1, |gt|)

λt+1 = λ0 +
∑t

i=0 gi

Lt max(
∑t

i=0 |gi|+ Lt, αλLt)

(
Lt +

t∑
i=0

[(λi − λ0)gi]+
)

13 end



C.2 OFFLINE G-EXPERIMENTAL DESIGN TO BUILD CORESET C

We use offline G-experimental design to form the coreset in Line 2 of Algorithm 1. In particular, we use the
greedy iterative algorithm in Algorithm 2 to build C: in iteration τ , go through all the states and actions
adding the (s, a) pair (to C) with the highest marginal gain computed as gτ (s, a) := ∥ϕ(s, a)∥G†

τ
. Here Gτ is

the Gram matrix formed by the features of the (s, a) pairs present in C at iteration τ . For a specified input
ε′ > 0, the algorithm terminates at iteration T when max(s,a) gT(s, a) ≤ ε′. Hence, the algorithm directly controls
sup(s,a) ∥ϕ(s, a)∥G†

ω
≤ ε′ in Lemma B.5, and hence controls εs in practice. However, this procedure does not have

a guarantee on how large |C| can be. In practice, we set ε′ such that |C| = O(d). Although we only consider
forming the coreset in an offline manner that involves iterating through all SA state-action pairs, efficient online
variants forming the coreset while running the algorithm have been developed recently (Li et al., 2021). Such
techniques are beyond the scope of this paper and we plan to explore them in future work.

Algorithm 2: Coreset C formation using G-experimental design
1 Input: Φ (Feature map), ε′ > 0 (tolerance parameter), ν = 1 (default value).

2 Initialize: G† = 1
ν Id, C = ∅, gmax =∞ (maximum marginal gain).

3 while gmax ≤ ε′ do
4 gmax = 0
5 for ∀(s, a) ∈ (S ×A) do
6 Compute g(s, a) =

√
ϕ(s, a)TG†ϕ(s, a) [marginal gain]

7 if gmax < g(s, a) then
8 (s∗, a∗) = (s, a)
9 gmax = g(s, a)

10 end
11 end
12 C = C ∪ {(s∗, a∗)}

13 G† = G† − G†ϕ(s∗,a∗)ϕ(s∗,a∗)
T

G†

1+ϕ(s∗,a∗)T G†ϕ(s∗,a∗)
[Sherman-Morrison to compute

(
G + ϕ(s∗, a∗) ϕ(s∗, a∗)T

)†
]

14 end



C.3 SYNTHETIC TABULAR ENVIRONMENT

In Figure 6, we show the synthetic tabular environment which is modified from Example 3.5 (Sutton and Barto,
2018) to add the constraint rewards.

Figure 6: Tabular environment: A 5X5 gridworld environment where all actions results in reward(r) and
constraint reward(c) as 0, except special states denoted by A and B. All four actions in states (A, B) transitions
the agent to states (A′, B′) and results in reward as (1, 0.5) and constraint rewards as (0.1, 1) respectively. The
remaining transitions incur zero reward and zero constrain reward.

C.4 HYPER-PARAMETERS

Table 1: Hyperparameters for tabular setting: Shows the hyperparameters for different algorithms CBP,
GDA and CRPO for experiments in Appendix D.1.

Experiments CBP GDA CRPO

Model-based αλ = 8 απ = 1.0,
αλ = 0.1 απ = 0.75, η = 0.0

Model-free αλ = 8 απ = 1.0,
αλ = 0.1 απ = 0.75, η = 0.0

Table 2: Hyperparameters for LFA setting with sampling : Shows the hyperparamters used for different d
dimension features for CBP, GDA, CRPO with fixed number of samples for Q̂ approximations (for gridworld
experiments in Appendix D.2).

Algorithms d = 40 d = 56 d = 80
CBP αλ = 0.25 αλ = 0.25 αλ = 0.1

GDA απ = 1.0,
αλ = 0.1

απ = 1.0,
αλ = 1.0

απ = 1.0,
αλ = 0.1

CRPO απ = 0.75 απ = 0.75 απ = 0.75

Table 3: Hyperparameters for Cartpole environment: Shows the best hyperparameter for different values of
entropy regularization coefficient ν and different algorithms namely CBP, GDA and CRPO (for experiments in
Appendix D.2).

Algorithms ν = 0 ν = 0.1 ν = 0.01 ν = 0.001
CBP αλ = 0.1 αλ = 0.1 αλ = 5.0 αλ = 0.5

GDA απ = 0.01,
αλ = 0.001

απ = 0.001,
αλ = 0.001

απ = 0.1,
αλ = 0.1

απ = 0.01,
αλ = 0.0001

CRPO απ = 0.1,
η = 10

απ = 0.1,
η = 0

απ = 0.5,
η = 10

απ = 0.5,
η = 0



D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TABULAR SETTING

Model-based setting: In Figure 7, we demonstrate performance – optimality gap (OG) and constraint violation
(CV) – with best hyperparameters for three algorithms namely, CBP, GDA and CRPO. In addition, we show
the performance of GDA with theoretical learning rates of π and λ to focus on the importance of tuning GDA’s
hyperparameter for practical purpose. We observe OG converges to zero quickly for our CBP as compared
to GDA and CRPO with constraint satisfaction (when CV ≤ 0). The ideal performance metric is when both
OG and CV converges to 0 value. Refer Table 1 for best values of hyperparameter. We used the following
ranges of hyperparameters. For CBP, αλ = {1, 2, 5, 8, 15, 50, 100, 300, 500}. The hyperparameter of GDA varied
as απ = {0.001, 0.01, 0.1, 1.0} (learning rate policy) and αλ = {0.0001, 0.001, 0.01, 0.1, 1.0} (learning rate dual
variable). For CRPO, the learning rate of policy varied as απ = {0.001, 0.01, 0.05, 0.1, 0.5, 0.75} and tolerance
parameter η = {0, 0.25}.

(a) OG (b) CV

Figure 7: Model-based in tabular case: OG and CV for CB, GDA and CRPO with best hyperparameters. The
results are averaged over 5 runs with 95% confidence interval. We assume that we have access to true CMDP. The
best hyperparameter has the least OG and satisfies the condition CV ∈ [−0.25, 0]. We also show the performance
of baseline GDA with theoretical απ =

√
2 log |A|

T
1−γ
1+U and αλ = U(1−γ)√

T
. Here, U = 2

ζ(1−γ) . This is shown in blue
dashed line.

Model-free setting: Here, we test the performance of algorithms in the model-free setting (don’t have access
to true CMDP model). We use TD(0) based sampling approach (Sutton, 1988) to estimate the Q action-value
function. We sample data for all (s, a) ∈ S ×A. In Figure 3, we observe the effect on performance by varying the
number of samples for Q action-value estimation. Here, we consider one-hot encoded features (no overlapping
of features). We observe that CBP consistently converges faster than its counterpart in the sampling-based
approach. Further, it also matches the expectation that the performance improves with the increase in number of
samples. In Figures 8 and 9, we show the robustness of CBP with hyperparameter sensitivity and environment
misspecification respectively. The hyperparameters used for these experiments are presented in Table 1 in
Appendix C.4.

D.2 LINEAR SETTING

Gridworld environment: We use 5× 5 gridworld environment as show in Figure 6. Tile coding is used to
learn the feature representation for every (s, a) pair in the environment. Number of tilings used are 1 and we vary
the tiling size to change the dimension of the features (feature overlap for multiple (s, a) pairs). In Figure 10
we show hyperparameter sensitivity on performance for all the three algorithms with different d dimension of
features. The values of all other parameters were kept fixed. Similar observation holds here, CBP is robust to
varying values of hyperparameters. The range of hyperparameter is similar to one in Figure 8.

G-experimental design for gridworld environment: In Figure 11 we show the performance with G-
experimental design (Appendix C.2). Here subset of (s, a) ∈ C pairs are chosen from a coreset.



(a) OG (b) CV

Figure 8: Sensitivity to hyperparameters in model-free gridworld environment: Performance with
different hyperparameters for CB, GDA and CRPO. The results are averaged over 5 runs with 95% confidence
interval. We used 2000 samples for ∀(s, a) ∈ S × A to estimate Q values for both reward and cost. The
results are demonstrated on one-hot features (with no feature overlap). The hyperparameters for CB are
αλ = {1, 2, 5, 8, 15, 50, 100, 300, 500}. The hyperparameter for GDA are απ = {0.001, 0.01, 0.1, 1.0} (learning rates
for policy) and αλ = {0.0001, 0.001, 0.01, 0.1, 1.0} (learning rate for dual variable). The hyperparameter for CRPO
are απ = {0.001, 0.01, 0.05, 0.1, 0.5, 0.75}. We use η = 0.0 for CRPO. The key observation is that CBP is robust
against the variations in hyperparameters with a smaller variance in performance against multiple runs.

(a) OG (b) CV

Figure 9: Environment misspecification in model-free gridworld by varying discount factor γ: We only
introduce sampling error by estimating Q function with 2000 samples for all (s, a) pair for all three algorithms (no
feature overlap). We vary the discount factor γ = {0.7, 0.8} to observe the effects of environment misspecification
on CBP, GDA and CRPO. We keep the hyperparameters fixed for all the algorithms, similar to the one for original
CMDP with γ = 0.9. The results are averaged over 5 runs with 95% confidence interval.The hyperparameters
used are reported in Table 1. We observe that CRPO does not even satisfy constraint for case when γ = 0.8
(CV > 0). Further, our CBP converges consistently faster than the baselines.

Exploration in continuous state-spaces: We used G-experimental design for the discrete state-action
environment in the previous section. However, such a procedure is difficult to implement for the continuous
state-action spaces we consider in this section. In order to achieve enough exploration in practice, similar to Xu
et al. (2021), we use entropy regularization (Geist et al., 2019; Cen et al., 2021) for the policy updates. Specifically,
for a specified regularization parameter ν, our task is to find a sequence of policies {π0, π1, . . . , πT −1} that
minimize the regularized primal regret,

Rp
ν(π∗, T ) :=

T −1∑
t=0

S−1∑
s=0

[
⟨π∗(·|s)− πt(·|s), Q̂t

r + λtQ̂
t
c⟩+ ν dπt(s)

∑
a∈A

π(a|s) log(π(a|s))
]
.

It can be easily seen (Geist et al., 2019) that the form of the algorithm updates remain the same, but the action-
value functions for policy π need to be redefined to depend on the “effective reward” equal to r(s, a)− ν log π(a|s).
Therefore, the new Q̂t

l with exploration is equal to Q̂t
l(s, a) = Q̂t

r(s, a) + λtQ̂
t
c(s, a)− ν log πt(a|s).

Cartpole environment : We added two constraint rewards (c1, c2) to the classic OpenAI gym
Cartpole environment. (1) Cart receives a c1 = 0 constraint reward value when enters the area



(a) OG (d = 40) (b) CV (d = 40)

(c) OG (d = 56) (d) CV (d = 56)

(e) OG (d = 80) (f) CV (d = 80)

Figure 10: Linear function approximation in gridworld environment: We approximate the Q value
using LSTDQ with 300 samples for each (s, a) pair. The dimension of the features (denoted by d) are varied to
observe the sensitivity to a range of hyperparameter values. We kept all the other parameters fixed. We use (a,b)
d = 40, (b,c) d = 56, (e,f) d = 80 dimension features respectively. CBP is consistently robust to variation in the
hyperparameters for different dimensions as compared to baselines GDA and CRPO.

(a) OG (b) CV

Figure 11: G-experimental design: We show the performance with G-experimental design, where subset of
(s, a) ∈ C are chosen to learn the weight vectors of Q function. Here, we are in model-free setting with d = 56
dimensional features in LFA. We used 300 samples for c ∈ C to learn the estimate of Q for all three algorithms.

[−2.4,−2.2], [−1.3,−1.1], [1.1, 1.3], [2.2, 2.4], else receive c1 = +1. (2) When the angle of the cart is less than 4



degrees receive c2 = +1, else everywhere c2 = 0. Each episode length is no longer than 200.

We used tile coding (Sutton and Barto, 2018) to discretize the continuous state space of the environment. The
dimension of the features is 212. We used 8 number of tilings with each grid size 4×4. For experimenting the effect
of adding exploration on the performance, we incorporated the entropy coefficient (Haarnoja et al., 2018; Geist
et al., 2019). We varied the entropy regularizer ν = {0, 0.1, 0.01, 0.001}. Refer to Figure 12 for the experiment
with ν coefficient.

We conducted the experiments with following αλ parameter value of CBP {0.1, 0.5, 5, 50, 250, 500, 750, 1000}.
For GDA, we varied the learning rate of policy απ = {0.1, 0.01, 0.001, 0.0001} and learning rate of dual
variable αλ = {0.1, 0.01, 0.001, 0.0001}. For CRPO baseline, the following values of learning rate of policy
απ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} are experimented with. We kept the tolerance parameter η of CRPO as
{0, 10}. The best hyperparameters are summarized in Table 3 for the different values of entropy regularizer ν.



(a) Return (ν = 0) (b) CV 1 (ν = 0) (c) CV 2 (ν = 0)

(d) Return (ν = 0.1) (e) CV 1 (ν = 0.1) (f) CV 2 (ν = 0.1)

(g) Return (ν = 0.01) (h) CV 1 (ν = 0.01) (i) CV 2 (ν = 0.01)

(j) Return (ν = 0.001) (k) CV 1 (ν = 0.001) (l) CV 2 (ν = 0.001)

Figure 12: Cartpole environment: We show the sensitivity to entropy regularization ν for all three algorithms
CBP, GDA and CRPO. The performance is averaged over 5 runs with 95% confidence interval. Different rows
corresponds to different value of ν = {0, 0.1, 0.01, 0.001}. Darker lines show the performance with the best
hyperparameters. Lighter shade lines show performance with other values of hyperparameters. The range of
hyperparameter for CBP is αλ = {0.1, 0.5, 5, 50, 250, 500, 750, 1000}. For GDA, we vary learning rates of both
policy and dual variable as {0.1, 0.01, 0.001, 0.0001}. For CRPO, we vary απ = {0.1, 0.5, 0.01, 0.001, 0.005} and
tolerance hyperparameter as η = {0, 10}.
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