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A PROOF OF THEOREM 1

For any policy µ, we have

RM×
(µ) = Eµ

[
T∑

t=0

r×t (Xt, At)

]
(1)

= Eµ

[
T∑

t=0

r×t ((St, Qt), At)

]
(2)

a
= Eµ

[
T∑

t=0

rt(St, At)

]
= RM (µ), (3)

where the equality in (a) follows from the definition of r×t
in (7). Further, using (8), we have

rf (XT+1) = rf ((ST+1, QT+1)) = 1F (QT+1). (4)

Following the acceptance condition of the DFA A , which
is equivalent to the LTLf specification φ, a run ξ of the
POMDP satisfies φ if and only if the word generated by the
run satisfies the acceptance condition of the DFA A , i.e., its
run on A , ξA , ends in the acceptance set F . Hence,

Rf (µ) = Eµ

[
rf (XT+1)

]
= PM

µ (φ). (5)

B PROOF OF LEMMA 1

We have

R∗ = l∗ (6)
≤ l∗B (7)
≤ inf

0≤λ≤B
L(µ̄, λ) + ϵ (8)

= RM×
(µ̄) + inf

0≤λ≤B
λ(Rf (µ̄)− 1 + δ) + ϵ. (9)

There are two possible cases: (i) Rf (µ̄) − 1 + δ ≥ 0 and
(ii) Rf (µ̄)− 1 + δ < 0.

If case (i) is true, then (16) is trivially satisfied. Further, in
this case, we have

inf
0≤λ≤B

λ(Rf (µ̄)− 1 + δ) = 0. (10)

Therefore, R∗ ≤ RM×
(µ̄) + ϵ, and hence, (15) is satisfied.

If case (ii) is true, we have

inf
0≤λ≤B

λ(Rf (µ̄)− 1 + δ) = B(Rf (µ̄)− 1 + δ) (11)

< 0. (12)

Therefore, R∗ ≤ RM×
(µ̄) + ϵ, and hence, (15) is satisfied.

Further, we have

B(Rf (µ̄)− 1 + δ) ≥ R∗ −RM×
(µ̄)− ϵ (13)

≥ R∗ −Rm − ϵ. (14)

The last inequality holds because Rm is the maximum
achievable reward. Hence, (16) is satisfied.

C PROOF OF THEOREM 2

Consider the dual of (P4). Let

u∗
B := inf

0≤λ≤B
sup
µ

L(µ, λ). (P5)
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We have

l∗B
a
≤ u∗

B (15)
= inf

0≤λ≤B
sup
µ

L(µ, λ) (16)

≤ sup
µ

L(µ, λ̄) (17)

b
=

1

K

K∑
k=1

L(µλ̄, λk) (18)

c
≤ 1

K

K∑
k=1

L(µk, λk) (19)

d
≤ 1

K
inf

0≤λ≤B

K∑
k=1

L(µk, λ) + 2B
√

2 log 2/K (20)

e
= inf

0≤λ≤B
L(µ̄, λ) + 2B

√
2 log 2/K. (21)

The inequality in (a) holds because of weak duality [Boyd
and Vandenberghe, 2004]. The equality in (b) holds because
of the bilinearity (affine) of L(·). The inequality in (c) holds
because µk is the maximizer associated with λk. Inequal-
ity (d) follows from Corollary 5.7 in [Hazan et al., 2016].
Equality in (e) is again a consequence of bilinearity of L(·).

D PROOF OF LEMMA 2

The rewards RM×
(µ) and Rf (µ) in the corresponding

product POMDP are given by

RM×
(µ) = Eµ

[
T∑

t=0

r×t (Xt, At)

]
(22)

= Eµ

[ ∞∑
t=0

γtr×t (Xt, At)

]
(23)

Rf (µ) = Eµ

[
rf (XT+1)

]
(24)

= (1− γ)Eµ

[ ∞∑
t=0

γtrf (Xt+1)

]
(25)

=
(1− γ)

γ
Eµ

[ ∞∑
t=1

γtrf (Xt)

]
. (26)

Therefore, we have

L(µ, λ) (27)

= Eµ

[ ∞∑
t=0

γt

(
r×t (Xt, At) +

λ(1− γ)

γ
γtrf (Xt)

)]

− λ(1− γ)

γ
E[rf (X0)]− λ(1− δ).

E ADDITIONAL DETAILS ON
EXPERIMENTS

E.1 MODEL DESCRIPTION

In this subsection, we provide further details on the grid
world POMDP models used in our experiments. The im-
ages corresponding to the various models indicate the state
space and the labeling function, e.g, in Fig. 1a, we have
L[(1, 2)] = {b}, L[(3, 3)] = {a}, and L[(i, j)] = {} for
all other grid locations (i, j). In all models, the agent starts
from the grid location (0, 0). Further, the reward for all ac-
tions is 0 in all grid locations, unless specified otherwise.
In the supplementary material, we also provide videos that
capture some representative behaviors of the policies gener-
ated by Algorithm 1. We will discuss them in greater detail
below.

E.1.1 Location Uncertainty

Reach-Avoid Tasks. In model M1, reward r((0, 3), a) =
2 and r((3, 3), a) = 1 for all actions a. We observe that the
agent satisfies the reach-avoid constraint with high proba-
bility and ends up in the top-right corner where the reward
is highest. A representative trajectory for this model can be
found in the video mu1_1.mp4.
In model M2, reward r((1, 6)) = 3, r((4, 3), a) = 3, and
r((7, 7), a) = 1 for all actions a. In this model, we observe
two characteristic behaviors. The agent reaches the goal
state a and remains there (see video mu2_1.mp4). This
behavior ensures that the specification is met but the reward
is relatively lower. The other behavior is that the agent goes
towards the location (4, 3) and tries to remain there to obtain
higher reward (see video mu2_2.mp4). However, since the
the obstacle is very close and the transitions are stochas-
tic, it is prone to violating the constraint. Nonetheless, this
violation is rare enough such that the overall satisfaction
probability exceeds the desired threshold.

(a) Model M1 (b) Model M2

Figure 1: Reach-Avoid Tasks

Ordered Tasks. For models M3,M4, and M5, reward
r((3, 3), a) = 1 for all actions a. In model M3, the agent
visits a and then b in that order most of the time (see video
mu3_1.mp4). Very rarely, the agent narrowly misses one



of the goals due to the stochasticity in transitions and partial
observability (see video mu3_2.mp4). In model M4, the
agent is almost always successful in satisfying the constraint
and maximizing the reward (see video mu4_1.mp4). In
model M5, we see both successes (see video mu5_1.mp4)
and failures (see video mu5_2.mp4). However, the failure
probability is within the threshold, as suggested by Table 1.

(a) Model M3 (b) Model M4

(c) Model M5

Figure 2: Ordered Tasks

Reactive Tasks. In model M6, reward r((3, 0), a) = 1
and r((3, 3), a) = 2 for all actions a. In this case, the agent
goes to a and remains there, thus satisfying the constraint
(see video mu6_1.mp4). Occasionally, the agent also goes
to state b and remains there to obtain a large reward. How-
ever, this violates the constraint since if the agent ever visits
b, it must eventually go to c (see video mu6_2.mp4).
In model M7, reward r((3, 0), a) = 5 and r((0, 3), a) = 2
for all actions a. In this model, the agent goes to a and then
to b so that it can go to c. If it had not gone to b immediately
after reaching a, then it will be compelled to go to d. We
observe that the agent consistently visits b after a (see video
mu7_1.mp4).

(a) Model M6 (b) Model M7

Figure 3: Reactive Tasks

E.1.2 Predicate Uncertainty

In the experiments of this section, there are two possible
locations for object b: (3, 0) and (0, 3). In both cases, when-
ever the agent is ‘far’ away (Manhattan distance greater than
1) from the object b, it gets an observation ‘F’ indicating
that it is far with probability 1. When the object is at the
bottom left and the agent is adjacent to it, the agent gets
an observation ‘C’ with probability 0.9 indicating that the
object is close. However, if object b is at the top right and the
agent is adjacent to it, the agent gets an observation ‘C’ only
with probability 0.1. Therefore, the detection capability of
the agent is stronger when the object is in the bottom-left
location as opposed to when it is in the top-right location.

Reach-Avoid Tasks. In model M8, reward r((3, 0), a) =
2 and r((0, 3), a) = 4 for all actions a. In this model,
generally, the agent first collects some information from
the bottom-left, reaches a, and goes to the rewarding lo-
cation that is not an obstacle (see videos mu8_1.mp4,
mu8_2.mp4, mu8_3.mp4). We see rare instances where
the agent completely ignores the constraint and maximizes
the reward (see video mu8_4.mp4).

(a) Model M8 with ob-
stacle at (0, 3)

(b) Model M8 with ob-
stacle at (3, 0)

Figure 4: Reach-Avoid Tasks

Ordered Tasks. In model M9, reward r((0, 0), a) = 2
for all actions a. In this model, we observe that the agent
mostly succeeds in satisfying the constraint and maximizing
the reward (see videos mu9_1.mp4 and mu9_2.mp4).

(a) Model M9 with ob-
stacle at (0, 3)

(b) Model M9 with ob-
stacle at (3, 0)

Figure 5: Ordered Tasks



E.2 HYPER-PARAMETERS AND RUNTIMES

The parameter δ in all the experiments is chosen in the
following manner: i) We first solve a POMDP problem in
which we are only interested in maximizing the probability
of satisfaction of the LTLf constraint. Let this probability
be denoted by pmax. The SARSOP solver gives concrete
approximation bounds on its solution, and therefore, on our
estimate of pmax. ii) Since any threshold 1− δ larger than
pmax is infeasible, we choose a δ such that 1− δ is around
0.9pmax. The values η and B are hyperparameters in our
experiments. The η suggested by Theorem 2 in our paper is
guaranteed to result in convergence, but in practice, slightly
larger values of η can lead to faster convergence.

In Table. 1, we provide additional hyper-parameters that
were used in our experiments. The parameter simu denotes
the number of Monte-Carlo simulations that were used to
estimate the constraint in each iteration. Tsolve is the total
time (over K iterations) spent in solving the unconstrained
POMDP using the SARSOP solver Kurniawati et al. [2008].
Tsimu is the total time spent in simulating policies generated
by the SARSOP solver. Ttotal is the overall computation
time for that model.

Most of our models have a state size of 16 (4× 4). However,
the runtime (see Table 1) for these models is drastically
different. This is because of two factors: (i) the DFA size and
(ii) the complexity of the POMDP problem. The size of the
DFA can be large for a complex task. This naturally scales
up the state space of the product POMDP. SARSOP returns
an alpha-vector policy Kurniawati et al. [2008]. When the
POMDP is complex, the alpha-vector policy returned by
SARSOP may have many alpha vectors. This would imply
that whenever the agent has to make a decision, it needs to
solve a fairly large maximization problem. This makes the
simulations time-consuming.

Table 1: Performance Value and Hyper-parameters

Model Spec |S| |Q| RM (µ̄) Rf (µ̄) 1− δ B η K simu Tsolve Tsimu Ttotal

M1 φ1 16 3 1.72 0.75 0.75 5 2 100 200 142 3518 3661
M2 φ1 64 3 0.95 0.70 0.70 8 2 50 100 17299 7825 25125
M3 φ2 16 3 0.83 0.76 0.75 5 2 100 200 158 3614 3773
M4 φ3 16 4 0.80 0.71 0.70 6 2 100 200 1893 14534 16428
M5 φ4 16 4 0.83 0.71 0.70 6 2 100 200 368 8440 8809
M6 φ5 16 4 1.01 0.79 0.80 10 2 100 200 109 718 828
M7 φ6 16 10 4.28 0.82 0.80 25 2 50 100 5865 57833 63699
M8 φ1 32 3 2.73 0.81 0.85 20 0.02 100 200 370 21676 22046
M9 φ4 32 4 1.68 0.81 0.75 10 0.2 100 200 973 25618 26591
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