Improved Feature Importance Computation for Tree Models
Based on the Banzhaf Value (Supplementary material)

Adam Karczmarz'? |[Tomasz Michalak'-2

Anish Mukherjee'-

Piotr Sankowski'>* Piotr Wygocki'-

nstitute of Informatics, University of Warsaw, Poland
2IDEAS NCBR, Warsaw, Poland
3MIM Solutions, Warsaw, Poland

Abstract

The Shapley value — a fundamental game-theoretic
solution concept — has recently become one of
the main tools used to explain predictions of
tree ensemble models. Another well-known game-
theoretic solution concept is the Banzhaf value.
Although the Banzhaf value is closely related to
the Shapley value, its properties w.r.t. feature attri-
bution have not been understood equally well. This
paper shows that, for tree ensemble models, the
Banzhaf value offers some crucial advantages over
the Shapley value while providing similar feature
attributions.

In particular, we first give an optimal O(T'L + n)
time algorithm for computing the Banzhaf value-
based attribution of a tree ensemble model’s output.
Here, T is the number of trees, L is the maximum
number of leaves in a tree, and n is the number of
features. In comparison, the state-of-the-art Shap-
ley value-based algorithm runs in O(TLD? + n)
time, where D denotes the maximum depth of a
tree in the ensemble. Next, we experimentally com-
pare the Banzhaf and Shapley values for tree en-
semble models. Both methods deliver essentially
the same average importance scores for the studied
datasets using two different tree ensemble models
(the sklearn implementation of Decision Trees or
xgboost implementation of Gradient Boosting De-
cision Trees). However, our results indicate that,
on top of being computable faster, the Banzhaf is
more numerically robust than the Shapley value.

1 INTRODUCTION

Tree ensembles are one of the most commonly used models
for solving practical problems [Friedman, 2001} Kaggle|
2017]). Tree ensembles are robust, easy to tune, and fast to

train. They need small computational resources and support
different types of data and missing values. Given this, tree
ensembles are often the first choice model for tabular data.

One of the key research challenges regarding tree ensemble
models (see Section [2| for a formal definition) and other
machine learning techniques, in general, is explainability.
When high-value decisions are taken, e.g., in medical diag-
nostic, understanding why a model made a specific predic-
tion is often more important than the prediction’s accuracy.
Thus we need to develop methods to interpret the model’s
results in a transparent way so that humans are willing to
follow model recommendations. And indeed, a large body
of previous work has been devoted to explaining tree mod-
els and their predictions, e.g., [[Chen and Guestrin, 2016|
Breiman et al.l [1984] Breiman, 2004, Brophy and Lowd,
2020, |[Kuralenok et al., {2019} [Lundberg et al., [2020, |Saabas),
2022].

Feature attribution is one of the approaches to interpret-
ing model predictions that has been recently subject to a
growing interest. In this approach, each feature’s impact,
or importance, on the model’s output f(x) is quantified us-
ing a numerical value, called the feature’s local attribution
(e.g., [Lundberg and Lee, [2017| [Sundararajan et al., 2017]).
Similarly, one can attempt to quantify the individual fea-
tures’ overall impact on the model using global attributions
(e.g., [Covert et al., 2020, |Lundberg et al., 2020]).

One of the most popular approaches to feature attribution
uses methods originating from cooperative game theory that
are called solution concepts or values. They measure the im-
portance of each player in, or contribution to, a coalitional
game. While there exist many ways in which the importance
of each player can be evaluated, some solution concepts
are considered more fundamental than others due to under-
lying axiom systems that uniquely determine them. One
important game-theoretic solution concept that attracted a
lot of attention in the context of explainability is the Shap-
ley value (e.g., [Lundberg et al., 2020, Lundberg and Lee,
2017, §trumbelj and Kononenko| [2014, [Sundararajan et al.,

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:a.karczmarz@mimuw.edu.pl
mailto:tpm@mimuw.edu.pl
mailto:anish@mimuw.edu.pl
mailto:sank@mimuw.edu.pl
mailto:wygos@mimuw.edu.pl

2017])). To formally introduce this concept, let us denote
by (g, U), a coalition game where g : 2V — R, g(0) = 0,
is the set function that assigns utility to each coalition, and
U ={1,...,n} is the set of players (or — in our context —
features). Then, the Shapley value of the feature ¢ € U is
defined as follows [Shapleyl [1953]]:

>

" sCoiiy

n—1\"")
("s) @U@ -as). o

To operationalize this formula in our context, we further
need to define function g that extends model f to all subsets
of features S C U, i.e., g allows us to drop features U \ S
of both the input z and the model f. There are multiple
alternatives of how this can be done proposed in the litera-
ture [[Sundararajan and Najmi, 2020} Janzing et al.|[2020]]. In
this paper, we focus on a popular approach by Lundberg and
Lee| [2017] (see Section [2] for more details). Furthermore,
it should be noted that, while the Shapley value has certain
attractive properties, it is evident from the above formula
that, in the general case, it requires the input of exponential
size (i.e., function g). However, in certain structured environ-
ments, when g is of a convenient form or is limited in size,
Shapley value can be computed in time polynomial in the
number of players (features) [Deng and Papadimitriou, [1994]
Greco et al., 2015, [Michalak et al., 2013, Maafa et al., [2018]],
e.g., for tree ensemble models [Lundberg et al., [2020].

The Shapley value is not the only solution concept that
has been advocated for interpreting model predictions. The
Banzhaf value |Banzhaf] [1963] is the most well-studied
alternative for Shapley value coming from the coalitional
game theory and some papers indeed suggest using it for
the purpose of interpreting model predictions [Datta et al.,
2015/ [Patel et al.l 2020, [Sliwinski et al., 2019]]. This value,
also well-known and axiomatized, aggregates contributions
of individual features differently:

o Y GSUi-es). O

SCU\{i}

Bi =

Mathematically, while the Shapley value is the weighted
average of marginal contributions of players to coalitions,
the Banzhaf value is a simple average.

Unfortunately, the difference between these two values
when applied to feature attribution has not been under-
stood well in the literature. We note that attributions based
on Shapley value have been extensively studied experi-
mentally [Lundberg et al., 2020, Lundberg and Lee} 2017,
§trumbelj and Kononenko| 2014} |Sundararajan et al., 2017],
whereas in the case of Banzhaf value, such studies have
been done only on some basic datasets [Datta et al.,[2015]
Sliwinski et al., 2019, |Patel et al., 2020]. Moreover, despite
very high similarity of both methods, to the best of our
knowledge, no comparison between them has been done on
real-world data-sets, e.g., [Patel et al.| [2020] compares on

a single depth-3 tree, whereas |Patel et al.| [2021]] uses both
methods for vocabulary selection in different NLP tasks
without directly comparing these methods. For complete-
ness, we review other explanation methods in Appendix [C|

The primary theoretical property that distinguishes the Shap-
ley value from the Banzhaf value, is that of so-called Effi-
ciency, that the individual importances ¢; sum up to pre-
cisely g(U)Several authors (e.g., [Aas et al., 2021} |Sun+
dararajan and Najmi|, |2020]) find a similar property desir-
able for attribution methods: that the attributions sum up
precisely to the difference between the output of the model
and the baseline/mean prediction of the model. However,
this does not always seem crucial e.g., if we only want to
compare impacts of individual features, and is not guar-
anteed by other attribution methods used in practice, e.g.,
LIME [Ribeiro et al.,|2016]]. Furthermore, it is also possi-
ble to consider the normalized Banzhaf value that satisfies
Efficiency Van den Brink and Van der Laan| [1998]].

Our contribution. In this paper we partially fill the gap
by providing a comprehensive analysis of the Banzhaf value,
including its comparison to the Shapley value, when applied
to explainability of tree ensemble models. In particular, our
contributions can be summarised as follows.

We first show that, for tree ensemble models, when using
the same natural set function g as in [Lundberg and Leel
2017, Lundberg et al.,|2018|,[2020]], Banzhaf value can be
computed in linear time, noticeably faster than the Shapley
value. Specifically, we develop an O(TL + n) time algo-
rithm for computing the Banzhaf value-based attribution of
a tree ensemble model’s output. Here, 7' is the number of
trees, L is the maximum number of leaves in a tree, and n is
the number of features. In comparison, the state-of-the-art
Shapley value-based algorithm by [Lundberg et al.| [2018],
2020]] runs in O(TLD? + n) time, where D denotes the
maximum depth of a tree in the ensemble. We note that
recent papers [[Arenas et al.|[2021} den Broeck et al.| |[2021]]
do not improve this complexityﬂ but extend the method to
more complex models insteadE] We stress that our algorithm
is asymptotically optimal, since even the description of a
tree ensemble has size O(T'L), and the output size is O(n).

On the technical level, the algorithm of [Lundberg et al.

!The Shapley and Banzhaf values satisfy similar set of axioms,
except for the Banzhaf value, the Efficiency axiom is replaced with
so-called 2-Efficiency axiom.

?In fact, these papers only focus on proving polynomial time
complexity, and neither bound nor optimize the degrees of the
actual polynomials involved. Obtaining low-degree polynomial
time algorithms is crucial from the practical point of view.

3Though, not always without loss of generality with respect
to [Lundberg et al.,|2018] 2020]]. For example, decision trees cap-
tured by the class of boolean circuits studied in [Arenas et al.|
2021]] seem to forbid using a single feature for splitting multiple
times on a root-leaf path of a decision tree.

[2018] 2020, reduces computing (¢;); to finding indi-
vidual leaf contributions to the attribution, one per each
leaf/feature pair (I,) such that ¢ is used as a split feature
in some ancestor of [. This goal is achieved using a top-
down recursive algorithm whose running time is inherently
Q(TLD) (i.e., super-linear in the input size) simply because
there can be ©(T'LD) such leaf/feature pairs. This bound
still holds even when this approach is applied to computing
a Banzhaf-value attribution. In our approach, leaf contri-
butions are aggregated using a more efficient bottom-up
dynamic programming approach, which requires only a lin-
ear number of auxiliary values to be computed.

In the experiments, our algorithm visibly outperforms all
other algorithms, and can lead to considerable time savings
when computing feature importances for decision tree-based
models in practice. Moreover, we analytically prove that
for trees of depths that commonly occur in practice, our
algorithm for the Banzhaf value delivers numerically correct
results. Similar arguments do not seem to be applicable to
the most efficient algorithms computing Shapley value based
attribution even for constant depth trees.

We also perform an experimental comparison of the Banzhaf
and Shapley values for tree ensemble models. For four stud-
ied real-world datasets and using two different approaches
to training tree models, we verify experimentally that both
methods deliver essentially the same average feature im-
portance scores (called global impacts in [Lundberg et al.,
2020]) and very close attributions of individual predictions
despite the differences in the sets of axioms the Banzhaf
and the Shapley values satisfy. However, the Banzhaf value
is more numerically robust than the Shapley value, and only
very small errors are observed in the computations. Overall,
our analysis indicates that for tree models, the Banzhaf value
has two important advantages over the Shapley value. While
both methods deliver comparable attributions, the Banzhaf
value works faster and is less prone to numerical errors.

2 PRELIMINARIES

Let U := {1,...,n} be a set of features. Let = be the input
to the model to be explained. For i« € U, we write z; to
refer to the value of the i-th feature in x. More generally,
for any subset S C U we write xg when referring to the
vector (x;);es. We sometimes talk about random feature
vectors, or consider the values of individual features to be
random variables. We then write X or X respectively. We
write X g to denote the vector of random variables (X;);cs.
Let S denote the complement U \ S.

Tree models. Let f : RV — R be the output function of
the model to be explained. We focus on tree ensemble mod-
els (7)L, where the output f(z) of the model is simply the
average output f7; (x) of its T" individual trees. Following
Lundberg et al.|[2020], we assume the individual trees to

have the number of leaves bounded by L and depth bounded
by DE] Let us denote by p; the root of the tree 7;.

When talking about an input decision tree 7, we adopt
the notation of [Lundberg et al.,[2020]. 7 is a binary tree
based on single-variable splits: each non-leaf node v € T
is assigned a feature d,,, and a threshold t,,, whereas each
leaf [is assigned a real value f(1). Let a,, b, denote the left
and right children of a non-leaf node v € 7. The output
fr(x) of the tree T is computed by following a root-leaf
path in 7 at a non-leaf node v € T, we descend to a, if
x4, < ty,or to b, otherwise. When a leaf is reached, its
value is returned. Denote by £(T) the set of leaves of 7.
Denote by 7 [v] the subtree of T rooted at v.

Set functions. We write f(zg, Xg) when referring to a
random variable being the value of f if the values for fea-
tures in S are fixed to the respective values of x, and the
values X g are random variables. Let X7 be distributecﬂ as
in the training set of the model f. Recall that a set function
g :2Y — R with g() = 0, has to be fixed to talk about the
Shapley or Banzhaf value-based attributions (¢;);cy and
(B:):ieu as defined in Equations () and (2)), resp., Lundberg
et al| [2020] and Janzing et al.|[2020] suggest using the
following idealizecﬂ set function g* for feature attribution:

9" (9) ==E[f(zs, X5)] — E[f(Xv)]. ©)

Note the term E[f(Xy)] in (3) serves the purpose of having
g(0) = 0 and cancels out when computing the Shapley value
from Equation (I). Thus, for simplicity in the following we
can redefine ¢*(S) := E[f(z s, X3)].

Using the idealized set function g* would be computation-
ally too costly. Consequently, [Lundberg et al.| [2020] in
their TREESHAP_PATHE] algorithm considers the set func-
tion g whose purpose is to “approximate” g*. Namely,
g(S) ~ g*(S) is computed as shown in Algorithm 1} This
method dates back to the classical work of |Friedman| [2001]]
and is also implemented as a way to compute partial de-
pendence plots in the scikit-learn package [Pedregosa et al.l
2011]). Its one advantage is that it does not require access
to the training data, but merely to the “coverages” r,, of all
the subtrees 7 [v] (for all trees 7 in the ensemble), i.e., the
numbers of training set points that fall into 7 [v]. It can be

“This is merely for clarity of the obtained time bounds. See
discussion after Theorem|[T]

5In fact, here we can use any other distribution, possibly
over some different validation data, such that the expectations
E[f(zs, X5)] can be estimated using Algorithm|[I] This allows us
to produce attributions that are contrastive to other baselines than
the mean prediction over the training data.

%1t might seem that using marginal expectation instead of con-
ditional expectation here leads to inclusion of unrealistic data when
features are highly dependent. However, Janzing et al.|[2020] gave
some compelling reasons why this is still a reasonable choice.

"We will sometimes use an abbreviated name TREESHAP.

Algorithm 1 Estimating E[f (x5, Xg)]

1: function DESC(S, v)

2 if v is a leaf then
3 return f(v)
4 if d, € S then
5: if x4, <1, then
6.

7

8

9

return DESC(S, a,)
else
return DESC(S, b,)

else
10: return

-DEsc(S, a,) + Uv -DESc(S, by)

11: function g(.5)
12: return & - Y7 Desc(S, pi)

proved that this method approximates E[f(zg, Xg)] well
if the individual feature random variables X; are indepen-
dent. With such a set function g, Lundberg et al.| [2018|
2020]] show how to compute the Shapley value attributions
(¢:)icv exactly in O(TLD? + n) time.

In the remaining part of the paper, we denote by ¢(S)
the output of Algorithm E] for the subset S C U, i.e.,
we consider the same approximation of ¢g*(S) as in the
TREESHAP_PATH algorithm of Lundberg et al.| [2020].

3 THE BANZHAF VALUE ALGORITHM

In this section, we introduce an optimal O(T'L + n) time al-
gorithm, called BANZHAF, for computing attributions based
on the Banzhaf value. For clarity, let us assume first that
there is just a single tree 7 in the model, i.e., T = 1. This is
without loss of generality, since the prediction of an ensem-
ble model is simply the average of the predictions produced
by individual trees. We describe the algorithm for arbitrary
T later on. Due to space constraints, the proofs of technical
lemmas can be found in Appendix

Let p denote the root of 7, and p,, the parent of node v € T,
v # p. Furthermore, let F;, be the set of features assigned
to the ancestors of v, i.e., F, = (), and F, = F,,, U {d,,}
for v # p. The value P[v] = r,/r, can be thought as the
probability that the model returns a value from 7 [v].

Algorithm|T|computes the estimate E[f(zg, Xg)]. Observe
that the output of this algorithm for S = () is precisely equal
t0 > er () Plll - f(1). More generally, denote by Plv, 5]
the weight from the ancestor recursive calls assigned to
the subtree rooted at v when running Algorithm [T] with an
arbitrary S C U. Formally, P[p, S] = 1, and for any v # p,

Plpy, ST+ 7 ifd,, ¢S,
Plv,S] = Plpy,S] - [za, <tp,] ifdy, €5,v=aq,,
Plpy, 8] - [xa,, >1tp,] ifd,, € S,v="0,,.

Then, the algorithm outputs

> PLS]- (1)

leL(T)

=g ~g'(S). @

In our approach, each of the desired attributions /3; is ob-
tained by summing the contributions of each individual leaf
1 € L(T) to the sum (@) with g defined as in (). More
precisely:

l
s= > (29

lel(T)

Y (PlLSU{] -

SCU\{i}

P[L, S])

We now introduce the following crucial intermediate values
that will enable us to evaluate the above formula efficiently.
For any v € T, and subset G C U, let

1
= it > P, S (5)

SCG

Bv,G)

Lemma 1. For any i € U, we have:

Bi= 3 2/()- (B~

lel(T)
i€ F

Al Fi\{i})).

Lemma [I]reduces computing the Banzhaf value to comput-
ing O(L) values of the form (I, F}), and O(L - D) values
of the form (I, F; \ {i}), for all (I,¢) such thatl € L(T)
and i € F}. The O(L - D) bound follows since each leaf has
no more than D ancestors, which implies |F;| < D.

In the following part of the section, we first give a recursive
formula for computing the values (v, G) efficiently using
dynamic programming. Next, we show a simpler O(LD)
time algorithm computing all the values (-, -) required by
Lemma [T} As a final step, we show how to improve the
worst-case running time of the algorithm to optimal O(L).

Recurrence. To proceed, we will need the auxiliary values
A, forv e T and y € U, defined inductively as follows:

1 ifv=p,
Ap oy ifd,, # y and v # p,
Avy =S A T, <t r, i dp, =y and
Pou,Y [Yy pv} Tpy fp = ?é JeX d
. = Yy an
Apu,y [yztpv}'i

by bp,u =v #p.

The above auxiliary values can be in turn used to recursively
compute the values P[-, -].

Lemma 2. Letv € T and Q CU andy € U \ Q. Then:

P[U>Q U {y}] = P[va] . Av,y'

Algorithm 2 Computing S[I] = 3(l, F}) forall i € L(T).

procedure TRAVERSE(V)
ifd, € I then
present := true > record that d,, in F},,

b=t Al > b= B, Fy, \ dy,)

1:
2
3
4
5: else
6: present := false
7
8
9

F:=FU{d,,} > ensure ' = F),
b= B[py] > b= B(pe, Fp, \ dp,)
© Oola = 0[dp,]
10: if v = a,, then
11: 6ldp,] = dldp,] - [zy <1p,]- r%;
12: else
13: 6ldp,] = d[dp,] - [zy = tp,] - TTTUU

14: 0*[v] := d[dp,]
15: b:=b-ry/rp,
16: B]:=0b-L(1+6[dp,])
17: ifv ¢ L(T) then

> store Amdm for future use

>b= B(pvvFv
> Lemma 3

18: TRAVERSE(ay)

19: TRAVERSE(b,)

20: if present = false then > revert changes to F| §
21: F:=F\d,p,

22: 5[dpu} ‘= Oold

Lernma applied to (3)) allows computing the values 3(v, G)
recursively, as stated in the below lemmas.

Lemma 3. Letv € T and G CU. Lety € U \ G. Then:

Bv,GU{y}) = 5 (1+ Ay y) B(v, G).

N | =

Lemmad. Letv € T, v # p. Then, forany Q C U\ {d,, },

6(”)@) = ﬁ(me) : va

Pv

3.1 BASIC ALGORITHM

Equipped with Lemmas [3] and 4] one can easily move be-
tween “nearby” values §(G,v). Namely, for any i € U,
given ((v,G) and A, ;, each of the values ((a,,G),
B(by, G), B(v, G U {i}) can be computed in O(1) time.

Moreover, the values 3(p,, G), S(v,G \ {i}) can also be
obtained in O(1) time by applying the respective “inverse’
forms of these lemmas. We now stress that being able to
compute S(v, G \ {i}) out of a value of the form 3(v, G),
i.e., removing elements from the feature set G, is crucial for
two reasons. First, recall that we need to obtain values of
the form S(I, F; \ {¢}) for all leaves [and all i € F;. For
all such ¢, this value can be obtained using a single inverse
application of Lemma [3] Moreover, applying Lemma 4] to

]

obtain (v, F,) out of the parent value 3(p,, F},) requires
dp, ¢ Fp,. This may be violated if F}, = F, , i.e., dp, is
a feature in some other ancestors of v in the tree (which
does happen in practical models). In such a case, the inverse
Lemma [3] can be used to first compute 3(p., I, \ {dp, }).
then we apply Lemma [4] to obtain (v, F, \ {d,, }), and
finally we again use Lemmal[3|to get 8(v, F,).

The basic algorithm (which is similar in its essence to
TREESHAP_PATH), computes all the values (v, F,) for
v € T — as explained above — using a simple recursive
tree traversal in O(L) time. In particular, this also gives all
the values (I, F}) that we need when invoking Lemma 1}
Afterwards, for each leaf [€ 7T, the remaining (again, re-
quired by the formula in Lemmall) |F}| values of the form
B(1, F;\{i}) for i € F; can be computed in O(1) extra time
each using Lemma [3} As a result, through all pairs (I,4),

this takes O (Zlec(ﬂ |Fl|) = O(LD) time.

The above analysis silently assumed that all the needed
auxiliary values A, ,, can be accessed in O(1) time. We now
justify this assumption. During the tree traversal we store
a global array § indexed with the features U. We maintain
an invariant that §[y] equals A, , when the processing of a
vertex v starts and also when it finishes. By (3)), to guarantee
the invariant is satisfied upon the recursive traversals of the
subtrees rooted at a,, or b,, we may possibly need to update
only the value §[d, | according to (3)), because A, ,, # A, 4
or A, 4 # Ay, , may only happen when y = d,,. When a
recursive traversal returns, we revert that change to d[d,].

The pseudocode of a recursive procedure TRAVERSE com-
puting all the values §(I, F}), which we also require in our
optimal algorithm, is given as Algorithm [2] In this proce-
dure, each of the computed values (v, F,) is recorded in a
global array as 3[v]. The auxiliary global variable F stores
the set F,, when node v is processed; F' can be implemented
using a bitmap of size n.

3.2 THE OPTIMAL ALGORITHM

The high-level idea behind our improved algorithm is to
avoid computing all the leaf contributions to the individual
components 3; of the Banzhaf value separately. Instead, for
every node v € 7, v # p, such that d,,, = i, we compute
the total contribution to 3; of all the leaves £, C T[v],
defined to be the subset of leaves for which v constitutes
the nearest weak ancestor (i.e., a node is considered its own
ancestor) with d, = 7, at once.

Note that for a given ¢ € U, the sets L, for v € T satisfying
dp, = i, are pairwise disjoint, and in fact form a partition
of the set {I € L(T) : i € F;} through which summation
in Lemma [T]is performed. Additionally, observe that the
values A; 4, are equal to A, 4, for all leaves [in L.

Algorithm 3 Computing the values B(v) forallv € T.

: procedure FAST(v)
Hld,,].PUSH(v)
ifv € L(T) then

S[v] = f(v) - B[]

1
2
3
4
5: else
6.
7
8
9

: z = > z stores the sum >, o S(w)
10: while H[d,, |.TOP() # v do

11: z:=z+ S[H]d)p,].Top()]

12: Hld,,].Pop()
13: Blv] := S[v] —

14: if |[H[d)p,]| =1 then
15: Hld,,].Pop()

>empty H(d,, | if g, =L

Consider the following values for all v € T, v # p:

Zf B(l, Fy).

leL,

The below lemma shows that computing the Banzhaf value
[can be reduced, in linear time, to computing all the values
B(v),v € T \ {p}: indeed, each B(v) appears in the sum
below for precisely one 7 € U.

Lemma 5. Foranyi € U, we have:

2(A,;— 1)
J— E -~ > 7 .RB .
fi 1+ Ay, (v)
vET\(e} :

We have previously showed that the values §(I, F;) can
be computed in linear time. We now describe a recursive
procedure FAST(u), where u # p, computing B(v) for all
v € Tu] in a bottom-up manner. Let

>

veL(T[v])

S(v) = B, F),

that is, S(v) sums the values f(1) - 8(I, F}) in T [v]. Clearly,
foreach ! € L(T), we have S(I) = f(I) - B(l, F}), and for
anon-leaf v € T, S(v) = S(ay)+ S(b,) holds. As aresult,
all the values S(v) can be computed in linear time using a
bottom-up computation over the tree.

Given the sums S(v), we proceed as follows. For v € T, let
Q. be the set of non-leaf nodes w € 7T [v] with dp,,, = dp,
and v is the nearest ancestor of w with dp,, = d,,, . We have:

Lo =L(T])\ (Uwer E(T[w])), and thus

B(v) = S(v) ~ Y Sw)

wWEQy

Algorithm 4 Computing the attributions (5;)?_; of the tree
ensemble model’s (7})21 prediction f(x)

1: function BANZHAFATTRIBUTION(n, (7;)7. i=1)

2 for: € U do > initialize global data
3 Bi = ﬁ[] =0 > (/i) stores the result
4: o[i] :=

5: H[i] = mpty stack

6 = (Z)

7 for = ,T do

8 p = the root node of 7;

9: for v € {a,,b,} do
10: TRAVERSE(v)
11: FAST(v)
12: forve 7;\ {p} do
13: Ba, = Ba, + 1-5-%7”}[7}1) - Blv] DLemma

14: return (51/ T)7, > average through the T trees

Observe that the total size of sets (0, (over all v € T) is
O(L), so if we are allowed to iterate through @), whenever
we wish to compute B(v), the computation of B(v) takes
O(L) time as well. We now explain how to accomplish
this. Let g,, denote the nearest ancestor of w € T with
dy,, = dp, . One way to enable iterating through (), when
v is processed bottom-up, is to maintain, for each feature
j € U, a global stack H[j] containing all the nodes w
such that d,,, = j and that the computation for w (i.e., the
call FAST(w)) has already been started or completed, but
the computation for g,, has not yet completed. The stack
elements are sorted using the pre-order of the nodes of v, so
that the node w with the highest pre-order is at the top of
Hld,,] The stack can be updated in O(1) time whenever a
recursive call starts. Observe that v € H|[d,,, | when FAST(v)
has started but has not yet finished. Now, given H|[d,,], it is
enough to note that Q,, equals precisely the set of elements
of H[d,,] closer to the top of the stack than v. Thus, one
can indeed iterate through @, in O(|Q,|) time as desired.
Moreover, (), constitutes precisely the set of elements that
have to be popped from H[d,,, | when FAST(v) returns. The
asymptotic cost of popping stack elements can charged to
the corresponding pushes and thus can be neglected.

A pseudocode of the procedure FAST computing all the val-
ues B(v) given the values 3(1, F}) is given in Algorithm 3]
In Algorithm] we give a pseudocode of the full algorithm
computing the Banzhaf value-based attributions for a tree
ensemble model (7})?:1 Since the value of such a model is
defined to be the average prediction over all the individual
tree predictions, the final attribution is simply the average
of the individual attributions. We have thus proved:

Theorem 1. Let n = |U|. The Banzhaf value-based at-
tribution (B);cu of a prediction of a tree ensemble model
consisting of T trees with at most L leaves each, can be
computed in optimal O(T'L + n) time.

We remark that if the ensemble contains T trees of very
different sizes, the time can be more precisely bounded by

0] (ZiTzl |T:] + n) , .e., remains optimal in the input size.

Finally, it is worth noting that the above approach to
speeding-up the basic algorithm can be also success-
fully applied to reduce the time complexity of the
TREESHAP_PATH attribution algorithm of |Lundberg et al.
[2020] from O(TLD? + n) to O(TLD + n). Due to space
constraints, we defer the details to Appendix [E]

4 EXPERIMENTAL ANALYSIS

The goals of our experiments are threefold:

» Time performance — first, we test the performance
of the BANZHAF algorithm proposed in the previ-
ous section and compare it to the performance of
the TREESHAP_PATH algorithm by |[Lundberg et al.
[2020]—the state-of-the-art algorithm for the Shapley
value attributions for tree models.

* Qualitative differences — next, we investigate whether
the Banzhaf value returns qualitatively different results
than the Shapley value for tree models.

* Numerical accuracy — finally, we compare numerical
accuracy of both algorithms.

4.1 EXPERIMENTAL SETUP AND DATASETS

In our experiment we use both the sklearn implementation of
Decision Trees (DT) or xgboost implementation of Gradient
Boosting Decision Trees (GBDT). These are some of the
most popular algorithms for generating decision trees and
are quite often used for large depths of trees. Using large-
depth trees is particularly beneficial for datasets with many
features and complex relationship between them (see e.g.,
[Bordag et al., 2021, [Pham et al.,[2019]] for a usage of trees
of depth 100). Let us emphasize that large depth of a tree,
e.g. depth 100, does not mean the size of the tree is 2100,
because trees might be (and usually are) unbalanced. To
simplify the experiments and reduce the their running times,
we trained the DT algorithm to generate only one tree. We
use four “real-world” datasets (see Table E]for key details):

1. BOSTON (abbr. BS). [BS]. This small prediction
dataset contains information concerning housing in the
area of Boston Massachusetts. The task is to predict
the price of the house.

2. NHANES (NH). The same dataset that was used in pre-
vious work on tree model interpretability [Lundberg
et al., 2020]] which our work most closely relates to.
The parameters used for training were the same as in
[Lundberg et al., 2020].

name rows cols tree iter. max learning

depth depth rate
BOSTON 506 I3 10 100 6 0.01
NHANES 8023 79 40 250 4 0.2
VEH.INS. 304887 14 60 250 4 0.2
FLIGHTS 1543718 647 100 250 10 0.2

Table 1: The sizes of datasets and parametrisation of the
experiments. The “tree depth” column reports tree_depth of
the decision tree (DT) with all the other parameters set to

default values. The “iterations”, “max depth” and “learning
rate” columns are the parameters used for training xgboost.

BANZHAF TREESHAP BANZHAF TREESHAP

BS_GB 0.48s 0.70s BS_DT 041s 041s
VI_GB 23.63s 3532s NH_DT 3.57s 42.87 s
NH_GB 5020s 1m28s VDT 4m55s 30m55s
FL_GB 13mi18s 48m8s FL_DT 14m28s 5h9m

Table 2: Running times of the two attribution algorithms on
the entire dataset. We observe that BANZHAF is substantially
faster than TREESHAP_PATH on each instance.

3. VEHICLE_INSURANCE (VI). [VI]. A medium size
dataset for predicting who might be interested in vehi-
cle insurance based on health insurance data.

4. FLIGHTS (FL). [FL]. A large dataset for predicting
the flights’ delays. A large number of columns was
caused by one-hot encoding *UniqueCarrier’, *Origin’,
"Dest’, *CancellationCode’ in a standard way, i.e., for
each possible value v of a given column ¢ we created
additional categorical column c_v (v € {0,1}) indi-
cating that the value of c equals v iff the value of c_v
equals 1.

We will refer to the above datasets by adding “DT” and “GB”
suffixes (for DT and GBDT algorithms, resp.) to the ordinal
name of the prediction dataset. Note that the parameters
were not extensively tuned since our main goal here centers
around interpreting models and not optimizing them.

All our experiments were performed using Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz with 512 Gb of RAM using
only one thread for computation. The operating system was
Ubuntu 18.04.2 LTS. Our linear-time BANZHAF algorithm
was implemented in C++, whereas for TREESHAP_PATH,
we used to original C language implementation from the
SHAP package [SHAP]. The binaries were compiled using
clang version 6.0.0-1ubuntu2 with -O3 optimization.

4.2 COMPARISON OF RUNNING TIMES

In this section, we compare the running times of the algo-
rithms. For each of the instances, the task was to compute the
attributions of all individual data points. In Table[2]we show

the running times for different examples. We conclude that
BANZHAF is consistently faster than TREESHAP_PATH,
and using it can lead to considerable time savings for larger
data-sets. As anticipated by the theoretical worst-case time
complexity analysis, the observed speed-up increases with
the depth of trees in the model.

4.3 COMPARISON OF FEATURE SCORES

We test whether the Banzhaf value assigns qualitatively
different importance to features than the Shapley value. The
comparison is performed from two viewpoints.

Global importance. First, we compare the global impor-
tances of individual features for the model. To this end, we
apply the same measure of global impact of a feature as in
[Lundberg et al., |2020]. Let D be some dataset. Suppose
for each 1 € U we have some feature attribution function
v; : D — R. Let us consider the global impact of the fea-
ture over dataset D measured as I'; = Y 1, |vi(x)|. For
example, we can set y; = ¢; to get a Shapley global impact
®,, or v; = B; to get a Banzhaf global impact B;.

For each of the datasets and algorithms we computed and
plotted the Shapley and Banzhaf global impacts. The ob-
tained plots can be found in Appendix [A]

For NHANES, BOSTON, and VEHICLE_INSURANCE
datasets, the obtained plots of Banzhaf/Shapley global im-
pacts, computed using BANZHAF and TREESHAP_PATH
respectively, are virtually indistinguishable. For the larger
instance based on the dataset FLIGHTS, only very small
differences in the ordering of features by importance can be
observed for both FLIGHTS_GB and FLIGHTS_DT.

Specific data points. We now turn to describing how
much the obtained Banzhaf and Shapley attributions de-
viate from each other for specific data points. To measure
the difference between the feature orderings produced by
both methods, we computed the modified Cayley distance
between the respective orderings of n € {3,10,20} most
important features for each data point, and took the aver-
age over all data points. The Cayley distance measures the
number of swaps needed to switch from one permutation to
another. In our modified version, we also support the case
where the sets of considered most important features in the
respective permutations are different. For a missing feature,
we add it at the end of the permutation. The results are pre-
sented in Table[3] They confirm that the differences are on
average small; in particular for the instances BOSTON_GB,
NHANES_GB, and VEHICLE_INSURANCE_GB, for 98%
of the data points, the respective 3 top features and their
order matched. The orderings deviation was generally larger
for DT instances where larger tree depths were allowed.

We also studied per-feature average differences between
the values of Banzhaf and Shapley attributions for each

Ins/n 3 10 20
BOS_GB 0.02 1.05

Ins/n 3 10 20
BOS_DT 0.08 1.7

NH_GB 0.01 0.34 153 NH_DT 0.29 3.69 10.79
VLGB 0.02 0.73 VDT 0.13 2.60
FL_.GB 04 3.08 8.63 FL_DT 0.18 3.38 10.59

Table 3: The average modified Cayley distance for the n
most important features for n € {3, 10,20} produced by
BANZHAF and TREESHAP_PATH algorithms.

of the datasets. We consider both MAD (Mean Average
Difference) and RMSD (Root Mean Square Difference).
See Appendix |B|for the relevant plots. Formally, for each
dataset D out of those and each feature ¢ used therein, these
are defined as: MAD; = ﬁ > wep |#i(x) — Bi(x)| and

RMSD; = \/l%‘ S ep(0i(x) — Bi())2. Here, ¢;(x) de-
notes the Shapley attribution of f(x) for data point z € D,

as computed by TREESHAP_PATH. Similarly, §;(x) de-
notes the Banzhaf attribution as computed by BANZHAF'.

For the “smaller” instances BOSTON_GB, NHANES_GB,
and VEHICLE_INSURANCE_GB and all features, the ob-
served MAD and RMSD differences did not exceed 5%
of the corresponding global impacts. For the remaining
larger models, the MAD difference did not exceed 20%
for the top features. On the other hand, for the large-
depth FLIGHTS_DT model, the RMSD difference reached
around 50% even for the top features, which suggests there
were data points with very big absolute differences in the
produced attributions. These differences indicate that when
looking at specific data points one should expect only small
differences in the ordering of features and only for features
with similar scores. The differences are expected to be larger
for larger models.

The average error statistics also show an interesting phe-
nomenon that, for the studied datasets and models, the per-
feature Banzhaf and Shapley attributions are very close to
each other even though the Banzhaf value does not satisfy
the Efficiency axiom (in contrast to the Shapley value) and
thus the sum of the produced feature scores does not typi-
cally sum up to the difference between the prediction and
the “baseline” mean prediction E[f (X)].

44 NUMERICAL ACCURACY

The fact that the more significant differences between
the obtained importances arised for large models sug-
gested that the compared attribution algorithms might
suffer numerical problems. To investigate this possibil-
ity and compare numerical stability of BANZHAF and
TREESHAP_PATH, we considered a simple artificially pre-
pared instance SYNTHETIC_SPARSE for which we know
the answer for both the Shapley value and the Banzhaf value.

1091 — Shapley algorithm numerical error
Banzhaf algorithm numerical error

10°

10!
1073
10-7
lo—]l

-
20 40 60 80 100
tree denth

Figure 1: The numerical error for SYNTHETIC_SPARSE.

Inthe SYNTHETIC_SPARSE instance, the set of features is
U ={1,...,d}, where d is a depth parameter. The instance
contains one tree and one data point x = [1,...,1] € R9.
The tree consists of two subtrees of the same shape and
depth d — 1. All values f(I) in the leaves are equal to 0 and
777 in the left and the right subtree of the root, resp. All
leaves [have coverages equal to 33. Every internal node of
depth ¢ has one leaf child, and one non-leaf child, whose
(inductively defined) subtree has depth ¢ — 1. The split con-
dition in an internal node at depth ¢ is z4—; < 1. In this
instance, the only feature with a nonzero Shapley/Banzhaf
importance, equal to 388.5, is the feature d used to split at
depth 0. All other features have importances equal to Oﬂ

We have observed that for trees of depth d ~ 50,
errors dominate the results, i.e., the relative error ex-
ceeds 1. In Figure [I] we visualise the mean absolute
errors for TREESHAP PATH and BANZHAF for the
SYNTHETIC_SPARSE instance.

We now give a potential reason why the Banzhaf value-
based implementations may be much more stable in terms
of the produced relative errors. Recall that the values 5(, F})
foralll € £(T), i € F; are computed via dynamic pro-
gramming using Lemmas [3|and 4] Hence, they are all com-
puted via multiplications and divisions on positive numbers
roughly between 0.5 and r,. In fact, the intermediate values
B(v, F,) can be obtained via O(1) applications of Lem-
mas [3| and [4] from the “parent” value 3(p,, F},,). Such a
computation can be proven to introduce a multiplicative
error between 1/(1 4 ¢€)9™ and (1 + €)™, where e is the
machine epsilon. This in turn implies a relative error bound
of (1+¢)°(M) — 1. Moreover, by induction on the tree depth,
we can easily obtain (see Appendix [Ffor a proof):

Lemma 6. The leaf values 3(1, F;) can be computed with
relative error at most (1 + €)°(P) — 1.

This bound is quite pessimistic and at the same time not
very large if double precision is used and the tree depth

8This follows by the sensitivity axiom (see, e.g., [Janzing et al.|
2020]]) that both Banzhaf and Shapley values satisfy.

D is small enough. On the other hand, if one considers
computing the Shapley value attributions, if one wants to
retain the O(LD?) time bound of the TREESHAP_PATH
algorithm [Lundberg et al.,[2020], then it seems that subtrac-
tions of intermediate values are inherent. Roughly speaking,
this is because for Shapley-based attributions, if one ap-
plies an analogous dynamic programming approach, then
the Shapley-analogue of Lemma 3|involves a recursive for-
mula that is a sum of two “earlier” dynamic programming
cellsﬂRecall, however, that our (and also Lundberg et al.’s)
approach also required inverse applications of Lemma
especially when a single feature may appear multiple times
on a root-leaf path. For Shapley value such an inverse appli-
cation involves subtraction of equally-signed numbersm

It is unclear if a similar (to Lemma [6) relative error bound
can be proven in presence of such subtractions, which in
general may lead to so-called catastrophic cancellations.

S CONCLUSIONS

The contribution of this paper is twofold. First, we have
developed an efficient algorithm for computing feature im-
portance measures for tree ensemble models that is based
on the Banzhaf value. This result improves the running time
of previous state of the art. Second, we have presented the
first extensive comparison between the Shapley and Banzhaf
values in this context. We observe that both methods deliver
attributions of essentially the same strength by returning
almost the same ordering of features. However, these ex-
perimental results indicate that the Banzhaf value has an
important advantage over the Shapley value, i.e., it allows
for faster algorithms as well as these algorithms make much
lower numerical errors.

We stress that this work identifies some computa-
tional/practical advantages of using the Banzhaf value com-
pared to the Shapley value for feature attribution in tree
ensemble models (in particular, the algorithm by [Lundberg
et al.| [2020] that is commonly used by the practitioners). It
would be also very interesting to compare the Shapley-based
and Banzhaf-based attributions qualitatively. We believe that
such a comparison requires a much more exhaustive study
and is beyond the scope of this paper. However, it is, in our
opinion, a very a compelling direction for future research.

Acknowledgements

This work has been partially supported by the ERC
CoG grant TUgbOAT no 772346 and NCN project no
2020/37/B/ST6/04179.

We thank the anonymous reviewers for useful comments.

%See Lemmain Appendix []E}
1%In the original TREESHAP algorithm subtractions of this kind
manifest in line 31 of [Lundberg et al.| 2019| Algorithm 2].

References

Kjersti Aas, Martin Jullum, and Anders Lgland. Explaining
individual predictions when features are dependent: More
accurate approximations to shapley values. Artif. Intell.,
298:103502, 2021. doi: 10.1016/j.artint.2021.103502.

M. Ancona, Enea Ceolini, C. Oztireli, and M. Gross. To-
wards better understanding of gradient-based attribution
methods for deep neural networks. In ICLR, 2018.

Marcelo Arenas, Pablo Barceld, Leopoldo Bertossi, and
Mikaél Monet. The tractability of shap-score-based ex-
planations for classification over deterministic and de-
composable boolean circuits. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8):6670-6678,
May 2021.

S. Bach, Alexander Binder, Grégoire Montavon,
F. Klauschen, K. Miiller, and W. Samek. On pixel-wise
explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE, 10, 2015.

David Baehrens, Timon Schroeter, Stefan Harmeling, Mo-
toaki Kawanabe, Katja Hansen, and Klaus-Robert Miiller.
How to explain individual classification decisions. Jour-
nal of Machine Learning Research, 11(61):1803-1831,
2010.

J.F. Banzhaf. Weighted voting doesn’t work: A mathemati-
cal analysis. Rutgers Law Review, 19(2):317-343, 1965.

Natalie Bordag, Elmar Ziigner, Pablo L6pez-Garcia, Selina
Kofler, Martina Tomberger, Abdullah Al-Baghdadi, Jes-
sica Schweiger, Yasemin Erdem, Christoph Magnes, Saiki
Hidekazu, Wolfgang Wadsak, Bjorn-Thoralf Erxleben,
and Barbara Prietl. Towards fast, routine blood sample
quality evaluation by probe electrospray ionization (pesi)
metabolomics. medRxiv, 2021. doi: 10.1101/2021.04.18.
21254782.

L. Breiman. Random forests. Machine Learning, 45:5-32,
2004.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and
Charles J Stone. Classification and Regression Trees.
CRC Press, 1984.

Jonathan Brophy and Daniel Lowd. Trex: Tree-
ensemble representer-point explanations. arXiv preprint
arXiv:2009.05530, 2020.

BS. BOSTON dataset, 2022. URL https!
//www.cs.toronto.edu/~delve/data/
boston/bostonDetail.html.

S. Chebrolu, A. Abraham, and J. Thomas. Feature deduc-
tion and ensemble design of intrusion detection systems.
Comput. Secur., 24:295-307, 2005.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 785-794. ACM, 2016.

Ian Covert, Scott M. Lundberg, and Su-In Lee. Understand-
ing global feature contributions with additive importance
measures. In Hugo Larochelle, Marc’ Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

A. Datta, Shayak Sen, and Yair Zick. Algorithmic trans-
parency via quantitative input influence: Theory and ex-
periments with learning systems. IEEE Symposium on
Security and Privacy (SP), pages 598-617, 2016.

Amit Datta, Anupam Datta, Ariel D. Procaccia, and Yair
Zick. Influence in classification via cooperative game
theory. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IICAT’ 15, page 511-517.
AAALI Press, 2015. ISBN 9781577357384.

Guy Van den Broeck, Anton Lykov, Maximilian Schleich,
and Dan Suciu. On the tractability of SHAP explanations.
In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 6505-6513. AAAI Press, 2021.

Xiaotie Deng and Christos H. Papadimitriou. On the com-
plexity of cooperative solution concepts. Math. Oper:
Res., 19(2):257-266, 1994.

FL. FLIGHTS dataset, 2022. URL https!
//www.kaggle.com/abdurrehmankhalid/
delayedflights.

Jerome H. Friedman. Greedy function approximation: A
gradient boosting machine. Ann. Statist., 29(5):1189—
1232, 10 2001.

Gianluigi Greco, Francesco Lupia, and Francesco Scar-
cello. Structural tractability of shapley and banzhaf val-
ues in allocation games. In Qiang Yang and Michael J.
Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence,
1JCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 547-553. AAAI Press, 2015.

Nicholas J. Higham. Accuracy and stability of numerical
algorithms, Second Edition. SIAM, 2002. ISBN 978-0-
89871-521-7. doi: 10.1137/1.9780898718027.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/abdurrehmankhalid/delayedflights
https://www.kaggle.com/abdurrehmankhalid/delayedflights
https://www.kaggle.com/abdurrehmankhalid/delayedflights

V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts.
Inferring regulatory networks from expression data using
tree-based methods. PLoS ONE, 5, 2010.

Dominik Janzing, Lenon Minorics, and Patrick Blobaum.
Feature relevance quantification in explainable Al: A
causal problem. In The 23rd International Conference
on Artificial Intelligence and Statistics, AISTATS, volume
108, pages 2907-2916. PMLR, 2020.

Kaggle. 2017 kaggle machine learning & data science
survey, 2017. URL |https://www.kaggle.com/
kaggle/kaggle-survey—-2017.

P. Kindermans, Kristof T. Schiitt, M. Alber, K. Miiller, D. Er-
han, Been Kim, and S. Dihne. Learning how to explain
neural networks: Patternnet and patternattribution. In
ICLR, 2018.

Igor Kuralenok, Vasilii Ershov, and Igor Labutin. Monofor-
est framework for tree ensemble analysis. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 13780-13789, 2019.

S. Lipovetsky and M. Conklin. Analysis of regression in
game theory approach. Applied Stochastic Models in
Business and Industry, 17:319-330, 2001.

Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In Advances in Neural
Information Processing Systems, volume 30, pages 4765—
4774. Curran Associates, Inc., 2017.

Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consis-
tent individualized feature attribution for tree ensembles.
arXiv preprint arXiv:1802.03888, 2018.

Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J.
DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. Ex-
plainable Al for trees: From local explanations to global
understanding. CoRR, abs/1905.04610, 2019. URL
http://arxiv.org/abs/1905.04610.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex De-
Grave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. From local
explanations to global understanding with explainable Al
for trees. Nature Machine Intelligence, 2(1):56-67, Jan
2020.

Khaled Maafa, Lhouari Nourine, and Mohammed Said Rad-
jef. Algorithms for computing the shapley value of coop-

erative games on lattices. Discrete Applied Mathematics,
249:91-105, 2018.

Tomasz P Michalak, Karthik V Aadithya, Piotr L Szczepan-
ski, Balaraman Ravindran, and Nicholas R Jennings. Effi-
cient computation of the shapley value for game-theoretic
network centrality. Journal of Artificial Intelligence Re-
search, 46:607-650, 2013.

Neel Patel, Martin Strobel, and Yair Zick. High dimensional
model explanations: an axiomatic approach, 2020.

Roma Patel, Marta Garnelo, Ian M. Gemp, Chris Dyer, and
Yoram Bachrach. Game-theoretic vocabulary selection
via the shapley value and banzhaf index. In NAACL, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Hung N. Pham, T. T. Do, Kelvin Yi Jie Chan, Gopa Sen,
Andy Han, Pier Lim, Teresa Siew Loon Cheng, Quang H.
Nguyen, Binh P. Nguyen, and Matthew C. H. Chua. Mul-
timodal detection of parkinson disease based on vocal and
improved spiral test. 2019 International Conference on
System Science and Engineering (ICSSE), pages 279-284,
2019.

Gregory Plumb, Denali Molitor, and Ameet S Talwalkar.
Model agnostic supervised local explanations. In Ad-
vances in Neural Information Processing Systems, vol-
ume 31, pages 2515-2524. Curran Associates, Inc., 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Why should I trust you?: Explaining the predictions of
any classifier. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

A. Roth. The shapley value : essays in honor of Lloyd S.
Shapley. Cambridge University Press, 1988.

A. Saabas. Treeinterpreter python package, 2022.
URL https://github.com/andosa/
treeinterpreter.

M. Sandri and P. Zuccolotto. A bias correction algorithm
for the gini variable importance measure in classification
trees. Journal of Computational and Graphical Statistics,

17:611 - 628, 2008.

SHAP. SHAP python package, 2022. URL https://
github.com/slundberg/shapl

https://www.kaggle.com/kaggle/kaggle-survey-2017
https://www.kaggle.com/kaggle/kaggle-survey-2017
http://arxiv.org/abs/1905.04610
https://github.com/andosa/treeinterpreter
https://github.com/andosa/treeinterpreter
https://github.com/slundberg/shap
https://github.com/slundberg/shap

L. S. Shapley. A Value for n-Person Games. Contributions
to the Theory of Games 2.28, pages 307-317, 1953.

A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kun-
daje. Not just a black box: Learning important fea-
tures through propagating activation differences. ArXiv,
abs/1605.01713, 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje.
Learning important features through propagating activa-
tion differences. In Proceedings of the 34th International
Conference on Machine Learning, ICML, volume 70,
pages 3145-3153. PMLR, 2017.

Jakub Sliwinski, Martin Strobel, and Yair Zick. Axiomatic
characterization of data-driven influence measures for
classification. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):718-725, Jul. 2019.

Jost Tobias Springenberg, A. Dosovitskiy, T. Brox, and Mar-
tin A. Riedmiller. Striving for simplicity: The all convo-
lutional net. CoRR, abs/1412.6806, 2015.

Erik Strumbelj and Igor Kononenko. Explaining prediction
models and individual predictions with feature contri-
butions. Knowl. Inf. Syst., 41(3):647-665, 2014. doi:
10.1007/s10115-013-0679-x.

Mukund Sundararajan and Amir Najmi. The many shapley
values for model explanation. In Proceedings of the 37th
International Conference on Machine Learning ICML,
volume 119, pages 9269-9278. PMLR, 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-
iomatic attribution for deep networks. In Proceedings of
the 34th International Conference on Machine Learning,
ICML, volume 70, pages 3319-3328. PMLR, 2017.

Rene Van den Brink and Gerard Van der Laan. Axiomati-
zations of the normalized banzhaf value and the shapley
value. Social Choice and Welfare, 15(4):567-582, 1998.

VI. VEHICLE INSURANCE dataset, 2022. URL
https://www.kaggle.com/anmolkumar/
health-insurance-cross—-sell-prediction?
select=train.csv.

Matthew D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In ECCV, 2014.

https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction?select=train.csv
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction?select=train.csv
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction?select=train.csv

A GLOBAL IMPACTS COMPARISON

ysical_activity

ic_acid

rum_protein
ine_albumin_isNegative
matocrit

tal_bilirubin

0.0 0.2 0.4 0.6 0.8

(a) Global Shapley impact obtained with TREESHAP_PATH.

1.0

ysical_activity

ic_acid

rum_protein
ine_albumin_isNegative
matocrit

tal_bilirubin

0.0 0.2 0.4 0.6 0.8 1.0

(b) Global Banzhaf impact obtained with BANZHAF'.

Figure 2: The global impacts of individual features for the NHANES_ GB dataset.

e
lapsedTime

T
0 25 50 75 100

T
125

e
lapsedTime

T T
0 25 50 75 100 125

(a) Global Shapley impact obtained with TREESHAP_PATH. (b) Global Banzhaf impact obtained with BANZHAF'.

Figure 3: The global impacts of individual features for the FLIGHTS_DT dataset. We observe small differences in the
ordering of less important features.

0.0 0.5 1.0 1.5 2.0 2.5

(a) The original Shapley value.

Figure 4: The global impacts of the individual features for the BOSTON_GB dataset. We observe that the plots are

indistinguishable.

Sales _Channel

more__ 2 Years
riving_License

0.0 0.5 1.0 1.5 2.0

(a) The original Shapley value.

Figure 5: The features’ global impacts for the VEHICLE_INSURANCE_GB dataset. We observe that the plots are indistin-

guishable.

0.0 0.5 1.0 1.5

(b) The Banzhaf valufe.

2.5

Sales Channel

more__2 Years
riving_License

0.0 0.5 1.0 1.5

(b) The Banzhaf value.

2.0

0 25 50 75 100 125 0 25 50 75 100 125
(a) The original Shapley value. (b) The Banzhaf value.

Figure 6: The global impacts of the individual features for the FLIGHTS_GB dataset. We observe small differences in the
ordering.

10 [o]
D D
X X
DUS N
N DUs
HAS HAS
0 1 2 3 A 5 0 1 2 3 a
(a) The original Shapley value. (b) The Banzhaf value.

Figure 7: The global impacts of the individual features for the BOSTON_DT dataset. We observe minor differences between
plots.

T T T T T T
0 200 400 600 800 1000 1200

(a) The original Shapley value.

lood_pressure

m_protein
m_albumin

e blood cells
atocrit

0 2 4 6

(a) The original Shapley value.

more__ 2 Years

T T T T T
0 200 400 600 800 1000

(b) The Banzhaf value.

Figure 8: The features’ global impacts for the VEHICLE_INSURANCE_DT dataset. The plots are almost indentical.

blood_pressure

_pressure
| blood_cells
m_protein
m_albumin

te blood cells
atocrit

oT
aline_phosphatase

0 2 4 6

(b) The Banzhaf value.

Figure 9: The global impacts of the individual features for the NHANES_DT dataset. The plots are almost identical.

B PER-FEATURE MAD AND RMSD DIFFERENCES

LSTAT
RM
CRIM
DIs
NOX
PTRATIO

TAX
INDUS

ZN

CHAS

T T T T T
0.00 0.01 0.02 0.03 0.04
(a) MAD difference.

LSTAT
RM
CRIM
DIS
NOX
INDUS
PTRATIO

TAX

ZN
CHAS

(b) RMSD difference.

Figure 10: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the BOSTON_GB dataset.

age
systolic_blood_pressure
sedimentation_rate
sex_isFemale
cholesterol
alkaline_phosphatase
serum_albumin

bmi
white_blood_cells
physical_activity
serum_protein
hemoglohin
pulse_pressure
red_blood_cells
hematocrit

uric_acid
total_bilirubin

BUN

sodium

sSGOT

T T T T T T T
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

(a) MAD difference.

age
systolic_blood_pressure
sedimentation_rate
cholesterol
sex_isFemale
alkaline_phosphatase
bmi
serum_protein
serum_albumin
white_blood_cells
physical_activity
hemoglobin
uric_acid
hematocrit
red_blood cells
pulse_pressure
urine_glucose_isNegative
BUN
urine_albumin_isNegative

SCSOT I T T T T
0.000 0.001 0.002 0.003 0.004

(b) RMSD difference.

Figure 11: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the NHANES_ GB dataset.

Previously Insured
No

Age
Policy_Sales_Channel
less_ 1 Year
Annual_Premium
Region_Code

Vintage

1-2 Year

Female

_more__2_Years

Driving_License
Yes

Male

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
(a) MAD difference.

Previously_Insured
Age

No
Policy_Sales_Channel
less 1 Year
Annual_Premium
Region_Code
Vintage

1-2 Year

Female
Driving_License

_more__2 Years

Yes

Male

T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030
(b) RMSD difference.

Figure 12: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the
VEHICLE_INSURANCE_GB dataset.

AirTime
CRSElapsedTime
CRSArrTime
DepTime
DepDelay
Distance
CRSDepTime
Taxiln
DayofMonth
Month
DayOfWweek
FlightNum
UniqueCarrier WN
Origin_ORD
Origin_JFK
UniqueCarrier_B6
UniqueCarrier_AA
Origin_EWR
Origin_ATL
UniqueCarrier_DL

(a) MAD difference.

CRSAMTime
DepTime
AirTime
DepDelay
CRSElapsedTime
Distance
Taxiln
CRSDepTime
DayofMonth
Month
DayOfWweek
FlightNum
Origin_EWR
Origin_ORD
Origin_JFK
Origin_CLT
Dest DFW
Dest ORD
Dest_FLL
Origin_PHX

0 2 4 6 8 10 12 14 16

(b) RMSD difference.

Figure 13: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the FLIGHTS_GB
dataset.

LSTAT
RM
NOX
DIs

CRIM
PTRATIO
B

TAX
RAD

ZN
INDUS

CHAS

T T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

(a) MAD difference.

LSTAT
RM

DIs
NOX
PTRATIO
CRIM

ZN
TAX
INDUS

CHAS

(b) RMSD difference.

Figure 14: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the BOSTON_DT dataset.

age

sex_isFemale

bmi
systolic_blood_pressure
sedimentation_rate
cholesterol
hemoglobin
pulse_pressure

red blood cells
serum_protein
serum_albumin
hematocrit
white_blood _cells
SGOT

monocytes

uric_acid

urine_pH
alkaline_phosphatase
BUN

calcium

0.0 0.2 0.4 0.6 0.8

(a) MAD difference.

age
sex_isFemale
bmi
systolic_blood_pressure
sedimentation_rate
cholesterol
hemoglohin
pulse pressure
serum_protein
red blood cells
serum_albumin
hematocrit
white_blood _cells
SGOT
monocytes
uric_acid
urine_pH
alkaline_phosphatase
segmented_neutrophils
BUN T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(b) RMSD difference.

Figure 15: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the NHANES_DT dataset.

ies

less 1 Year
Policy Sales Channel
Previously_Insured
Annual_Premium
Age

Female

Vintage
Region_Code

Male

1-2 Year

Driving_License

_more__2_Years
No

T T T
0 20 40 60 80 100 120 140
(a) MAD difference.

‘ies

less 1 Year
Policy_Sales Channel
Previously_Insured
Annual_Premium
Female

Age

Vintage
Region_Code

Male

1-2_Year

Driving_License

_more__2 Years
No

T T T T
0 20 40 60 80 100 120 140 160

(b) RMSD difference.

Figure 16: The MAD and RMSD differences between the Banzhaf value and the Shapley value for the
VEHICLE_INSURANCE_DT dataset.

CRSArrTime
DepDelay
AirTime
CRSElapsedTime
DepTime

Taxiln

Distance
DayofMonth
FlightNum

Month
CRSDepTime
DayOfWweek
UniqueCarrier WN
Origin_JFK
Origin_EWR
Origin_ORD
UniqueCarrier_DL
UniqueCarrier_AA
UniqueCarrier_CO
Dest LGA

(a) MAD difference.

DepDelay
CRSArrTime
DepTime

AirTime
CRSElapsedTime
Taxiln
DayofMonth
FlightNum
Distance

Month
DayOfWweek
CRSDepTime
Origin_EWR
Origin_CVG
UniqueCarrier NW
UniqueCarrier AA
Origin_ORD
Dest_MIA
Origin_PHL
UniqueCarrier_Us

(b) RMSD difference.

Figure 17: The MAD and RMSD difference between the Banzhaf value and the Shapley value for the FLIGHTS_DT dataset.

C FURTHER RELATED WORK

Feature importance values summarize a complicated ensemble model and provide insight into what features drive the model’s
prediction. There can be various types of explanation methods to compute such values: model-dependent or model-agnostic
methods, global or local explanation methods.

Explanation methods for trees. Global feature importance values are computed for an entire dataset in mainly three
different ways. The basic global approach, Split Count, is to count the number of times a feature is used for splitting [Chen
and Guestrin, 2016]. However, this method fails to account for the impacts of different splits. The Gain approach to feature
importance [Breiman et al.,|1984] is to attribute the reduction of loss contributed by each split in each decision tree and it is
widely used as the basis for feature selection methods [[Chebrolu et al., 2005, [Huynh-Thu et al., 2010} [Sandri and Zuccolotto}
2008|]. Another commonly used approach, Permutation, is to randomly permute the data column corresponding to a feature
in the test set and observe the change in the model’s loss [Breiman, 2004]. If the model is heavily dependent on the feature
then permuting it should create a large increase in the model’s loss. These approaches are designed to estimate the global
importance of a feature over an entire dataset, so they are not directly applicable to local explanations that are specific to
each prediction. Local explanation methods for computing feature importance values for a single prediction are not well
studied for trees. Only a couple of tree-specific local explanation methods were known previously. One is to just report the
decision path, which is not useful for large tree ensembles. The other one is by Saabas|[2022]] which is a heuristic method
that measures the difference in the model’s expected output. The Saabas method explains a prediction by following the
decision path of the current input and attributing the differences in the expected output of the model to each of the features
along the path. The expected value of every node in the tree is the average of the model output over the training samples
going through that node. For explaining an ensemble model made of many trees, the Saabas value for the ensemble is
defined as the sum of the values for each tree. As noted in [Lundberg et al., [2018]], the feature importance values from the
gain, split count, and Saabas methods are all inconsistent i.e., a model can be modified so that it relies more on a given
feature, yet the importance assigned to that feature decreases.

Model-agnostic methods. One of the most common local explanation methods in deep learning literature is to take the
gradient of the model’s output with respect to its inputs at the current sample or multiplying the gradient times the value of
the input features. As depending entirely on the gradient of the model at a single point can often be misleading [Shrikumar
et al.l |2016] various other methods have also been proposed [Springenberg et al.| [2015| Zeiler and Fergus, 2014, Bach
et al.,|2015} [Shrikumar et al.,[2016, [Kindermans et al., 2018| |/Ancona et al., [2018]]. Model-agnostic methods on the other
hand make no assumptions about the internal structure of the model and depend on the relationship between changes in
the model inputs and model outputs. This is achieved by training a global mimic model to approximate the original model,
then locally explaining the mimic model [Baehrens et al.,[2010, [Plumb et al.,[2018]]. Alternatively, the mimic model can be
fit into the original model locally for each prediction. In the LIME method [Ribeiro et al., 2016]] the coefficients are used
as an explanation for a local linear mimic model. In [Ribeiro et al.,[2018]] the rules are used as the explanation for a local
decision rule mimic model. Recently, several methods for the local explanation of model predictions (such as LIME [Ribeiro
et al.,|2016]], DeepLIFT [Shrikumar et al.} 2016} 2017[], Layer-wise Relevance Propagation [Bach et al., 2015]], and three
methods from cooperative game theory: Shapley regression values [Lipovetsky and Conklin, [2001]], Shapley sampling
values [étrumbelj and Kononenkol [2014], and Quantitative Input Influence [Datta et al.,|2016]]) are unified into a single class
of additive feature attribution methods [Lundberg and Lee} 2017]. This class contains methods that explain a model’s output
as a sum of real values attributed to each input feature. It is of particular interest as there is a unique optimal explanation
approach in the class that satisfies three desirable properties: local accuracy, missingness, and consistency [Roth, [1988|
Shapley, |1953|]. Local accuracy (also called Efficiency or Completeness) means that the sum of the feature attributions is
equal to the output of the function we want to explain. Missingness (also called Sensitivity, or Null-player axiom) means that
missing features are given no importance and Consistency (also called Monotonicity) means that if a feature has a larger
impact on the model after a change then the attribution assigned to that feature can only increase. One can use model-agnostic
local explanation methods to explain tree models however their dependence on post-hoc modeling of an arbitrary function
can make them slow or might suffer from sampling variability for models with many input features [Lundberg et al.,[2020].
Although such methods are often practical for individual explanations, but can quickly become impractical for explaining
entire datasets.

D OMITTED PROOFS
Lemma2. Letv € T and Q CUandy € U\ Q. Then:
Plv,QU{y}] = Plv,Q] - Ay y.

Proof. The proof proceeds by induction on the depth of v in 7. The claim holds obviously for v = p. So suppose v is
non-root.

Assume first that d,,, ¢ Q U {y}. Then, by applying the definition of P[-, -] twice, and the induction hypothesis:

Plv,QU{y}] = Plp,,QU{y}] - —

Tpy

Ty
= Plpy, Q- Ap, - —
Tpy
Ty
= P['U Q] p“ ’ Apvvy : 7.7
Ty Do
= P[’U, Q] :

Otherwise, d,,, € Q U {y}. Assume wlog. v = a,,, — the case v = b, is symmetric. We have:
Plo,QU{y}] = Plpy, QU{y}] - [z, <1p,]
= Plp,,Q] - A Doy [xdpl, < tpv]

Ifd, =y, thend,, ¢ Qandwehave A, , = A, . -[r, <tp,] - ~*.Soin that case

Tpy

P, QU {y}] = Ppu, Q] - Ayy - 22 = P, Q] - Ay .

Ty
If, on the other hand, we have y # d,,, € @, then:

P[U,QU{y}] :P[an]'Apv,y'[mdpv <tpv] :P[UaQ]'A y O

v,y

Lemma3. Letv € T and G CU. Lety € U\ G. Then:

B(U7Gu{y}) = (1+Av,y) ﬁ(va)

N =

Proof. Let m = |G|. By the definition and Lemma[2] we have:

Blv,GU{y}) = Z 2m+1P[v7S]
SCGU{y}
1 1
SCG yESCGU{y}
Z m + Z vy om [U S}
SCG 2 2 S’CG 2
1
= 5(1+Av,y) ﬂ(U,G) O

Lemma 4. Letv € T, v # p. Then, forany Q C U \ {d,, },

Ty
B(v, Q) = B(py, Q) - —.
rp'u
Proof. The claim follows easily by the definition of S(v, @) and since Plv, G] = P[p,, G]

- == holds for every subset
G CQ.

O

Lemma 1. Foranyi € U, we have:

Bi= Y 2f()-(BUF) - B F\{i}).
T

Proof. By Lemmas[2]and 3} we have:

Bi= > f()- (21_1 3 (P[l,SU{i}]—P[LS}))

leL(T) SCU\{i}

S Fw- ((f > P[LS}) —ﬂ(z,U\{m)

leL(T) SCU\{i}

= > FO)- (A BELUN{Y) = BALUN\{i})
leL(T)

= > 2f()-(BULU) = BAU\{i})).
leL(T)

Note that if y ¢ Fy, then A;,, = 1, and thus by Lemma 3| we have 5(1, X U {y}) = B(I,X) forany X C U \ {y}.
Inductively we obtain S(I, X UY) = (I, X) forany Y C U \ X \ F}. In particular, we obtain 5(I,U) = (I, F}), and
B(L, U\ {i}) = B(l, F; \ {i}). To finish the proof, observe that if i ¢ Fy, then (I, F;) = 3(I, F1 \ {i}) by Lemma[3] so for
such ¢ the summand above will be equal to 0. O

Lemma 5. For any i € U, we have:

Bi _ Z 2(1Av,i — 1) . B(U)

Proof. Recall from the proof of Lemmal[I] that

Bi= > f)- (A —1)- B0 F\{i}).
<&

By changing the order of summation, we equivalently have:

Bi= > > f)-(Ai—1)- 81 F\{dy,})

v€7_’j leLl,
= 2 TS0 Bui-) B
ve7_’ile£,, "t
Pv
and the lemma follows by the definition of B(v) and A;; = A, ;. O

E IMPROVED ALGORITHM FOR SHAPLEY ATTRIBUTIONS
In this section we sketch the changes that need to be made to the algorithms of Section [3| to make it compute Shapley
value-based explanations as given by (I).

We use intermediate values ¢(-, -, -) analogous to the values (-, -) that constituted the base of the Banzhaf algorithm. For
any vertex v € T, set G C U and integer k =0, ..., |G|, let

1 [ehmn

Q

S
S

=

Let us also put ¢(v, G) to be a vector consisting of all the values ¢(v, G, -):
G
6(v, G) = ($(v, G 1),

We have the following analogues of Lemma and Lemma respectively. For convenience, let us define ¢ (v, G, k) = 0 for
k<Oork>|G|.

Lemma7. LetveT,GCUandk € {0,...,|G|}. Lety € U\ G. Then:

lal+1—k k

6(0.G U}) = Fgr g 60 Gk + gy

Ay, o0, Gk —1).
|G|+2 Y (b(’l))

Proof. Letm = |G| + 1. By Lemma[2 we get:

¢(v, GU{y}, k)

3 % (Z) Pl s

SCGU{y} mn

[S|=k
= 1(7”)119[@ S|+ > 1(m)1P[v 9]

sca m+1\k yeSCGU{y} m+1\k

|S|=k |S|=k

—k 1 /m-1\"" k 1 /m—1\""

- Zm'f-(mk) P, sl |+ X 1.Av,y.(f 1) Plv, S

sce m + m sce m + m —

|S|=k |S|=k—1
R 0, Gk 4 — Ay (0, Gok— 1) O
- m -+ 1 9 9 m+1 v,y 9 9 .

Lemma 8. Let v € T be a non-root node and let @ C U \ {dy,, }. Then, for all k,

¢(’Uv Qa k) = ¢(p1)7 Q7 k) . :7”

Pv

Proof. The claim follows easily by the definition of ¢(v, @, k) and since P[v, G] = P|p,, G| - r:f holds for every subset

G CQ. O

Let ®(v, G) be the sum of individual coordinates of the vector ¢(v, G), i.e., ®(v,G) := ZLG:'O (v, G, k).

The following lemma states an intuitive fact that ®(v, G) does not depend on the features in G that do not appear in the
ancestors of v.

Lemma9. Letv € T and G C U. Suppose y € U\ G \ F,. Then:

O(v, GU{y}) = (v, G).

Proof. Recallthaty € U \ G\ F, and thus A, , = 1. By Lemma we have:

|G|+1

(v, GU{y}) = > b(v,GU{y}, k)

B |G|+1—k
=2 e Z|G| ¢(v, G,k = 1)

= ®(v,G). O

The following is an analogue of Lemmafor Shapley value that reduces computing the Shapley explanation (¢;);cy to
computing the vectors of the form ¢(I, F; \ {i}) for all pairs (I,i) € L(T) x U with i € Fj.

Lemma 10. For anyi € U, we have:

li—é‘pf)

Proof. By expanding the sum (T]) using (), we obtain:

1 n—1\"" ‘
o= ¥ ("g') Gsu-gs)
1 n—1\""
- ¥ ("g) | T roeusug-rns)

SCU\{i} 1€L(T)

By subsequently applying Lemma[2] and changing the summation order, we have:

o=y T <n|§|1>1 2 SO PS8 =)

" SCU\{i} leL(T)
1
=Y W) (A1) ZZ(") ris
1€L(T) k= OSCU\{z
Is|=
= D SO (A -1 LU\ (i)
leL(T)
Since (A;; — 1) = 0 when i ¢ F;, we actually have:
= > f0) (A —1)- (1, F\ {i}). N
leL(T)
i€l

The recursive formulas of Lemmas and allow computing each ¢(v, F,,) out of a “neighboring” vector ¢(ps,, F},) in
O(|Fy]) = O(D) time. This overhead arises from the fact that the used vectors ¢(+, -) have up to D coordinates. Recall that

when computing Banzhaf value explanations, similar values had only a single coordinate and hence a similar transition
could be performed in constant time. Consequently, the basic algorithm of Section [3.1] adjusted to compute the vectors
é(v, F,) takes O(LD?) time, which matches the bound achieved by Lundberg et al.|[2020].

To obtain an asymptotically faster O(LD) time algorithm for computing Shapley explanations using the approach of
Section we need to devise a Shapley-analogue of Lemma([5] To this end, consider the following values:

=Y f(l)-¢(l, Fy, k),

€L,

that are analogues of the values B(v) from Section By proceeding similarly as in Section a bottom-up computation
can be used to compute all the values ¥ (v, k) forv € T in O(LD) time.

Let us also set:

= F0) SN {dy,) R)

leL,

)= FO) S E N\ {dy,).

leLl,

Therefore, we can rewrite Lemma [I0]as follows:

di= Y f)-(Ai—1)- 21 F\{i})
a5

DD W (A1) -0 B\ (i)

veET €Ly
Py =t

:Z vz_ Zf lﬂ\{})

veT leL,
dP'L;:i

=Y (A —1)-T(v).
veT

dp, =i

Note that the above derivation provides an O(L)-time reduction of computing all ¢; to computing all values I'(v). Those
can be clearly obtained by simple summation in O(L D) time once we have all the values (v, k).

The following lemma, analogous to Lemmal[7} gives a relationship between values ¥ (-, -) and (-, -).
Lemma 11. Letv € T, v # p. Suppose the sets Iy have equal sizes s for alll € L,,. Then, forany k = 0,...,s, we have:

s —k k
(0, k) F —— Ay g (0, k —1).
s11 YR F T B,)

U(v, k) =

Proof. By Lemmal[7] for any [€ £, we have:

F| -k k
80 k) = TR0 0\ (3, 8) — e A, 000, Fi\ T)k~ 1)
| \ [F]+1
F = F <A . F —1).
o, Fi k) = (l P\ dp 3o k) = = By, 0L Fi\ {dp, k= 1)
We obtain the desired equality by summing the above through all [€ £, and using A; 4, = Ay 4, - O

Lemmawould suffice to compute all the needed values (v, k) if only all the sets F}, [€ L,, had equal sizes for each
vertex v € 7. Unfortunately, this is not true in general. To deal with this problem, we need to make a subtle change to the
algorithm. Ideally, we would like all the sets F) for [€ £(7) have the same size D, where D is the maximum size of F}
in the input tree. This could be ensured, for example, by extending all smaller F; with D — | F;| distinct dummy features
that do not appear in F; — recall from Lemma@]that adding dummy features does not change ¢(v, G), for any G C U, so it

does not influence our results. Unfortunately, adding a dummy feature to F; by simply using Lemmacosts O(D) time.
Therefore, if T' was very unbalanced, padding all F; could cost as much as ©(LD?) time. We thus need a smarter approach.

Instead, let ¢, . . ., gp be distinct artificial features not appearing in the nodes of 7. For all v € T let us define

Fr =F,U{q,...,ap—|r,|}-

Observe that then Fy = {q1,...,qp} for the root p of T, and for each non-root v we have
F’: = F{U lf dpv 6 va (7)
Fy \{ap—|F,, |} U{dy,} otherwise.

With sets F; defined like this, v € 7, by Lemma[9} we have:

(v, By \ {dp, }) = ®(v, F; \ {dp, }),

and consequently:

L(v) = >) - o F7\ {dp, })-

lel,

It is thus enough to modify the basic algorithm computing all the vectors ¥ (v, F,,) so that it computes all the vectors
¢(v, F}) instead. It is very easy to achieve that. First of all, the initial vector ¢(p, F¥) is initialized in O(D?) = O(LD)
time by applying Lemma D times. By (7), for each non-root v, the vector ¢(v, F;*) can be still obtained from the vector
¢(py, Fy) in O(D) time as before using O(1) applications of Lemmas and

F PROOF OF LEMMA (g

Let us first argue that indeed moving between nearby values 3(v, G) boils down to O(1) multiplications/divisions of some
value 8(v, G) with a number between 0.5 and r,. Indeed, if Lemma3]is used, then 5(v, G) is multiplied by a number that is
atleast 0.5 (if ¢ ¢ I,), and at most (1 + 1/¢,(f))/2 < (1 +1/(1/r,))/2 < (14 1,)/2 < r,, since the coverages r,
are positive integers. On the other hand, Lemma requires a single multiplication via a number of the form r, /r,, , which
translates to two multiplications/divisions by an integer between 1 an r,.

Let € < 0.1 be the machine epsilon. Using a well-established model of floating point numbers (see e.g., Higham|[2002])) , we
can assume that the floating point number representation fl(x o y) of the result of an arithmetic operation o on two exactly
represented numbers x, y satisfies fl(z o y) = (x o y)(1 +) for some |d| < e. In particular, if z,y > Oand o € {+,-, /},
then we have

fi(zoy) < (zoy)(l+e),

Azoy) > @oy) (- > (xoy) —

(1+¢€)2

We can thus conclude, that if 2’ > 0 is floating-point approximation of a value x > 0 with multiplicative error between
(14 ¢)~* and (1 + ¢€)*, and &’ > 0 is a floating-point approximation of a value y > 0 with multiplicative error between
(1+¢)~"and (1 + €)', then for any o € {+, -, /} we have:

A o1/) < (2 04/)(1 +€) < (20 y)(1+ ™D (140 = (woy)(L+ =0+,
1 I 1
(1 + 6)max(k,l) ’ (1 + 6)2 - (‘T °© y) (1 + e)max(k,l)—‘rQ !

(e’ oy) > (' oy)(1—) = (xoy)

More generally, evaluating an arithmetic expression on positive numbers that involves only additions, multiplications, or

divisions, built of k such operations, has multiplicative error at most (1 + €)°*) and at least (1 + €)~°(*). Note that this

implies a relative error of (1 + e)O(k) — 1. Indeed, if the expression evaluates to z’ > 0 and its true value is z > 0, then if
!

z' >z, we get

|2/ — 2] 2 —=z < (1+€)°®z— 2

=(1+4¢°® -1
p, . . (I+e) ;

whereas if 2’ < z, then we get (by applying, in the final step, the inequality 2 + 1/x > 2 valid for all z > 0):

|z’fz|7zfz'<zf(1+e)’o(k)zil 1

< (14€¢)°® —1.
z z z (1+¢)Ok) s+

Finally, note that each value (v, G) for v at depth d, can be expressed, by an inductive application of Lemmas andE],
using a formula with O(d + |G|) multiplications and divisions and input values in the range [0.5,], all of which can be
represented as floating point numbers with multplicative error between (1 + ¢)~* and (1 + €). As a result, since d < D, and
|Fy| < D, for any leaf [, and any i € F}, 3(I, F}) is computed using O(D) applications of Lemmas [3|and 4] and thus with
relative error (1 + €)9(P) — 1.

	Introduction
	Preliminaries
	The Banzhaf Value Algorithm
	Basic algorithm
	The optimal algorithm

	Experimental Analysis
	Experimental setup and datasets
	Comparison of running times
	Comparison of feature scores
	Numerical accuracy

	Conclusions
	Global Impacts Comparison
	Per-feature MAD and RMSD Differences
	Further Related Work
	Omitted proofs
	Improved algorithm for Shapley attributions
	Proof of Lemma 6

