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A ADDITIONAL SIMULATION DETAILS

We use the dataset from Braverman et al. [2019], whose
raw data is from the Di-Tech Challenge and covers 5-6 pm
(evening rush hour) interval in each day between Jan 1-2016
until Jan 21-2016.

The transition matrix V induced from the raw data is in
Table 1. The average travel times normalized for 10-min
slots are in Table2. The demand rates (normalized for a fleet
size of 1) are in Table 3.

For our unit-time setup, we adapt the non-uniform travel
time by adding intermediary dummy regions for routes with
longer travel time. So the travel times between real regions
and dummy regions and between dummy regions are unit
time. We accordingly adapt transition matrix V for dummy
regions. For the 9-region Didi data, we use 1.5 as the nor-
malized travel time between, which corresponds to 15 mins,
thus divide the travel times in Table 1 by 1.5 and round
to the nearest integer. This results in an extension of the
9-region problem to 48-regions when the dummy regions
are included. Then we construct OA based on this 48 region
problem.

B ADDITIONAL SIMULATIONS

We examine the performance of our dynamic relocation
policy, referred to as CON here, relative to several base-
lines. In contrast to Sec. 7, these simulations use synthetic
data with unit travel times to more closely match our the-
oretical results. We simulate a range of parameters, initial
conditions, and policies and show that CON converges sub-
stantially faster, coming close to a lower bound. We also
define two performance metrics, efficiency and availability,
and show that our approach matches the baseline perfor-
mance in terms of efficiency while being more flexibly able
to target availability.

B.1 WHAT WE COMPARE

Consider the dynamics M̂t+1 = 1F (M̂t). These non-mass-
conserving dynamics follow the drivers carrying passengers,
discarding any who would relocate. It follows, from the relo-
cation constraint of dynamic relocation, that M̂t ≤Mt for
any dynamic relocation policy {Mt}t=0. Thus, the lowest t
for which M̂t ≤M∗, if such a time exists, is a lower bound
on the convergence time of any dynamic policy. We refer to
this lower bound as LB.

We then compare our CON with LB and three policies. These
are essentially the same as those from Sec. 7, with minor
variations due to the uniform distances.

STA. This is a static policy that sets πt = π for all t. From
Cor. 1 it follows that STA guarantees convergence to
the fixpoint, yet, as we pointed out, it may do so slowly.
Thus STA represents a baseline in the absence of a
more sophisticated dynamic policy.

GDY. This is a greedy policy that distributes the relocat-
ing mass proportional to the unmet demand in each
region with a one-step look ahead. That is, it takes
πt[i] ∝ [W1− 1F (Mt)]+ , which guarantees as many
relocating drivers as possible will have a passenger at
time t + 1 while spreading them among the regions
where they can be useful. As GDY does not depend
on π, it may not converge to the fixpoint, but it does
provide a meaningful baseline for other metrics based
purely on the provision of service.

HMR. We adapt the dynamic policy of [Hosseini et al.,
2021], which dispatches a single car at a time, to our
setting. In particular, their algorithm computes a mea-
sure of which region will generate the most long-run
service and sends the car there. Since the results of this
computation do not change until a region is saturated,
we adapt their policy by assigning relocation drivers
to this region until (a) it becomes saturated or (b) the
mass reaches the fixpoint mass of the region. While
their policy is heuristic, with the inclusion of (b) it can
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Region 1 2 3 4 5 6 7 8 9
1 0.230 0.297 0.372 0.004 0.026 0.029 0.009 0.018 0.015
2 0.044 0.655 0.146 0.005 0.079 0.038 0.018 0.005 0.011
3 0.165 0.291 0.288 0.007 0.054 0.126 0.017 0.025 0.027
4 0.0013 0.010 0.006 0.139 0.031 0.185 0.101 0.117 0.409
5 0.005 0.096 0.026 0.037 0.25 0.333 0.218 0.012 0.027
6 0.004 0.031 0.032 0.088 0.121 0.426 0.148 0.059 0.092
7 0.002 0.023 0.011 0.066 0.142 0.269 0.399 0.020 0.069
8 0.004 0.008 0.023 0.067 0.011 0.095 0.019 0.400 0.374
9 0.001 0.004 0.005 0.095 0.010 0.059 0.030 0.185 0.610

Table 1: Transition matrix V for 9 region Didi Data

Region 1 2 3 4 5 6 7 8 9
1 0.83 1.87 1.07 3.89 3.25 2.79 4.25 2.94 4.37
2 1.78 0.89 1.18 3.24 1.24 1.99 2.89 3.46 4.18
3 1.02 1.31 0.78 2.82 1.45 1.36 3.26 2.17 3.04
4 3.52 3.13 2.76 0.93 1.5 1.26 1.49 1.75 1.6
5 2.86 1.42 1.64 1.55 0.84 1.04 1.45 2.88 2.89
6 2.61 2.17 1.54 1.31 1.15 0.81 1.86 1.78 2.2
7 4.38 3.02 2.79 1.36 1.35 1.65 0.94 3.1 3
8 2.93 3.06 2.26 1.75 2.69 1.62 3.23 0.9 1.48
9 3.58 4.18 2.8 1.49 2.46 2.02 2.72 1.43 1.01

Table 2: Normalized travel times for 9 region Didi Data

often achieve convergence in our simulations.

B.2 SIMULATION DESIGN

For each datapoint in each of our experiments we generate
40 different demand matrices W according the specified dis-
tribution and solve the resulting optimal allocation problem
(Fig. 2) to determine π andM∗ for eachW . We then choose
20 different M0 uniformly at random. We run each dynamic
policy for 50 steps starting from each M0 and report the
results averaged across the choices of W and M0. Thus
each point is an average of 800 runs. We compare the per-
formance of the various policies according to the following
metrics, all of which have been considered in prior work on
dynamic relocation [Braverman et al., 2019, Hosseini et al.,
2021].

• Convergence Time. The number of steps of the dynam-
ics until the ratio of current mass in a region to the
fixpoint mass in that region is at most 1 + 10−6 for
every region.

• Efficiency. The total number of full rides as a fraction
of the total demand. In our stylized model this captures
both the total value created for passengers and the
revenue of the platform.

• Availability. The average efficiency on a per-region

basis. That is, the ratio of full rides in a region to the
demand in that region averaged across regions. High
availability ensures some degree of fairness between
regions

B.3 RESULTS

Fig. 1 shows the performance with all three of our metrics
with 40 regions when the demand between each pair of
regions is i.i.d. uniform, the supply of drivers is determined
as a multiple of the total demand, and the policy is chosen
by solving the optimization from Fig. 2. At high levels
of supply of drivers relative to demand (above a ratio of
about 1.1) CON, HMR, and GDY are all able to control the
relocation of enough drivers to satisfy essentially all of the
demand. Because so many drivers relocate, LB is essentially
1 and both CON and HMR achieve it. STA converges slowly
and has worse efficiency and availability, showing the value
of dynamic policies. As previously remarked, GDY does not
in general converge to the fixpoint, and typically times out
by reaching the 50 step limit. At very low ratios of supply
to demand, the dynamics are dominated by the full rides.
Thus LB is larger and even GDY converges. At intermediate
ratios, CON converges substantially faster than the other
approaches. Its performance is close to that of LB, but fails
to match it because it only looks ahead a single step. The
effects of CON on efficiency and availability relative to HMR



Figure 1: Performance with uniform demand; Efficiency objective

Figure 2: Performance with correlated demand; Half efficiency and half fairness objective

(a) (b) (c) (d) (e)

Figure 3: Relative availability of CON to HMR



Region 1 2 3 4 5 6 7 8 9
Rate 0.0131 0.0624 0.0381 0.0652 0.0870 0.1178 0.0762 0.1438 0.2751

Table 3: Demand rate for 9 region Didi Data

and GDY are minimal.

In Fig. 2, we change the setup of the experiment: (1) We
introduce correlation between the demands from various
regions by first choosing the total demand in each region
i.i.d. uniform and then assigning that demand to each des-
tination proportional to the total demand in the destination
raised to a random exponent determined for each source
region independently and uniformly from [0, 10]. (2) We
change the objective of the optimization from maximizing
F to maximizing 0.5F + 0.5 mini F1[i]. This shifts the ob-
jective from purely efficiency into a hybrid of efficiency
and a (somewhat minimal) fairness criterion of maximizing
welfare of the least-served region. The overall shape of the
results is similar to Fig. 1, with a small improvement in
availability relative to HMR and GDY. Because the policy
aims at fairness and not just efficiency, CON has a tendency
to do so as well. In contrast, HMR and GDY are inherently
efficiency-focused, yet we still match their performance on
that metric which achieving the improved availability.

Fig. 3 focuses specifically on the percentage change in avail-
ability of CON relative to HMR. Subfigures (a) and (b) corre-
spond to Fig. 1 and Fig. 2 respectively. In (a) CON typically
performs better than HMR, though the effect is very small,
substantially less than 1%. In contrast (b) shows a much
larger effect, a 5% improvement in performance in a mean-
ingful range where supply is somewhat less than demand.1

Correlated demand alone (c) or the fairness objective alone
(d) do not show this large benefit. Making the demand per-
fectly correlated, by making it exactly proportional to the
total demand in the destination, shows benefits of nearly
10%. Overall, these results show that in the more plausible
ranges of supply and demand CON can more effectively
achieve a non-efficiency objective and are suggestive of the
size of the benefit being driven by the correlation of the
demand pattern.

Finally, we provide the results of several additional experi-
ments. These are:

• An experiment that examines how our results for the
correlated demand pattern and hybrid objective depend
on the number of regions (using a ratio of 1 between
supply and demand) and shows that the benefits do not
significantly depend on the number of regions except
for very small values of r (Fig. 4).

1CON performs a bit worse than HMR when the supply of
drivers is sharply limited and the efficiency-focused approach
appears beneficial. However, this is not the regime ridesharing
platforms strive to operate in.

• An experiment that examines how correlation level
of demand patterns affects the relative availability of
CON compared to HMR, and shows that the relative
availability of CON is positively related with the cor-
relation level of demand patterns. The higher the cor-
relation level of demand patterns, the better relative
performance of CON over HMR (Fig. 5).

• An experiment with a third objective, directly optimiz-
ing for availability, which leads to similar results as
our fairness objective (Fig. 6).

• An experiment in the spirit of our second experiment
on the DiDi data that runs each policy for 100 steps
with demand pattern changing every 5 steps, to rep-
resent changes in demand over the course of a day
(Fig. 7).

To summarize the results of our experiments, we have seen
that CON consistently converges substantially faster than
other policies and has a performance that is often close to
or matching LB. The effect of this on efficiency relative to
the other policies is, however, quite small. When targeting a
policy that puts weight on fairness rather than just efficiency,
CON leads to economically meaningful improvements in
availability, showings its ability to target a wider range of
objectives than previous approaches.

C OMITTED PROOFS

PROOF OF LEM. 3

If suffices to show that forM ′ = M+qπ,M ′ = next(M ′).
A region i ∈ UM is in Zπ by assumption, hence M ′[i] =
M [i] and, since i ∈ Zπ, out(M ′)[j, i] = out(M)[j, i] for
every j 6∈ UM . Thus next(M)[i] = next(M ′)[i].

For a region i not in UM , M ′ = M + qπ[i]. While non-
UM regions contribute no additional flow into i, each other
region j contributes qπ[j]π[i] additional flow into i. Since∑
j 6∈UM

π[j]π[i] = π[i], hence the additional flow into i is
qσ[i]. ./



Figure 4: Performance varying number of regions

(a) correlation 0.05 (b) correlation 0.25 (c) correlation 0.45 (d) correlation 0.75 (e) correlation 0.95

Figure 5: Relative availability of CON to HMR for demand patterns of different correlation levels

Figure 6: Performance with correlated demand; availability objective

Figure 7: Performance varying demand



PROOF OF TH. 1

The proof is by showing that the following is an inductive
invariant2 of the while loop:

ϕ : M = next(M ) ∧ M = q −m

∧ |UM | ≤ i ∧ UM 6⊆ Zπ → Erg(TM )

Termination of the loop trivially follows since i, being an
upper bound of the size of UM , cannot go below 0.

Upon entering the loop for the first time, M is the all-0
vector and m = q hence M = next(M), M = q − m ,
|UM | = r = i, and Erg(TM ), which establishes the base
case.

Assume now a new iteration that starts when ϕ holds. Obvi-
ously, m > 0. We now distinguish between two cases, the
first where UM ⊆ Zπ , which in fact can be true only before
the last iteration, and the case where UM 6⊆ Zπ where the
loop may terminate or enter a new iteration with a lower i.

In the first case, since σ is set to π and ∆q is set to m , ac-
cording to Lem. 3, after line 12 is executed, M = next(M),
M = q and m = 0. Hence the new M is the desired one
and the loop terminates.

In the second case where there are unsaturated regions not in
Zπ , the induction hypothesis implies that Erg(TM ). Line 9
calls an external procedure to compute, in σ, the unique fix-
point of TM , and Line 10 assigns to ∆q(> 0) the maximum
available mass that can be distributed among the regions
so to avoid an unsaturated becoming oversaturated. Hence,
after ∆q is distributed according to σ, at least one addi-
tional region becomes saturated. From Lem. 2 it follows
that M + ∆qσ, whose total mass is M + ∆q , is fixpoint
mass distribution. Line 12 updates M and, implicitly, UM .
Thus ϕ, with the updated variables, holds also at the end of
the iteration. If the new m = 0, then ϕ (over the new vari-
ables) imply that M = next(M ) and M = q. Otherwise,
another iteration is executed. ./

PROOF OF LEM. 4

Consider a region i. From the definition of next and
the monotonicity of out in M (for every i and j) it fol-
lows that next(M0)[i] = next(M1)[i] iff out(M0)[j, i] =
out(M1)[j, i] for every region j. It thus suffices to prove
that for every region j such that M0[j] < M1[j],

out(M0)[j, i] = out(M1)[j, i] iff i ∈ Zπ and j 6∈ J

For ⇒, assume for contraposition that j ∈ J . Since
M0[j] < M1[j], V [j, i](min(M1[j],W1[j]) − M0[j]))

2An inductive invariant is an assertion that holds upon entry
to the loop, and if it holds at the beginning of the loop then it holds
when the loop is next re-entered.

of j’s additional outflow is directed towards i implying
that out(M0)[j, i] 6= out(M1)[j, i]. If, however, j 6∈ J ,
j’s additional outflow is distributed according to π, and
since i 6∈ Zπ, π[i] fraction of it towards i implying
out(M0)[j, i] 6= out(M1)[j, i].

For⇐, since j 6∈ J the additional outflow is directing ac-
cording to π. Since i ∈ Zπ, out(M0)[j, i] = out(M1)[j, i].
./

PROOF OF TH. 2

From Th. 1, such a fixpoint exists. It suffices to show that
the fixpoint is unique.

Assume, by way of contradiction, that there are two distinct
such fixpoints, say M̂0 and M̂1. Let M̂ = min(M̂0, M̂1).
Since M̂0 and M̂1 are distinct fixpoints in Sq, M̂ is not in
Sq .

Let
L = {M ∈ (R≥0 ∪ {∞})r : M̂ ≤M}

With the vector (point-wise) ≤ as a preorder, and vector
(point-wise) min (resp. max) as meet (resp. join), L is a
complete lattice.

While L is complete lattice, it may not be closed under next .
We thus define aux = max(M,next(M)) as an auxiliary
function under which L is closed. From the Knaster-Tarski
theorem it follows that aux has a set of fixpoints in L, and
that the set of aux ’s fixpoints in L is a complete lattice.

Both M̂0 and M̂1 are fixpoints of next in Sq ⊆ L, as well as
fixpoints of aux in L. Since M̂ = M̂0uM̂1 is the minimum
element of L, it is the least fixpoint of aux in L.

Define I0 = {i : M̂0[i] < M̂1[i]} and I1 = {i : M̂0[i] >

M̂0[i]}, that is, for every i ∈ I0 , M̂ [i] = M̂0[i], for every
i ∈ I1 , M̂ [i] = M̂1[i], and for every i 6∈ I0 ∪ I1, M̂ [i] =

M̂0[i] = M̂1[i]. Recall that Zπ is the set {j : π[j] = 0}.
Obviously, I0 and I1 are disjoint and neither is empty. By
construction, M̂0, M̂1 
 M̂ , and all three are fixpoints of
next . It then follows from Lem. 4 that for every i ∈ I0 ∪ I1,
M̂ [i] is saturated in M̂ and therefore in both M̂0 and M̂1. It
then follows from Lem. 4 that Zπ is pairwise disjoint from
both I0 and I1.

If Zπ is empty, it follows from Lem. 4 that M̂ is strictly less
than both M̂0 and M̂1, which is obviously a contradiction.
Assume therefore that Zπ is nonempty.

Now consider some i ∈ I0. Since region i is saturated
in both M̂0 and M̂ , it follows from Lem. 4 that for every
j 6∈ Zπ, next(M̂)[j] < next(M̂0)[j]. Since I0 is disjoint
from Zπ, it follows that M̂ [i] < M̂0[i], contradicting the
assumption that i ∈ I0. ./



PROOF OF LEM. 5

Assume 〈F0, E0〉, i0, and j0 as in the lemma statement. We
construct 〈F,E〉 that is also feasible for q, but with F > F0,
thus showing that 〈F0, E0〉 is nonoptimal.

Let x be the vector induced by min(E0[i0, j0], (W −
F0)1[i0]) given V [i0].

Define Fx be such that Fx[i0] = x and 0 elsewhere, and Ex
such that:

Ex[i, j] =

 x[i] i 6= i0, j = j0
x− x[i0] i = j0 6= i0 = j
0 otherwise

We claim that 〈Fx, Ex〉 feasible for 2x−x[i0] if i0 = j0 and
3x−2x[i0] otherwise: The D- and P- constraints are satisfied
by construction. As for the F-constraint, every region i,
i 6= i0, j0, receives x[i] full cars and sends x[i] empty cars.
Region i0 sends x full cars and receives x[i0] cars full from
itself, and (whether or not i0 = j0), x − x[i0] empty cars
from other regions. Finally, when j0 6= i0, region j0 receives
x[j0] full cars from i0 and x[i] empty cars from every region
i, i 6= i0, thus it receives x−x[i0]+x[j0] cars in total, which
is exactly the number of cars it sends (x− x[i0] empty, to
i0 and x[j0] empty to j0).

Let F1 = F0 + Fx, and E1 = E0 + Ex. The choice of x
guarantees that F1 ≤ W , hence it follows from Ob. 2 that
〈F1, E1〉 is feasible for q+ 2x− x[i0] (or q+ 3x− 2[i0] if
i0 6= j0). Let y = x− x[i0] (y = 2x− 2x[i0]). Obviously,
y > 0. If i0 = j0, then E0[i0, i0] ≥ x > y. If i0 6= j0, then
E0[i0, j0] ≥ x > y/2 and Ex[j0, i0] = x− x[i0] ≥ y/2. It
then follows from Ob. 2 that 〈F2, E2〉 where F2 = F1 and
E2 is just like E with y subtracted from E[i0, i0] (in the
case of i0 = j0) or y/2 subtracted from both E1[i0, j0] and
E1[j0, i0] (in the case of i0 6= ij) is feasible for q + x.

Let c = q/(q + x), F = c · F2 and E = c ·E2. From Ob. 1
it follows that 〈F,E〉 is feasible for q. Moreover,

F = c(F2) = c(F0 + x) =
qF0 + qx

q + x
> F0

where the last inequality follows from q > F0 (which holds
since E0 > 0.)

Consequently, 〈F,E〉 is feasible for q and F > F0 so that
〈F0, E0〉 is not optimal. ./

PROOF OF LEM. 6

Let c = mini,j(V [i, j]). If E(Mt) > 0, then [ν(q) −
1F (Mt)]+ is monotone increasing in ν(q) on an open inter-

val including qt+1. Subsequently we show that

∑
i

[ν(qt + c∆(t))− 1F (Mt)]+ [i]

≤
∑
i

[[ν(qt+1)− 1F (Mt)]]+ [i]

Monotonicity then implies that ν(qt+1) ≥ ν(qt + c∆(t),
and therefore qt+1 − qt > c∆(t).

If E(Mt) = 0, there is no relocation and we cannot apply
the previous argument because we only know that [ν(q)−
1F (Mt))]+ is monotone non-decreasing. Subsequently we
show that then Mt+1[i]− ν(qt)[i] ≥ c∆(t). Thus Mt+1 =
ν(qt)+(Mt+1−ν(qt)) ≥ ν(qt)+c∆(t)1 ≥ ν(qt+c∆(t))
and qt+1 ≥ qt + c∆(t). ./

PROOF OF LEM. 6 FOR THE CASE THAT
E(Mt) > 0

∑
i[ν(qt + c∆(t))− 1F (Mt)]+ [i]
(1)

≤
∑
i[(ν(qt) + c∆(t)1− 1F (Mt))]+ [i]

(2)
=

∑
i[1F (ν(qt)) + 1E(ν(qt)) + c∆(t)1− 1F (Mt)]+ [i]

(3)
=

∑
i([1F (ν(qt)) + 1E(ν(qt)) + c(F(Mt)− F(ν(qt)))1 +

c(E(Mt)−E(ν(qt)))1− 1F (Mt)])+ [i]
(4)

≤
∑
i([1F (ν(qt)) + 1E(ν(qt)) + 1F (Mt)− 1F (ν(qt)) +

c(E(Mt)−E(ν(qt)))1− 1F (Mt))])+
[i]

(5)
=

∑
i[1E(ν(qt)) + c(E(Mt)−E(ν(qt)))1]

+
[i]

(6)
= E(ν(qt)) + c(E(Mt)−E(ν(qt)))
(7)
< E(Mt)
(8)
=

∑
i[ν(qt+1)− 1F (Mt)]+ [i]

(1) follows from the monotonicity of ν; (2) follows
since ν(qt) is a fixpoint; (3) follows from the expansion
∆(t) = Mt − qt, followed mass conservation; (4) fol-
lows by the definition of c, 1F (Mt) and 1F (ν(qt)); In
particular, (1F (Mt)− 1F (ν(qt)))[i] =

∑
j(F (Mt)1[j]−

F (ν(Qt))1[j])V [j, i] ≥
∑
j(F (Mt)1[j]−

F (ν(Qt))1[j]) mink,` V [k, l] = c(F(Mt)−F(ν(qt))); (5)
follows by cancellation; (6) follows because 1E(ν(qt)) ≥ 0,
and Mt ≥ ν(qt) and so E(Mt) ≥ E(ν(qt)); (7) follows
because c < 1 and E(Mt) ≥ E(ν(qt)); (8) is by definition
of qt+1.



PROOF OF LEM. 6 FOR THE CASE THAT
E(Mt) = 0.

Mt+1[i]− ν(qt)[i] =
(1)
=

∑
j(F (Mt)1[j]− F (ν(qt))1[j])V [j, i]

(2)

≥
∑
j(F (Mt)1[j]− F (ν(qt))1[j])c

(3)
= c∆(t)

where (1) and (3) hold because of lack of relocation. Thus
Mt+1 = ν(qt) + (Mt+1 − ν(qt)) ≥ ν(qt) + c∆(t)1 ≥
ν(qt + c∆(t)) and qt+1 ≥ qt + c∆(t).

PROOF OF COR. 1

Let c = min(min{i|π[i]>0}(π[i]),mini,j(V [i, j])). As we
are now following π at each step, let Mt+1 = nextπ(Mt)
and qt = ν−1(Mt).

If π[i] > 0 then:

Mt+1[i]− ν(qt)[i]
(1)
=

∑
j(F (Mt)1[j]− F (ν(qt))1[j])V [j, i] +∑

j(E(Mt)1[j]− E(ν(qt))1[j])π[i]
(2)

≥
∑
j(F (Mt)1[j]− F (ν(qt))1[j])c +∑

j(E(Mt)1[j]− E(ν(qt))1[j])c
(3)
= c∆(t)

If π[i] = 0 the same conclusion holds by omitting the terms
involving E. Thus Mt+1 = ν(qt) + (Mt+1 − ν(qt)) ≥
ν(qt) + c∆(t)1 ≥ ν(qt + c∆(t)) and Mt converges at least
linearly to M∗. ./

PROOF OF LEM. 7

∆E(t)
(1)
= E(Mt)−E(ν(qt))

(2)
=

∑
i[(ν(qt+1)− 1F (Mt)]+ [i]−E(ν(qt))

(3)
=

∑
i[ν(qt+1)− ν(qt) + ν(qt)− 1F (Mt)]+ [i]

− E(ν(qt)
(4)
=

∑
i([(ν(qt+1)− ν(qt) + 1F (ν(qt)) + 1E(ν(qt))

− 1F (Mt)])+
[i]−E(ν(qt))

(5)

≤ ν(qt+1)− ν(qt)) + E(ν(qt))−E(ν(qt))
(6)
= qt+1 − qt

(1) follows from the definition of ∆E(t); (2) follows from
definition of qt+1; (3) adds and subtracts ν(qt); (4) follows
because ν(qt) is a fixpoint; (5) follows because ν(qt+1) ≥
ν(qt) and 1F (ν(qt)) ≤ 1F (Mt); (6) follows because qt is
by definition the total mass of ν(qt). ./

PROOF OF OB. 3

∑
t(E(Mt)−E(M∗))

(1)
=

∑
t(E(ν(qt)) + ∆E(t)−E(M∗))

(2)

≤
∑
t ∆E(t)

(3)

≤
∑
t(qt+1 − qt)

(4)

≤ M∗

(1) follows by the definition of ∆E(t); (2) follows since
ν(qt) ≤M∗, hence E(ν(qt)) ≤ E(M∗); (3) follows from
Lem. 7 and(4) line follows since the qts are the masses of
the ν(qt)s. ./
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