Restless and Uncertain: Robust Policies for Restless Bandits
via Deep Multi-Agent Reinforcement Learning (Supplementary material)

Jackson A. Killian' Lily Xu'

Arpita Biswas'? Milind Tambe'-

1Computer Science, Harvard University, Cambridge, MA, USA
2Center for Research on Computation and Society, Harvard University, Cambridge, MA, USA

A PROOFS

A.1 PROOF OF PROPOSITION

Proposition 1. 7o learn the value A that minimizes Eq.
given a state s, the A\-network, parameterized by A, should
be updated with the following gradient rule:

B N
A=Ay~ (1_ﬁ + Z Dn(sna)‘t—l(s))) (M
n=1

where « is the learning rate and Dy, (sy, \) is the negative
of the expected [3-discounted sum of action costs for arm n
starting at state s,, under the optimal policy for arm n for a
given value of \.

Proof. The gradient update rule is derived by taking the
gradient of Eq. 4] with respect to A, which has two main
terms, AB/(1 — /3), and the sum over @,,, the Q-functions
with respect to A. Looking more closely at (),,, the only
terms which are a function of A\ are the costs of actions
taken by the policy that @), implies, i.e., terms —Ac;. Thus,
the gradient of @), is the negative expected discounted sum
of costs taken by the optimal policy at the given value of A,

ie., ddQA" = —E[Zio Bcn i), where ¢y, ¢ is the cost of the
action taken on arm 7 in round ¢. O

A.2 PROOF OF PROPOSITION

Proposition 2. Given arm policies corresponding to op-
timal Q-functions, Prop. [I|will lead A to converge to the
optimal as the number of training epochs and K — oc.

Proof. Eq. is convex in A\, which follows from definition
of @, i.e., the max over piece-wise linear functions of A is
also a convex function in A. Thus the learning task of A is
also convex. Therefore, all that is required for asymptotic
convergence of A is that (1) the gradients we estimate via
Prop. E]are accurate, and that (2) all inputs, i.e., all states s,

are seen infinitely often in the limit. (1) is achieved by the
assumption that optimal @Q-functions are given, an analytic
condition that is achieved in practice by allowing the arm-
networks to train for a reasonable number of rounds under a
given output of the A-network, before updating A. Specif-
ically, given optimal Q-functions and their corresponding
optimal policies, the sampled sums of spent budget from
those optimal policies represent an unbiased estimator of
each D,,. Note, though that to be an unbiased estimator,
this relies on not imposing the budget constraint at train-
ing time, a procedure we carry out in practiceﬂ Thus (1)
is achieved. (2) is achieved by following a training proce-
dure that uniformly randomly samples start states s for each
round of training until convergence. Thus the proposition is
established. O

A.3 PROOF OF PROPOSITION

Proposition 3. RR-DPO converges in a finite number of
steps to the minimax regret-optimal policy.

Proof. A common strategy for establishing optimal conver-
gence of the double oracle is to show that the pure strategy
sets of both players can be exhausted. We can achieve this
in our setting under the conditions (1) that each player has
a finite strategy set, i.e., is possible to be exhausted and
(2) that each oracle gives an optimal best response. Since
the agent pure strategy set is already finite, we can achieve
(1) by discretizing the nature oracle—in effect by rounding
the outputs of the policy network. For (2), for analytical
purposes, we make the common assumption that our ora-
cles internally converge to their optimal values, i.e., in our
case, the arm-networks and A-network converge optimally.
However, since our networks learn the Lagrange-relaxed

Tt is critical to note that at test time, we always impose the
budget constraint — 1i.e., all of our methods solve the original
constrained RMAB problem — they only use the Lagrangian
relaxation as a tool to find good policies to the original constrained
problem.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<jkillian@g.harvard.edu>?Subject=Your UAI 2022 paper
mailto:<lily_xu@g.harvard.edu>?Subject=Your UAI 2022 paper
mailto:<arpitabiswas@seas.harvard.edu>?Subject=Your UAI 2022 paper
mailto:<milind_tambe@harvard.edu>?Subject=Your UAI 2022 paper

version of the problem, some additional tools are needed.
Speficially, we must identify conditions in which DDLPO-
Act gives policies which approach 7. This can be achieved
in the binary-action setting with v = “Whittle’, which uses
a binary search procedure to identify a value of A such that
exactly B arms have Q,(a = 1,A) > @Q,(a = 0, A), then
acting on those arms. This procedure is equivalent to the
Whittle index policy, which is asymptotically optimal for
binary-action RMABs [Weber and Weiss|, |1990]. O

A.4 PROOF OF PROPOSITION @

Proposition 4. In the Robust RMAB problem with interval
uncertainty, the max regret of a reward-maximizing pol-
icy can be arbitrarily large compared to a minimax regret-
optimal policy.

Proof. Consider a binary-action RMAB problem with two
arms A and B. Let the reward from each arm be R when
the arm is in a good state and 0 in a bad state. Our problem
is to plan the best action with a budget of 1 and horizon
of 1. Supposing the initial state is bad for each arm, the
transition probabilities for the transition matrix for each
1 —1pn p(ﬂ where the uncertain variable p,, is
constrained to be within p4, pg € [0, 1]. Each value in the
matrix corresponds to the probability of an arm at state bad
transitioning to bad (column 1) or good (column 2) if we
take the passive (row 1) or active action (row 2).

arm n is [

To compute a reward-maximizing policy that does not con-
sider robustness to uncertainty, we must optimize for one
instantiation of the uncertainty set, which requires making
one of three assumptions.

e Case 1: If we assume p4 = pp, then an optimal policy
is to act with probability a 4 on arm A and ap on arm
Baslongasas+ap = 1. W.lo.g., suppose a4 > ap;
then nature would set py = 0 and pp = 1, imposing
regret at least R/2.

* Case 2: If py > pp, then the optimal policy would
be to always act on arm A with probability a4 = 1
and never act on B (ap = 0). Nature would then set
p4a = 0and pp = 1 to impose regret R.

e Case 3: If py < pp, the case is symmetric to Case 2
and result in regret R. Clearly, max regret is minimized
when our action is such that ay + agp = 1; in this
setting, we learn this optimal policy only under Case 1.
Following Case 2 or 3, the difference between our
regret and the minimax regret is R/2, which grows
arbitrarily higher as R — oco.

A slight modification to this problem renders Case 1 non-
optimal. Let the reward be R when arm A is in a good state
and R — 1 for arm B, so the optimal policy learned under the

assumption from Case 1 leads to a4 = 1 and ap = 0. Then
nature could respond with p4 = 0 and pp = 1, yielding
reward 0 and regret R—1, while the minimax regret-optimal
policy achieves a minimum reward of (R—1)/2 (by playing
as = 0.5 and ap = 0.5 where nature responds withp4 = 0
and pp = 1). Thus, the gap again can grow arbitrarily high
as R — oo provided that R > 1. We therefore have that
in all cases, any reward-maximizing policy can achieve
arbitrarily bad performance in terms of regret. O

B DDLPO-ACT SUBROUTINES

Here we provide the integer program which implements
OKnapsack, one of the action-selection procedures used in
Alg.[2]to take actions at test time. QKnapsack takes A and
Qn (s, a, \) from the learned A\-network and arm networks,
respectively, and returns the combination of actions that
maximizes the sum of Q-values over all arms, subject to the
costs of each action C and the budget constraint B.

N A
m)E(lXZ anan(snaanij) (2)
n=1j=1
N |A|
S.t. Z anjcj <B 3
i=n j=1
|A|
> wnj=1 Vnel.N)
j=1
xnj € {07 1} (5)

In Alg. [AT] we give the procedure BinaSearch which
implements a binary search over the learned (Q()\)-values
to find a charge A for which exactly B arms prefer to act
rather than not act. This mimics the Whittle index policy in
binary-action settings.

C EXPERIMENTAL DOMAIN DETAILS

C.1 ARMMAN

The MDPs in the ARMMAN domain [Biswas et al.,[2021]]
have three ordered states representing the level of engage-
ment of the beneficiaries in the previous week. Rewards are
better for lower states, i.e., R(0) = 1, R(1) = 0.5, R(2) =
0. At each step, the beneficiary may only change by one
level, e.g., low-to-medium or high-to-medium but not low-
to-high. They also assume that beneficiaries follow one of
three typical patterns, A, B, and C, resulting in three MDPs
with different transition probabilities. There are two patterns
of effects present that differentiate the beneficiary types.
(1) For each of the above types, the planner can only make

Algorithm A1 BinaSearch (for the Whittle Index Policy)
,oN, budget B,

Input: State s, arm critic networks ¢, . ..
tolerance e.

i Gnj = ¢n(sn,anj, A =0) Vn € [N],Vj € [[Al
2:b=0

3: ub = maxpe(n),jefiaf {gns}

4: while ub — b > e do

5 A= %Hb

6: Anj = (;Sn(sn?anjv)‘) Vn € [N],Vj € HA”

7. if fewer than B arms have g, j—1 > g, j—o then

3: ub =\ // Charging too much, decrease
9: else if more than B arms have g,, j—1 > ¢y, ;=0 then
10: =X // Can charge more, increase
11: elseif exactly B arms have ¢, j—1 > ¢y ;=0 then
12: break
13: a=0
14: a,, = 1 where ¢y, j—1 > qn,j=0
15: if ub — Ib < e then
16: break ties randomly s.t. ||a||; = B
17: return a

a difference when the patient is in state 1. Type A responds
very positively to interventions, but regresses to low reward
states in absence. Type B has a similar but less amplified
effect, and type C is likely to stay in state 1, but can be pre-
vented from regressing to state 2 when an action is taken. (2)
Further, types A and C have only a 10% chance of staying
in the high reward state, while type B has a 90% chance of
staying there.

We converted these patient types to robust versions where
the transition probabilities are uncertain as follows:

T;:o _ {péoo

1 — phoo o.o]
P010 ’

1—pi, 0.0

Ti {00 1 — Pl Pioz}
=t pho 1-pie 007

Ti—z _ {00 1- Plzoz plzoz]
= 0.0 1—pho Phia]’

where ¢ indexes the type (i.e., A, B or C). We then set each
p',. to be in a range of width 0.5 centered on the entries
from each of the A, B, C beneficiary types for s € {1,2}. To
add additional heterogeneity to the experiments, for s = 0,
we set the range to 1.0 so that any beneficiary type can be
made to have some non-negligible chance of staying in the
good state, rather than only type B beneficiaries. The full
set of parameter ranges are given in the Table [AT] below.

In all experiments, 20% of arms were sampled from type A,
20% from type B and 60% for type C. To add additional het-
erogeneity, for each of the 50 random seeds we uniformly
sample a sub-range contained within the ranges given in
Table [AT] In the agent oracle experiments, for each of the

‘ Param ‘ L ‘ U H L ‘ U H L ‘ U ‘
| TypeA | | | TypeB | [TypeC | |
Phoo | 00| 1 .00 1 .00 1
Piio | 00 | 1 .00 1 .00 1
Ploa | 50| 1 35 .85 35 .85
Pl |50 1 15 65 .00 .50
phos | 35| .85 35 .85 35 .85
phis | 35| .85 35 .85 35 .85

Table Al: Upper (U) and lower (L) parameter ranges for the
robust ARMMAN environment.

50 random seeds, since these require fully instantiated tran-
sition matrices, we uniformly sample each parameter value
for each arm according to its type such that the values are
contained in the ranges given in Table[AT]

C.2 SIS EPIDEMIC MODEL

In this domain, each arm follows its own compartmental
SIS epidemic model. Each arm’s SIS model tracks whether
each of N, members of a population is in a susceptible (S)
or infectious (I) state. This can be tracked with N, states,
since it can be computed how many people are in state I if
only the number of people in state S and the population size
N,, is known.

To define a discrete SIS model, we instantiate the model
given in|Yaesoubi and Cohen| [2011]] section 4.1 with a At
of 1. We also augment the model to include action effects
and rewards. Specifically, R(Ng) = Ng/N,, where Ng is
the number of susceptible (non-infected) people. Further,
there are three actions {ag, a1, as} with costs ¢ = {0, 1, 2}.
Action a represents no action, a1 divides the contacts per
day k (X in|Yaesoubi and Cohen|[2011]]) by aiﬂ , and ay di-
vides the infectiousness 7z, ((t) in|Yaesoubi and Cohen
[2011]) by agﬁ . That is, taking action a; will reduce the av-
erage number of contacts per day in a given arm, and taking
action as will reduce the probability of infection given con-
tact in a given arm, thus reducing the expected number of
people that will become infected in the next round. However,
to make this a robust problem, the relative effect sizes of
each action for each arm will not be known to the planner,
nor will the K or 7,p. We impose the following uncer-
tainty intervals for all arms: x € [1, 10], 7iypee: € [0.5,0.99],

af € 1,10], and a¥ € [1,10).

In the robust double oracle experiments, to add additional
heterogeneity, for each of the 50 random seeds we uniformly
sample a sub-range contained within the ranges given above
for each arm. In the agent oracle experiments, for each of
the 50 random seeds, since these require fully instantiated
transition matrices, we uniformly sample each parameter
value for each arm such that the values are contained in the

ranges given above.

D HYPERPARAMETER SETTINGS AND
IMPLEMENTATION DETAILS

Neural networks: All neural networks in experiments are
implemented using PyTorch 1.3.1 [Paszke et al.,2019]] with
2 fully connected layers each with 16 units and tanh acti-
vation functions, and a final layer of appropriate size for
the relevant output dimension with an identity activation
function. The output of discrete actor networks (i.e., the pol-
icy network from the agent oracle, and the policy network
of agent A in the nature oracle) pass through a categorical
distribution from which actions are randomly sampled at
training time, without a budget imposed. It is critical not to
impose the budget at training time, so that the budget spent
by the optimal policy under a given A will result in a mean-
ingful gradient for updating the A-network. The output of
continuous actor networks (i.e., agent B in the nature oracle
which selects environment parameter settings) instead are
passed as the means of Gaussian distributions — with the log
standard deviations learned as individual parameters sepa-
rate from the network — from which continuous actions are
sampled at training time. At test time, actions are sampled
from both types of networks deterministically. For categori-
cal distributions, we greedily select the highest probability
actions. For Gaussian distributions, we act according to the
means. All discount factors were set to 0.9. The remaining
hyperparameters that were constant for all experiments for
the agent and nature oracles are indicated in Table For
Robust Double Oracle experiments, all agent and nature
oracles were run for 100 training epochs. For Agent Oracle
experiments, DDLPO was run for 100 training epochs for
the synthetic and ARMMAN domains and 200 epochs for
the SIS domain.

A-network: Critical to training the A-network is cyclical
control of the temperature parameter that weights the en-
tropy term in the actor loss functions. Recall that the \-
network is only updated every n_subepochs. In general,
after each update to the A\-network, we want to encourage
exploration so that actor networks explore the new part of
the state space defined by updated predictions of A\. How-
ever, after n_subepochs rounds, we will use the cost of
the sampled actor policies as a gradient for updating the
A-network, and that gradient will only be accurate if the
actor policy has converged to the optimal policies for the
given \ predictions. Therefore, we also want to have little or
no exploration in the round before we update the A-network.
In general, we would also like the entropy of the policy
network to reduce over time so that the actor networks and
A-networks eventually both converge.

To accomplish both of these tasks, the weight (temperature)
of the entropy regularization term in the loss function of
the actor network will decay/reset according to two pro-

cesses. The first process will linearly decay the temperature
from some positive, but time-decaying starting value (see
next process) 7, immediately after each A-network update,
down to O after n_subepochs. The second process will
linearly decay the temperature from a maximum g (start
entropy coeff in Table down to Ty (end entropy coeff
in Table[AZ)) by the end of training.

We found that it also helps to train the actor network with
no entropy and with the A-network frozen for some number
of rounds before training is stopped (lambda freeze epochs
in Table[A2).

Double Oracle: In all experiments in the main text, we ini-
tialize the agent strategy list with HO, HM, and HP, and the
nature strategy list with pessimistic, mean, and optimistic
nature strategies, then run RR-DPO for 6 iterations. This
produces a set of 8 agent strategies, 8 nature strategies, a ta-
ble where each entry represents the regret of each agent pure
strategy (row) against each nature pure strategy (column),
and an optimal mixed strategy over each set that represents
a Nash equilibrium of the minimax regret game given in the
table. The regret table is computed by first computing the
returns of each agent/nature pure strategy combination, then
subtracting the max value of each column from all entries in
that column (i.e., the best agent strategy for a given nature
strategy gets O regret). The regret of RR-DPO is reported as
the expected utility corresponding to the Nash equilibrium
of the regret game given by the table, once that regret table
is normalized to account for the returns of baselines (see
next paragraph).

After this main loop completes, we then compute the regret
of the baselines by evaluating each baseline policy against
each pure strategy in the nature strategy list. Then, we also
run the nature oracle against each baseline policy to find
a nature strategy that should maximize the regret of that
baseline. The regret for each baseline is reported as the max
regret against this new nature strategy, as well as all pure
nature strategies from the main RR-DPO loop.

Hawkins Baselines: The Hawkins policies are implemented
with gurobipy 9.1.2, a Python wrapper for Gurobi (9.0.3)
[Gurobi Optimization, [2021]] following the LP given in
Hawkins| [2003]] equation 2.5 to compute A and Q(s, a, A)
for each arm and the integer program in equation 2.12 to
select actions.

RLvMid Baseline: We found that RLvMid found effective
policies for the nature strategy it was trained against (as evi-
denced in Figure[2)(a-f), but that that learned policy could be
brittle against other nature strategies. This is likely because
different nature strategies produce different distributions of
states, meaning RLvMid would fit policies well to states
seen when planning against the mean nature strategy, but
underfit its policies for states seen more often in different
distributions. However, the lone RLvMid baseline policy
can somewhat correct for this effect by training an ensemble

of policies against slight perturbations of the mean nature
strategy that adjust the parameter values output by nature
by a small e. In all experiments we train 3 RLvMid policies
against 3 random perturbations of the mean nature strategy,
then report the regret of RLvMid as the minimum of the
max regrets returned by any of the 3.

parameter value
agent

clip ratio 2.0e+00
lambda freeze epochs | 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actor learning rate 2.0e-03
critic learning rate 2.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00
nature

clip ratio 2.0e+00
lambda freeze epochs | 2.0e+01
start entropy coeff 5.0e-01
end entropy coeff 0.0e+00
actorA learning rate 1.0e-03
criticA learning rate 1.0e-03
actorB learning rate 5.0e-03
criticB learning rate 5.0e-03
lambda learning rate 2.0e-03
trains per epoch 2.0e+01
n_subepochs 4.0e+00
n_sims 2.5e+01

Table A2: Hyperparameter settings for agent and nature
oracles for all experiments.

I RR-DPO [0 RLvMid WM Rand EEA HP [ZJ HM 71 HO

z3
Synthetic E 2
g1

o UM:0.25 UM:0.5 UM:1.0 0o H:10 H:25 H:50 H:100

7.0
ARMMAN
g18
00— M0 UM05 UM:10 00 H:10 H25 H:50 H:100
= 50 80 ; B B
sis B33 53
g L7 2.7
= 00 0.0/
UM0.25 UM05 UM:10 H:10 H25 H:50 H:100

Figure Al: (Left column) varies the uncertainty intervals to be 0.25, 0.5 and 1.0 times their widths (UM = uncertainty
multiplier). The gap between our robust RR-DPO method and non-robust methods becomes larger as the uncertainty interval
increases, and our robust algorithm RR-DPO always provides the lowest regret policies. (Right column) varies the horizon
Hin 10, 25, 50, 100. As expected, the gap between RR-DPO and the baselines either stays the same, or increases as H is
increased, further demonstrating the robustness of our algorithm to various parameters.

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	DDLPO-Act subroutines
	Experimental Domain Details
	ARMMAN
	SIS Epidemic Model

	Hyperparameter Settings and Implementation Details

