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Abstract
The literature on robustness towards common cor-
ruptions shows no consensus on whether adversar-
ial training can improve the performance in this
setting. First, we show that, when used with an
appropriately selected perturbation radius, `p ad-
versarial training can serve as a strong baseline
against common corruptions improving both ac-
curacy and calibration. Then we explain why ad-
versarial training performs better than data aug-
mentation with simple Gaussian noise which has
been observed to be a meaningful baseline on com-
mon corruptions. Related to this, we identify the
σ-overfitting phenomenon when Gaussian augmen-
tation overfits to a particular standard deviation
used for training which has a significant detrimen-
tal effect on common corruption accuracy. We dis-
cuss how to alleviate this problem and then how
to further enhance `p adversarial training by intro-
ducing an efficient relaxation of adversarial train-
ing with learned perceptual image patch similarity
as the distance metric. Through experiments on
CIFAR-10 and ImageNet-100, we show that our
approach does not only improve the `p adversar-
ial training baseline but also has cumulative gains
with data augmentation methods such as AugMix,
DeepAugment, ANT, and SIN, leading to state-
of-the-art performance on common corruptions.
The code of our experiments is publicly avail-
able at https://github.com/tml-epfl/
adv-training-corruptions.

1 INTRODUCTION

Despite achieving human-level performance on many com-
puter vision tasks, deep neural networks are still not as ro-
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Figure 1: Accuracy on common corruptions from CIFAR-10-
C for ResNet-18 models adversarially trained using different
`∞ radii. We observe that the performance with ε = 1/255 is
significantly higher than with the standardly used ε = 8/255.

bust as humans towards various distribution shifts [Szegedy
et al., 2014, Taori et al., 2020] including common image
corruptions [Hendrycks and Dietterich, 2019]. Attempts to
understand the vulnerability towards such shifts include
analysis of the network architecture [Azulay and Weiss,
2019], the features contained in the data [Ilyas et al., 2019],
and frequency analysis of neural networks [Yin et al., 2019,
Ortiz-Jimenez et al., 2020]. Many approaches have been
suggested to improve their robustness to these shifts in-
cluding approaches based on data augmentations [Cubuk
et al., 2019, Hendrycks et al., 2019b], adversarial training
[Madry et al., 2018, Laidlaw et al., 2021], and pretraining
[Hendrycks et al., 2019a].

Although data augmentation methods tend to improve
the performance under common synthetic corruptions
[Hendrycks et al., 2019b], these augmentations are often ad
hoc and may have substantial overlap with the corruptions
evaluated at test time. At the same time, there is a large
amount of literature on adversarial training with `p-bounded
perturbations [Goodfellow et al., 2015, Madry et al., 2018].
Adversarial training emerged as a principled approach to
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improve the worst-case performance of the model against
small `p perturbations. However, common image corrup-
tions have a very high `p distance from clean samples, so
the utility of using `p adversarial training for them is not
obvious. This leads us to explore the following question:

How can we improve the performance on common image
corruptions using adversarial training?

We make the following contributions in our paper:

• We show that `p adversarial training with an appropri-
ately selected perturbation radius can serve as a strong
baseline against common image corruptions improving
both accuracy and calibration on corrupted images.

• We analyze the success of `p adversarial training via a
comparison to other natural baselines such as Gaussian
data augmentation. We observe that it can overfit to the
perturbation size it has been trained which, however,
does not happen for adversarial training.

• We introduce an efficient relaxation of adversarial train-
ing with learned perceptual image patch similarity
(LPIPS) [Zhang et al., 2018b] based on layerwise ad-
versarial perturbations. This new relaxation is at least
as effective as previous approaches [Laidlaw et al.,
2021] but significantly faster to train.

• We show that our relaxation approach has cumulative
gains with existing data augmentation methods such
as AugMix, DeepAugment, ANT, and SIN leading to
state-of-the-art performance on common corruptions
from CIFAR-10-C and ImageNet-100-C.

2 RELATED WORK

We provide here an overview of relevant works on common
image corruptions, different data augmentation methods pro-
posed to improve the performance on corruptions, and then
we discuss papers on adversarial robustness with respect to
both `p and non-`p perturbations.

Common image corruptions. Dodge and Karam [2017]
first find that despite being on par with the human vision
on standard images, deep networks perform suboptimally
on common corruptions such as noise and blur. Geirhos
et al. [2018] measure the performance of deep networks
on 12 different image corruption types but find that data
augmentation on one type of corruption does not tend to
improve the performance on others. However, these findings
are reconsidered in Rusak et al. [2020] where Gaussian data
augmentation is shown to help for a wide range of image
corruptions. In a standardization effort, Hendrycks and Diet-
terich [2019] introduce a few image classification datasets—
in particular, CIFAR-10-C and ImageNet-C—with 15 differ-
ent common corruptions from four categories: noise, blur,
weather, and digital corruptions. Ovadia et al. [2019] show

that not only acccuracy but also calibration deteriorates
under these common corruptions. [Schneider et al., 2020,
Nandy et al., 2021] show that robustness to common corrup-
tions can be improved by using test-time adaptation, e.g.,
via recomputing the batch normalization statistics. Radford
et al. [2021] show that contrastive pretraining on a very
large set of image-caption pairs can substantially improve
robustness on various distribution shifts including common
corruptions.

Data augmentations. Data augmentation is a widely used
technique to improve the generalization. Besides classical
image transformations like random flipping or cropping,
many other approaches have been proposed such as lin-
early interpolating between images and their labels [Zhang
et al., 2018a], replacing a part of the image with either a
black-colored patch [DeVries and Taylor, 2017] or a part of
another image [Yun et al., 2019]. One of the best-performing
methods in terms of accuracy and calibration on common
corruptions is AugMix [Hendrycks et al., 2019b], which
combines carefully selected augmentations with a regular-
ization term based on the Jensen-Shannon divergence. Taori
et al. [2020] observe that improvements on synthetic distri-
bution shifts (such as common corruptions) do not necessar-
ily transfer to real distribution shifts. However, Hendrycks
et al. [2021] show an example when improving robustness
against synthetic blurs also helps against naturally obtained
blurred images.

`p adversarial robustness. Adversarial training in deep
learning has been first considered in Goodfellow et al.
[2015] and later framed as a robust optimization problem
by Madry et al. [2018]. The view that adversarial training
damages or at least does not improve the performance on
common corruptions has been prevalent in the literature
[Hendrycks et al., 2019b, Rusak et al., 2020, Hendrycks
et al., 2021]. However, previous works directly use publicly
available robust models without adjusting the perturbation
radius used for adversarial training. For example, Rusak
et al. [2020] show that adversarially trained ImageNet mod-
els from Xie et al. [2019], Shafahi et al. [2019], and Shafahi
et al. [2020] do not help on ImageNet-C compared to stan-
dardly trained models. However, Ford et al. [2019] report
that `∞ adversarially trained models on CIFAR-10 from
Madry et al. [2018] do lead to an improvement on CIFAR-
10-C compared to a standard model. The approach of Xie
et al. [2020], AdvProp, relies on `∞ adversarial training
to improve standard and corruption accuracy but they ad-
vocate the use of auxiliary batch normalization layers for
standard and adversarial training examples. We find that sim-
ilar performance can be achieved on common corruptions
using vanilla adversarial training without a customized use
of BatchNorm layers. Kang et al. [2019] study the robust-
ness transfer between `p-robust models and adversarially
optimized elastic and JPEG corruptions. They show that `p
adversarial training can increase robustness against these



two types of adversarial perturbations, but robustness does
not transfer in all the cases and sometimes may even hurt
robustness against other perturbation types.

Non-`p adversarial robustness. Volpi et al. [2018] propose
Lagrangian-style adversarial training in the input space and
in the last layer of the network. Stutz et al. [2019] propose
on-manifold adversarial training which is performed in the
latent space of a VAE-GAN generative model. However,
its success crucially depends on the quality of the genera-
tive model which could not be scaled beyond simple image
recognition datasets. Wei and Ma [2020] derive generaliza-
tion bounds that motivate adversarial training with respect
to all network layers which they use to improve `p robust-
ness. Recently, Laidlaw et al. [2021] provided algorithms
for approximate perceptual adversarial training based on
the LPIPS distance [Zhang et al., 2018b] which is defined
via activations of a neural network. They aim at improving
robustness against new types of adversarial perturbations
that were unseen during training.

3 `p ADVERSARIAL TRAINING IM-
PROVES THE PERFORMANCE ON
COMMON CORRUPTIONS

Here we formally introduce adversarial training and show
that it can lead to non-trivial improvements in accuracy and
calibration on common corruptions.

Background on adversarial training. Let `(x, y; θ) de-
note the loss of a classifier parametrized by θ ∈ Rm on
the sample (x, y) ∼ D where D is the data distribution.
Previous works [Shaham et al., 2018, Madry et al., 2018]
formalized the goal of training adversarially robust models
as the following optimization problem:

min
θ

E(x,y)∼D
[

max
δ∈∆

`(x+ δ, y; θ)
]
. (1)

In this section, we focus on the `p threat model, i.e. ∆ =
{δ ∈ Rd : ‖δ‖p ≤ ε, x+ δ ∈ [0, 1]d}, where the adversary
can change each input x in an ε-ball around it while making
sure that the input x+ δ does not exceed its natural range.
A common way to solve the inner maximization problem
is the projected gradient descent method (PGD) defined by
the following recursion initialized at δ(0):

δ(t+1) def
= Π∆

[
δ(t) + α∇δ(t) `(x+ δ(t), y; θ)

]
, (2)

where Π is the projection operator on the set ∆, and α is the
step size of PGD. Instead of the gradient, one often uses the
gradient sign update for `∞ perturbations or the `2 normal-
ized update for `2 perturbations. δ(0) can be initialized as
any point inside ∆, e.g. as zero, or randomly [Madry et al.,
2018].

The one-iteration variant of PGD is known as the fast gradi-
ent method (FGM) when the normalized `2 update is used

Table 1: Accuracy and calibration of ResNet-18 models
trained on CIFAR-10 and ImageNet-100. `∞ and `2 adver-
sarial training substantially improves accuracy and calibra-
tion error (ECE) on corrupted samples.

Standard Corruption Corruption
Training accuracy accuracy calibration error

CIFAR-10

Standard 95.1% 74.6% 16.6%
`∞ adversarial 93.3% 82.7% 10.8%
`2 adversarial 93.6% 83.4% 10.5%

ImageNet-100

Standard 86.6% 47.5% 10.0%
`∞ adversarial 86.5% 47.7% 12.4%
`2 adversarial 86.3% 48.4% 9.4%

and as the fast gradient sign method (FGSM) when the `∞
sign update is used [Goodfellow et al., 2015]. Note that in
both cases the step size is α = ε which leads to perturba-
tions located on the boundary of the set ∆. These methods
are fast but sometimes prone to catastrophic overfitting
when the model overfits to FGM/FGSM but is not robust
to iterative PGD attacks [Tramèr et al., 2018, Wong et al.,
2020]. This problem can be alleviated by specific regular-
ization methods like CURE [Moosavi-Dezfooli et al., 2019,
Huang et al., 2020] or GradAlign [Andriushchenko and
Flammarion, 2020]. However, for small enough ε, adversar-
ial training with FGM/FGSM works as well as multi-step
PGD [Andriushchenko and Flammarion, 2020].

Experimental details. We do experiments on two common
image classification datasets: CIFAR-10 [Krizhevsky and
Hinton, 2009] which has 32×32 images, and ImageNet-100
[Russakovsky et al., 2015] with 224 × 224 images where
we take each tenth class following Laidlaw et al. [2021]. We
choose ImageNet-100 since we always perform a grid search
over the main hyperparameters such as the perturbation
radius for adversarial training which would be too expensive
to do on the full ImageNet. Unless mentioned otherwise,
we use PreAct ResNet-18 architecture [He et al., 2016]. We
specify the exact hyperparameters in App. A. We evaluate
the accuracy on common corruptions using CIFAR-10-C
and ImageNet-C datasets from [Hendrycks and Dietterich,
2019] which contain 15 different synthetic corruptions in
4 categories: blur, noise, digital, weather corruptions. We
report the accuracy by averaging over all 5 severity levels.

Adversarial training improves accuracy and calibra-
tion. We start by showing in Fig. 1 the common corruption
accuracy of `∞ adversarially trained models as it is the most
widely studied setting [Madry et al., 2018] and has been
reported multiple times in common corruption literature
[Hendrycks et al., 2019b, Ford et al., 2019, Rusak et al.,
2020]. Since we are interested primarily in small-ε adversar-
ial training, we rely throughout the paper on FGM/FGSM
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Figure 2: Expected calibration error on CIFAR-10-C for `∞
adversarially trained models.

for `2/`∞ norms respectively to solve the inner maximiza-
tion problem (1) which only leads to a 2× computational
overhead. Note however that we exceptionally use PGD with
10 steps for ε ∈ {8/255, 10/255} to prevent catastrophic over-
fitting and allow a direct comparison with previous works.
We observe that for the small-ε regime around ε = 1/255, we
get a significant improvement in corruption accuracy: 74.5%
accuracy is achieved with standard training, 82.7% with
adversarial training using ε = 1/255, and 73.8% using the
standardly reported threshold ε∞ = 8/255.1 The reason is
that the tradeoff between robustness and accuracy [Tsipras
et al., 2019] has to be carefully balanced—if the standard
accuracy drops for higher ε, the corruption accuracy also
deteriorates. Thus, selecting the most robust `p-model does
not lead to the optimal performance on common corruptions.
Alternatively, one can also balance this tradeoff by mixing
clean and adversarial samples, but it overall leads to similar
results (see App. C for details), so we focus on adversarial
training with 100% adversarial samples for the rest of the
paper.

Additionally, we show that predicted probabilities of adver-
sarially trained models are significantly better calibrated on
common corruptions. We believe that calibration is another
important aspect of the model’s trustworthiness, which is
particularly important in the presence of out-of-distribution
data such as corrupted images. In Fig. 2, we plot the ex-
pected calibration error (ECE) [Guo et al., 2017] on CIFAR-
10-C for models trained with different `∞-radii. We observe
that the ECE—both with and without temperature rescaling
(see App. B for details)—follows a decreasing trend over
`∞-radii which is expected since a classifier that predicts
uniform probabilities over classes is perfectly calibrated. In
particular, the most accurate model trained with ε∞ = 1/255

has a much lower ECE than the standard model: 10.8% in-
stead of 16.6%, and with temperature rescaling 6.7% instead
of 11.3%.

1The exact numbers differ from [Ford et al., 2019] since we use
ResNet-18 instead of WRN-28-10 and different hyperparameters.
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Figure 3: Accuracy for different corruption types on CIFAR-
10-C. Unlike other methods, adversarial training improves
the performance on each corruption.

We further compare the performance in the `2 perturbation
model. In Table 1, we report results of standard, `∞, and `2
adversarial training on CIFAR-10 and ImageNet-100 where
we perform a detailed grid search for each model over the
perturbation radius ε. To the best of our knowledge, we
show for the first time that adversarial training improves cal-
ibration (see also App. B) while increasing the accuracy and
that it helps on ImageNet-C, and not only on CIFAR-10-C.
We generally observe that `2 adversarial training performs
better than `∞, thus we focus on it in the next section.

4 UNDERSTANDING THE EFFECT OF
ADVERSARIAL TRAINING ON IMAGE
CORRUPTIONS

Here we compare `2 adversarial training to other natural
baselines and discuss the main conceptual differences.

Comparing natural baselines across corruption types.
We compare `2 adversarial training with a few simple base-
lines: standard training, gradient regularization [Drucker and
LeCun, 1992], and standard Gaussian data augmentation.
To ensure a fair comparison, we perform a grid search for
each method over the perturbation radius ε, regularization
parameter λ, and noise standard deviation σ respectively.
We choose to compare to gradient regularization since it is
an established regularization method that may have a sim-
ilar effect to adversarial training with small perturbations
[Simon-Gabriel et al., 2019]. We aggregate the corruptions
over each type (blurs, digital, noise, weather) and plot the
results in Fig. 3 and report results over each corruption in
Fig. 12 in the Appendix.

First, we observe that adversarial training is the best perform-
ing method and that unlike other methods, `2 adversarial
training helps for each corruption type. At the same time,
Gaussian augmentation degrades the performance on digital



and weather corruptions while very significantly improving
the performance for noise corruptions which is expected
as the Gaussian noise used for training is also contained in
the noise corruptions. Interestingly, for the fog and contrast
corruptions, the performance degrades for all methods (see
Table 10 in App. H), consistently with the observation made
in Ford et al. [2019]. Our results also suggest that the impact
of gradient regularization is limited and it cannot explain
the accuracy gains of both adversarial training and Gaussian
augmentation as one could expect from the fact that these
methods are equivalent to gradient regularization when used
with sufficiently small parameters σ and ε [Bishop, 1995].

Worst-case vs average-case behavior. Ford et al. [2019]
show that the robustness to Gaussian noise and adversarial
perturbations are closely related. More precisely, they show
using concentration of measure arguments that a non-zero
error rate under Gaussian perturbation implies the existence
of small adversarial perturbations and consequently that
improving adversarial robustness leads to an improvement
in robustness against Gaussian perturbations. This finding
is consistent with what we observe here. What remains to
be understood is why adversarial training performs better
than Gaussian augmentation on common corruptions. The
main difference between both methods appears when an-
alyzing the objectives that both methods minimize. For a
single sample x, the loss function considered in Gaussian
augmentation is:

Ed∼N(0,Iσ2) [`(θ, x+ d)] ∼ Eρ:||ρ||2=σ
√
d [`(θ, x+ ρ)] ,

since Gaussian vectors with variance σ2I are highly con-
centrated on the sphere of radius σ

√
d in high dimensions.

Therefore Gaussian augmentation amounts to minimize an
averaged objective where perturbations are averaged over
the sphere. However, the objective behind adversarial train-
ing defined in Eq. (1) amounts to minimize a worst-case
loss based on the worst-case perturbation in the ball. The
key difference is that minimization of the expected value of
the loss does not guarantee any behavior inside the sphere.

To investigate this behavior, we perform the following ex-
periment in Fig. 4. For random 1000 test set images from
CIFAR-10, we evaluate the loss with additive Gaussian
noise of σ ∈ [0, 0.1] and average the loss function over both
images and perturbations for (1) a standard model, (2) a
model trained with Gaussian augmentation with σ = 0.05
where all 100% training samples are augmented, (3) a model
trained with Gaussian augmentation for σ = 0.1 where only
50% training samples are augmented, and (4) `2 adversar-
ially trained model with ε = 0.1. We notice that the loss
function for 100% Gaussian augmentation is minimal at
σ which is only slightly less than σ = 0.05 used for its
training. Hence, the model has overfitted not only to the
type of noise but also to its magnitude. The loss function
outside and inside of the sphere is bigger than on its sur-
face. However, there is a simple fix if we train with 50%
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Figure 4: Average cross-entropy loss under Gaussian noise
for different training methods.
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Figure 5: Average `2 and LPIPS distance for different com-
mon corruptions from CIFAR-10-C.

Gaussian noise in each batch, as suggested, e.g., in Rusak
et al. [2020] in contrast to Ford et al. [2019]. This scheme al-
lows to alleviate the σ-overfitting behavior and also achieve
better accuracy on clean samples (93.2% instead of 92.5%)
and, most importantly, significantly improve on common
corruptions (85.0% instead of 80.5%). At the same time,
`2 adversarial training does not suffer from this problem
and both 100% and 50% schemes work nearly equally well
(details can be found in App. C). We provide a further dis-
cussion on σ-overfitting in App. D together with additional
experiments on ImageNet-100 where σ-overfitting has even
more noticeable behavior.

Local vs global `p behavior. Interestingly, adversarial train-
ing with worst-case perturbations bounded within a tiny `2
ball leads to robustness significantly beyond this radius.
Fig. 5 illustrates that common corruptions have an `2 norm
an order of magnitude larger than ε = 0.1 used for `2
adversarial training. This is in contrast with adversarial ro-
bustness that does not significantly extend beyond the radius
used for training [Madry et al., 2018]. Related to this, Ford
et al. [2019] argue that for Gaussian noise improving the
minimum distance to the decision boundary (e.g. via adver-
sarial training) also leads to an improvement of the average
distance. We have a similar mechanism at play for adver-
sarial `2 perturbations and common corruptions which may



explain the generalization of adversarial training to large
average-case perturbations. However, our setting is more
complex compared to Ford et al. [2019] since at the training
and test time we deal with different and diverse types of
noise.

5 IMPROVING ADVERSARIAL TRAIN-
ING BY RELAXING A PERCEPTUAL
DISTANCE

As shown above, `p adversarial training already leads to en-
couraging results on common corruptions. Moreover, the `2
distance appears to be more suitable for adversarial training
than `∞ on both datasets as implied by Table 1. This obser-
vation suggests that using more advanced distances such as
perceptual ones can further improve corruption robustness.

From `p distances to LPIPS. One of the main disadvan-
tages of `p-norms is that they are very sensitive under sim-
ple transformations such as rotations or translations [Sharif
et al., 2018]. One possible solution is to consider perceptual
distances2 which capture these invariances better such as the
learned perceptual image patch similarity (LPIPS) distance
introduced in Zhang et al. [2018b] and which is based on the
activations of a convolutional network. The LPIPS distance
is formally defined as

dLPIPS(x, x′)2 =

L∑
l=1

αl‖φl(x)− φl(x′)‖22, (3)

where L is the depth of the network, φl is its feature map up
to the l-th layer, and {αl}Ll=1 are some constants that weigh
the contributions of the `2 distances between activations.
There are two crucial elements in LPIPS: the learned net-
work and learned coefficients {αl}Ll=1. Zhang et al. [2018b]
propose to take a network pre-trained on ImageNet and learn
coefficients on their collected dataset of human judgemenets
about which images are closer to each other. Both Zhang
et al. [2018b] and Laidlaw et al. [2021] argue about better
suitability of LPIPS to measure image similarity. In App. E
we analyse the suitability of LPIPS over `2 specifically on
the images from CIFAR-10-C with a detailed breakdown
over corruption types. In particular, we show that the LPIPS
distance is better correlated with the error rate of the net-
work, and the increase over severity levels is more mono-
tonic compared to `2 as can be also seen in Fig. 5.

LPIPS adversarial training. In view of the positive fea-
tures of LPIPS, adversarial training using LPIPS appears
to be a promising approach to improve the performance
on common corruptions. The worst-case loss problem con-
sidered in (1) using the LPIPS distance can be formulated

2Not necessarily distances in a strict mathematical sense that
assumes a certain set of axioms to hold.

as:

max
δ
`(x+ δ, y; θ) s.t. dLPIPS(x, x+ δ) ≤ ε. (4)

However, this optimization problem is challenging since
dLPIPS is itself defined by a neural network, and the projec-
tion onto the LPIPS-ball—as required when using PGD to
solve (4)—does not admit a closed-form expression. This
problem was considered in Laidlaw et al. [2021] who pro-
pose two approximate attacks: the Perceptual Projected Gra-
dient Descent (PPGD) and the Lagrangian Perceptual Attack
(LPA). We discuss their approach in more detail in App. F
but emphasize that they either need to perform an approxi-
mate projection which is computationally expensive or come
up with some scheme for tuning the Lagrange multiplier λ
in the Lagrangian formulation. Furthermore, they suggest in
both cases to use 10-step iterative attacks for approximate
LPIPS adversarial training which limits the scalability of
the method to large datasets such as ImageNet.

Relaxed LPIPS adversarial training. We propose here a
relaxation of the LPIPS adversarial objective (4). For the
simplicity of presentation, let us start by assuming that the
LPIPS distance is defined using a single intermediate layer
of the network, i.e. dLPIPS(x, x′) = ‖φ(x)− φ(x′)‖2. Then
we can write a neural network f as the composition of
the feature map φ and the remaining part of the network
f(x) = h(φ(x)). The LPIPS adversarial objective (4) in
this notation becomes

max
δ
`(h(φ(x+ δ))) s.t. ‖φ(x+ δ)− φ(x)‖2 ≤ ε.

We first introduce the slack variable δ̃ = φ(x+ δ)− φ(x)
which allows us to rewrite the objective as

max
δ,δ̃

`(h(φ(x) + δ̃)) s.t. ‖δ̃‖2 ≤ ε, δ̃ = φ(x+ δ)− φ(x).

Then we perform the key step: we omit the constraint on the
slack variable and obtain the following relaxation

max
δ̃
`(h(φ(x) + δ̃)) s.t. ‖δ̃‖2 ≤ ε, (5)

i.e. we lift the requirement that there should exist a δ in the
input space that corresponds to the layerwise perturbation δ̃.

A similar relaxation can be derived when the LPIPS distance
is defined using multiple layers (see App. F):

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L))) (6)

s.t. ‖δ̃(l)‖2 ≤ εl ∀l ∈ LLPIPS , δ̃(l) = 0 ∀l 6∈ LLPIPS ,

where the network is written under its compositional form
f = gL ◦ · · · ◦ g1, LLPIPS is the set of layer indices used
in LPIPS and εl denotes the `2 bound imposed at the l-th
layer. We denote this relaxation as relaxed LPIPS adversar-
ial training (RLAT) and solve it efficiently using a single-
iteration adversarial attack similar to FGM. We emphasize



that the projection of each δ̃(l) onto the corresponding `2
balls is computationally cheap to perform, unlike the LPIPS
projection.

Since we perform relaxation and train the network which
is also used to compute LPIPS, the exact layerwise coeffi-
cients αl from the original LPIPS Zhang et al. [2018b] are
no longer applicable and cannot be used to set the layerwise
bounds εl. Therefore, we set our own values of εl which
we specify in App. F together with detailed derivations of
RLAT, its precise algorithm and other implementation de-
tails. Finally, we remark that related layerwise adversarial
training methods have been proposed before [Stutz et al.,
2019, Volpi et al., 2018, Wei and Ma, 2020]. However, view-
ing layerwise adversarial training as an efficient relaxation
of LPIPS adversarial training is novel, as well as apply-
ing these methods for general robustness such as common
corruptions.

6 EMPIRICAL EVALUATION OF RLAT

Here we first show that RLAT indeed substantially improves
the LPIPS robustness. Second, we compare RLAT to other
established methods and show that it consistently leads to
improved accuracy and calibration on common corruptions.

LPIPS robustness of RLAT. We use the Lagrangian Per-
ceptual Attack attack developed in Laidlaw et al. [2021]
to estimate the LPIPS adversarial accuracy under different
LPIPS radii and plot results in Fig. 6 on CIFAR-10. We use
standard, `2 adversarial training (AT), Fast PAT, and RLAT
models with their main hyperparameters selected to perform
best on common corruptions.3 We observe that RLAT in-
deed substantially improves LPIPS robustness, even more
than other approaches such as `2 AT and Fast PAT. This
gives further evidence that both `2 and RLAT training do
not suffer from catastrophic overfitting, even though trained
with one-step perturbations similar to FGSM. We provide a
similar evaluation for `2 robustness in App. F (Fig. 10).

Main experimental setup. We compare the results for
RLAT with additional baselines: `2 and `∞ adversarial train-
ing (with 100% adversarial samples per batch), Gaussian
augmentation (with both 50% and 100% augmentations per
batch), AdvProp [Xie et al., 2020], Fast PAT [Laidlaw et al.,
2021], and also four data augmentation approaches: Deep-
Augment [Hendrycks et al., 2021], AugMix [Hendrycks
et al., 2019b], adversarial noise training (ANT) [Rusak
et al., 2020], and Stylized ImageNet (SIN) [Geirhos et al.,
2019]. We use AugMix method additionally with the Jensen-

3We note that Laidlaw et al. [2021] focus on robustness to
unseen adversarial examples that involve a worst-case optimiza-
tion process, while we focus on unseen average-case common
corruptions. This is the reason why the optimal perturbation radii
that we consider are noticeably smaller than in their paper.
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Figure 6: LPIPS adversarial robustness of different training
schemes on CIFAR-10.

Shannon regularization term as proposed in Hendrycks et al.
[2019b]. We train all methods from random initialization
except ANT where we follow the scheme of Rusak et al.
[2020]. All comparisons between methods are performed
with a grid search over their main hyperparameters (reported
in App. A) such as σ in Gaussian augmentation or ε in adver-
sarial training which we perform on the main 15 corruptions
from CIFAR-10-C / ImageNet-C. In App. H we further
verify that selecting the main hyperparameters on valida-
tion corruptions leads to the same results. For Fast PAT on
CIFAR-10, we do a grid search over their parameter ε, but
on ImageNet-100 we report the results based on the mod-
els provided by the authors due to limited computational
resources. To assess calibration, we report the expected cali-
bration error (ECE) (see App. H for ECE with temperature
rescaling Guo et al. [2017]). More details can be found
in our repository https://github.com/tml-epfl/
adv-training-corruptions.

Since the main goal of the common corruption benchmark
[Hendrycks and Dietterich, 2019] is to show the model’s
behavior on unseen corruptions, we do not use overlapping
augmentations in training (see App. A). The only excep-
tion is Gaussian augmentation which we mark in gray in
Table 2 following [Rusak et al., 2020] since it belongs to
common corruptions. We note that removing only Gaus-
sian noise from evaluation is not sufficient, because other
noises can be affected as well by training with Gaussian
augmentation. Thus, the results of 100% and 50% Gaussian
augmentation are shown only for illustrative purposes sug-
gesting that adversarial training with no prior knowledge
about the corruptions can obtain almost the same results as
direct augmentation.

Main experimental results. We show the main experimen-
tal results on CIFAR-10-C and ImageNet-100-C in Table 2.
First of all, we observe that `p adversarial training is a strong
baseline on common corruptions on both datasets with a
larger gain on CIFAR-10-C. Using our proposed relaxed
LPIPS adversarial training further improves the corruption
accuracy on both datasets: from 74.6% to 84.1% on CIFAR-

https://github.com/tml-epfl/adv-training-corruptions
https://github.com/tml-epfl/adv-training-corruptions


Table 2: Accuracy and calibration of ResNet-18 models
trained on CIFAR-10 and ImageNet-100. Gray-colored num-
bers correspond to methods partially trained with the cor-
ruptions from CIFAR-10-C and ImageNet-100-C.

Standard Corruption Corruption
Training accuracy accuracy calibr. error

CIFAR-10

Standard 95.1% 74.6% 16.6%
100% Gaussian 92.5% 80.5% 13.2%
50% Gaussian 93.2% 85.0% 9.1%
Fast PAT 93.4% 80.6% 12.0%
AdvProp 94.7% 82.9% 10.1%
`∞ adversarial 93.3% 82.7% 10.8%
`2 adversarial 93.6% 83.4% 10.5%
RLAT 93.1% 84.1% 9.9%

DeepAugment 94.1% 85.3% 8.7%
DeepAugment + RLAT 93.6% 87.8% 6.1%

AugMix 95.0% 86.6% 6.9%
AugMix + RLAT 94.8% 88.5% 4.5%

AugMix + JSD 95.0% 88.6% 6.5%
AugMix + JSD + RLAT 94.8% 89.6% 5.4%

ImageNet-100

Standard 86.6% 47.5% 10.0%
100% Gaussian 86.4% 46.7% 11.7%
50% Gaussian 83.8% 55.2% 6.1%
Fast PAT 71.5% 45.2% 8.0%
`∞ adversarial 86.5% 47.7% 12.4%
`2 adversarial 86.3% 48.4% 9.4%
RLAT 86.5% 48.8% 9.1%

AugMix 86.7% 52.3% 7.5%
AugMix + RLAT 86.8% 54.8% 4.7%

AugMix + JSD 88.4% 59.3% 1.9%
AugMix + JSD + RLAT 87.1% 61.1% 1.8%

SIN 86.6% 53.7% 6.7%
SIN + RLAT 86.5% 54.3% 6.0%

ANT3x3 85.9% 57.7% 5.1%
ANT3x3 + RLAT 85.3% 58.3% 4.4%

10-C and from 47.5% to 48.8% compared to standard mod-
els. Moreover, RLAT also improves calibration compared
to the standard model: from 16.6% to 9.9% ECE on CIFAR-
10-C and from 10.0% to 9.1% ECE on ImageNet-100-C.
We also observe that 100% Gaussian augmentation even de-
teriorates the performance on ImageNet-100-C while 50%
Gaussian augmentation significantly improves the average
accuracy which is consistent with Rusak et al. [2020].

We observe that RLAT can be successfully combined with
existing data augmentations, leading to better accuracy and
calibration. E.g., adding RLAT on top of DeepAugment
helps to improve the CIFAR-10-C accuracy from 85.3%

Table 3: Wall-clock time in hours for ResNet-18 trained
with different methods on CIFAR-10 and ImageNet-100
using one Nvidia V100 GPU. * denotes the time reported by
Laidlaw et al. [2021] for a larger model (ResNet-50) using
different hardware (4 Nvidia RTX 2080 Ti GPUs).

Dataset

Training CIFAR-10 ImageNet-100

Standard 0.8h 3.9h
`2/`∞ adversarial 1.3h 5.8h
RLAT 1.8h 6.2h
Fast PAT 9.4h *120h

to 87.8%. Combining RLAT with the AugMix augmenta-
tion improves the corruption accuracy from 86.6% to 88.5%
on CIFAR-10-C and on ImageNet-100-C from 52.3% to
54.8%. Combining SIN and ANT3x3 improves the accu-
racy on ImageNet-100-C from 53.7% to 54.3% and from
57.7% to 58.3%, respectively. Moreover, we see that RLAT
consistently improves ECE in all settings, and we refer to
App. H for ECE with temperature rescaling which qualita-
tively shows the same behavior.

Additionally, we added our models to the RobustBench
leaderboard4 where our method has the best performance
among the architectures of comparable sizes (i.e., ResNet-
18). The models which perform better have larger architec-
tures and some of them additionally rely on ensembles.

Runtime of RLAT. We report a full runtime comparison be-
tween standard training, `2 / `∞ adversarial training, RLAT,
and Fast PAT in Table 3. The main observation is that RLAT
is significantly faster than Fast PAT (e.g., 1.8 hours vs. 9.4
hours on CIFAR-10) and leads only to a slight overhead
compared to `2 / `∞ adversarial training (1.8 hours vs 1.3
hours on CIFAR-10). These runtimes show further the ad-
vantage of the single-step adversarial training procedure of
RLAT compared to the multi-step approach of Fast PAT. It
would be interesting in future work to develop a single-step
version of Fast-LPA which is, however, not straightforward
because of their Lagrangian formulation and the need to
tune the parameter λ over the iterations of Fast-LPA.

Additional experiments. We refer to the Appendix for
further experimental results. In App. G, we evaluate the
performance of the models from Table 2 on ImageNet-A,
ImageNet-R, and Stylized ImageNet to better understand
how well the improvements on common corruptions trans-
fer to other distribution shifts. In App. H, we provide more
detailed results such as those presented in Table 2 but with
breakdowns over different corruptions and severities. We
also present results for larger network architectures and for
AugMix combined with `p adversarial training in App. H,
as well as results of RLAT over multiple random seeds.

4https://robustbench.github.io/

https://robustbench.github.io/


7 CONCLUSIONS AND FUTURE WORK

Our findings suggest that adversarial training can be suc-
cessfully used to improve accuracy and calibration on com-
mon image corruptions. Even simple `p adversarial training
can serve as a strong baseline if the optimal perturbation
radius is chosen for the given problem. More advanced
adversarial training schemes involve perceptual distances,
such as LPIPS, and we provide a relaxation of LPIPS adver-
sarial training with an efficient single-step procedure. We
observe that the developed relaxation (RLAT) substantially
improves the LPIPS robustness and can be successfully
combined with existing data augmentations. We hope that
RLAT would be of interest also for other domains such as
natural language processing where robustness to commonly
occurring corruptions (e.g., typos) is an important task.
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Appendix

ORGANIZATION OF THE APPENDIX

The appendix contains additional implementation details
for our methods and the baselines we compare to, as well
as more detailed derivations and experimental results. The
appendix is organized as follows:

• Sec. A: further details on our experimental setup, hy-
perparameter choice, and runtime of different methods.

• Sec. B: further details on the calibration experiments
and results for `2 adversarial training.

• Sec. C: an ablation study for AdvProp comparing it to
adversarial training with some fraction of clean images.

• Sec. D: further experiments related to σ-overfitting on
ImageNet-100 and more detailed discussion.

• Sec. E: discussion on why LPIPS distance is particu-
larly suitable for the corrupted images from CIFAR-
10-C.

• Sec. F: full derivations for our Relaxed LPIPS adver-
sarial training method, further implementation details,
and evaluation of `2 robustness.

• Sec. G: evaluation of the performance of various mod-
els on different distribution shifts such as ImageNet-A,
ImageNet-R, and Stylized ImageNet.

• Sec. H: more detailed experimental results related to
Sections 4 and 6 such as breakdowns over different
corruptions and severity levels.

A EXPERIMENTAL DETAILS

In this section, we provide more details regarding our exper-
imental settings, hyperparameters, evaluation metrics, and
runtime of our method.

Dataset details. We perform experiments on two common
image classification datasets: CIFAR-10 [Krizhevsky and
Hinton, 2009] which has 32×32 images, and ImageNet-100
[Russakovsky et al., 2015] with 224 × 224 images where
we take each tenth class according to the WordNet ID order
following Laidlaw et al. [2021]. We choose ImageNet-100
instead of the full ImageNet since we have limited computa-
tion resources for performing grid searches on large-scale
datasets over the main hyperparameters such as the perturba-
tion radius for adversarial training or the standard deviation
of the Gaussian noise.

The CIFAR-10-C and ImageNet-C datasets that were intro-
duced in Hendrycks and Dietterich [2019] contain 15 main
synthetic corruptions: Gaussian noise, shot noise, impulse
noise, defocus blur, glass blur, motion blur, zoom blur, snow,

frost, fog, brightness, contrast, elastic, pixelation, and JPEG.
Both datasets contain also 4 additional corruptions (speckle
noise, Gaussian blur, spatter, saturation) that are not com-
monly used. Each corruption has 5 levels of severity. We
use the CIFAR-10-C and ImageNet-C images provided by
Hendrycks and Dietterich [2019], although one could alter-
natively apply the corruptions in-memory (as done, e.g., in
[Ford et al., 2019]).

In addition, we make use of three more variants of Ima-
geNet: Stylized ImageNet, ImageNet-A and ImageNet-R.
Stylized ImageNet (SIN) is a variant of ImageNet which
is obtained using style transfer. It has been first introduced
to induce a shape bias in convolutional networks [Geirhos
et al., 2019]. ImageNet-A [Hendrycks et al., 2019c] is a
test set of 7 500 natural but adversarially collected images
with, e.g., unusual backgrounds or occlusions for 200 Im-
ageNet classes. ImageNet-R [Hendrycks et al., 2021] is a
test set of 30 000 image renditions (e.g., paintings, sculp-
tures, embroidery) for another set of 200 ImageNet classes.
When evaluating on these datasets, we only use the classes
intersecting with ImageNet-100.

Evaluation details. There are 15 corruptions and 5 sever-
ity levels in CIFAR-10-C and ImageNet-C. Thus there are
multiple ways of reporting the performance of a model on
these two datasets. For a model f , let Efs,c denote the top-1
error rate on the corruption c with severity level s averaged
over the whole test set, then three popular metrics are often
reported:

• Average accuracy: the accuracy is averaged over all
severity levels and corruptions:

Accuracyf = 1− 1

15 · 5

15∑
c=1

5∑
s=1

Efs,c.

• Mean corruption error (mCE, proposed in Hendrycks
and Dietterich [2019]): the error rate on each corrup-
tion is normalized by the error rate, EAlexNet

s,c , of the
standard deep learning model, AlexNet [Krizhevsky
et al., 2012]:

mCEf =
1

15

15∑
c=1

∑5
s=1E

f
s,c∑5

s=1E
AlexNet
s,c

.

The motivation is to make the error rates on different
corruptions more comparable. Indeed they do not all
have the same inherent level of difficulty.

• Relative mean corruption error (relative mCE, pro-
posed in Hendrycks and Dietterich [2019]): instead
of measuring the error rate, one can also consider the
degradation of the error rate compared to the standard
error rate Efstandard of the model f taken relative to the
degradation of the error rate EAlexNet

standard of AlexNet:

Relative mCEf =
1

15

15∑
c=1

∑5
s=1E

f
s,c − E

f
standard∑5

s=1E
AlexNet
s,c − EAlexNet

standard

.



Table 4: The main hyperparameters used for CIFAR-10 and ImageNet experiments.

Dataset

Hyperparameter CIFAR-10 ImageNet-100

Architecture PreAct ResNet-18 PreAct ResNet-18
Number of epochs 150 100
Learning rate of SGD 0.1 0.1
Epochs for learning rate decay (by 10× factor) {50, 100} {33, 66}
Momentum 0.9 0.9
Batch size 128 128
Weight decay 0.0005 0.0005

Table 5: Grid searches performed for CIFAR-10 experiments. For each grid, we boldface the hyperparameter that leads to
the model with the best common corruption accuracy.

Method Grid values

100% Gaussian augmentation σ ∈ {0.02, 0.05, 0.08, 0.1, 0.2}
50% Gaussian augmentation σ ∈ {0.02, 0.05, 0.08, 0.1, 0.2}
`∞ adversarial training ε ∈ {0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0}/255
`2 adversarial training ε ∈ {0.01, 0.05, 0.08, 0.1, 0.15, 0.2, 0.5, 1.0}
Fast PAT ε ∈ {0.005, 0.01, 0.02, 0.05, 0.08}
AdvProp ε ∈ {0.5, 1.0, 2.0, 4.0, 8.0}
RLAT ε ∈ {0.05, 0.08, 0.1, 0.15, 0.2, 0.25}

RLAT + DeepAugment ε ∈ {0.005, 0.02, 0.05}
RLAT + AugMix ε ∈ {0.01, 0.02, 0.05, 0.1, 0.15, 0.2}
RLAT + AugMix + JSD ε ∈ {0.01, 0.02, 0.05, 0.1, 0.15, 0.2}

However, this metric has to be carefully interpreted
since it does not take absolute accuracy into account,
e.g., a constant model achieves the perfect score of 0
for this metric.

Since there is no standard AlexNet model on CIFAR-10, the
mean corruption error and the relative mean corruption error
are not well defined on this dataset. Therefore we focus
on reporting average accuracy on both CIFAR-10-C and
ImageNet-100-C to be consistent throughout the paper.

For the LPIPS robustness evaluation shown in Fig. 6, we
use the following settings: Fast Lagrangian Attack from
Laidlaw et al. [2021] using their suggested hyperparameters
and AlexNet as the network to compute the LPIPS distance.
For the `2 robustness evaluation, we use the APGD-CE
attack [Croce and Hein, 2020] with 100 iterations and 5
random restarts.

Training details. In all our experiments, we use SGD with
momentum to train a PreAct ResNet-18 network (both on
CIFAR-10 and ImageNet-100). The momentum coefficient
is set to the value 0.9. The learning rate is initially set to the
value 0.1 and then is decayed by a factor 10 according to a
predefined schedule. We train for 150 epochs on CIFAR-10
and 100 epochs on ImageNet-100 and always report the
results of the last model, i.e. we do not perform any early
stopping. We specify all the main training hyperparameters
in Table 4.

A recent work of Mintun et al. [2021] suggests that the most
effective data augmentations are those which are percep-
tually similar to the target corruptions from CIFAR-10-C
and ImageNet-C. Along the same lines, Rusak et al. [2020]
mention that for AugMix, there is a visual similarity, e.g.,
between the posterize operation and the JPEG corruption.
Thus, to prevent training on augmentations which resemble
the ones from CIFAR-10-C and ImageNet-C, we use only
random horizontal flip and random crops unless mentioned
otherwise. Moreover, when we train Fast PAT on CIFAR-
10, we make sure to remove the overlapping augmentations
used in the robustness library [Engstrom et al., 2019] such as
random brightness and contrast change. For the experiments
whose results are reported in Table 2, we use additional
augmentations like AugMix, SIN, ANT3x3 whenever it is
explicitly mentioned.

For every method that we reported, we performed a grid
search over the main hyperparameters such as the standard
deviation σ for Gaussian data augmentation or the pertur-
bation radius ε for adversarial training. We report all the
used grids in Table 5 and Table 6. We note that the grids are
not of the same size for all methods since in case an initial
grid of values came out to be suboptimal, we expanded it
further until the optimal value (according to common corrup-
tion accuracy) was attained not at the boundary of the grid.
The only exception is for 100% Gaussian augmentation on
ImageNet-100 in Table 6 where the best performance is
attained for the smallest σ = 0.001 out of the final grid. We



Table 6: Grid searches performed for ImageNet-100 experiments. For each grid, we boldface the hyperparameter that leads
to the model with the best common corruption accuracy.

Method Grid values

100% Gaussian augmentation σ ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6}
50% Gaussian augmentation σ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8}
`∞ adversarial training ε ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0}/255
`2 adversarial training ε ∈ {0.02, 0.05, 0.1, 0.2}
RLAT ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2}

RLAT + AugMix ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
RLAT + AugMix + JSD ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
RLAT + SIN ε ∈ {0.005, 0.01, 0.02, 0.05}
RLAT + ANT3x3 ε ∈ {0.005, 0.01, 0.02, 0.05}

found out that even such a small σ still harms the overall
performance due to σ-overfitting and elaborate further on
this phenomenon on ImageNet-100 in Sec. D.

Data augmentation experiments. For the experiments
with DeepAugment [Hendrycks et al., 2021], we generate
distorted images once before training using the CAE model
from their public repository. For the experiments that in-
volve training on Stylized ImageNet, we use in each batch
28 stylized images and 100 standard ImageNet images fol-
lowing Rusak et al. [2020]. ANT [Rusak et al., 2020] is
the only exception where instead of training from a ran-
dom initialization, we follow the scheme of the authors and
fine-tune a standardly pretrained ImageNet-100 model. Ad-
ditionally, we note that the noise generator of Rusak et al.
[2020] uses skip connections with Gaussian noise and expe-
rience replay of previous noise generators. This means that
there is a certain Gaussian noise component in the final noise
which implies that it partially overlaps with the common
corruptions from CIFAR-10-C and ImageNet-100-C.

Licenses for the used and released assets. We release all
our models under the MIT license. Throughout the paper,
we used ImageNet [Russakovsky et al., 2015], CIFAR-10
[Krizhevsky and Hinton, 2009], ImageNet-C [Hendrycks
and Dietterich, 2019], and CIFAR-10-C [Hendrycks and
Dietterich, 2019] datasets and the Fast PAT [Laidlaw et al.,
2021] model trained on ImageNet. Their licenses can be
found in their repositories or webpages. Importantly, all
their licenses are compatible for the purposes of academic
research.

B ADDITIONAL DETAILS AND RE-
SULTS ON CALIBRATION

In this section, we discuss the details on how we compute the
expected calibration error and perform temperature rescal-
ing to improve calibration. We also show calibration results
for `2 adversarially trained models.

Calibration details. To compute the expected calibration
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Figure 7: Expected calibration error on CIFAR-10-C for `2
adversarially trained models.

error (ECE) we follow the code of Guo et al. [2017] with
their default settings using 15 equally-sized bins to compute
the calibration error. However, we change the implementa-
tion of the temperature rescaling. Since optimization of ECE
over the softmax temperature is a simple one-dimensional
optimization problem, it can be solved efficiently using a
grid search. Moreover, we can optimize directly the met-
ric of interest, i.e. ECE, instead of the cross-entropy loss
as in Guo et al. [2017] who relied on a differentiable loss
since they used gradient descent to optimize the tempera-
ture. As the grid, we use the interval t ∈ [0.001, 1.0] with
a grid step 0.001 and we test both t and 1/t temperatures.
Moreover, we make sure that for all methods the optimal
t is located not at the boundary of the grid. We optimize
the temperature only on the in-distribution samples from
the test sets of CIFAR-10 and ImageNet-100 to make sure
that the out-distribution samples from CIFAR-10-C and
ImageNet-100-C stay unseen.

Calibration of `2 adversarially trained models. In Fig. 7,
we additionally present the expected calibration error for
models adversarially trained with different `2 perturbation
radii. We observe a decreasing trend over the perturbation
radius similarly to the `∞-trained models shown in Fig. 2.
We see that the most accurate `2 model on corruptions is



significantly better calibrated: 10.5% ECE vs 16.6% ECE
of the standard model. Moreover, the same amount of im-
provement can be observed even after temperature rescaling:
5.8% ECE vs 11.3% ECE of the standard model. Thus, we
conclude that both `∞ and `2 adversarial training substan-
tially improve calibration both before and after temperature
rescaling. Moreover, `2 adversarial training leads to better
calibration than `∞: 10.8% vs 10.5% ECE by default and
6.7% vs 5.8% ECE after temperature rescaling.

C ABLATION STUDY FOR ADVPROP
AND ADVERSARIAL TRAINING

In this section, we provide experimental details for the Ad-
vProp baseline and compare it with the standard `∞ adver-
sarial training.

AdvProp [Xie et al., 2020] is a method based on adversar-
ial training where the objective consists of a mixture of
clean and adversarial examples for which separate Batch-
Norm layers are used, and only the clean BatchNorm layers
are used at test time. This method was shown to improve
the accuracy on clean images compared to standard adver-
sarial training and to help to generalize under distribution
shifts such as common corruptions, so we consider it here
in more detail. As shown in Table 2, AdvProp achieves
94.7% standard accuracy and 82.9% common corruption
accuracy. Thus AdvProp performs comparably to 100% `∞
adversarial training (82.9% vs 82.7% accuracy on CIFAR-
10-C), however, AdvProp still performs worse than 100%
`2 adversarial training (83.4%) and 100% RLAT (84.1%).
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Figure 8: Accuracy on common corruptions from CIFAR-10-
C for ResNet-18 models adversarially trained using different
`∞ radii and different proportions of adversarial and clean
examples together with the AdvProp scheme.

In Fig. 8, we show the results of an ablation study for Pre-
Act ResNet-18 models adversarially trained using different
`∞ radii and different proportions of adversarial and clean
examples (25%, 50%, 75%, 100%) together with the Ad-
vProp scheme. We can see that AdvProp outperforms 100%

standard AT but only by a small margin (+0.2%). Moreover,
100% standard AT performs comparably to 75% standard
AT and better than 50% and 25% standard AT. Thus, we
observe no benefit in mixing clean and adversarial samples
for standard AT unlike for Gaussian data augmentation. We
emphasize here that the advantage of the standard `p adver-
sarial training is that it is a conceptually simpler method
as it does not require using separate BatchNorms during
training, and balancing clean and adversarial samples. Be-
sides, AdvProp requires up to 50% more training time if the
same number of adversarial examples is used as for 100%
standard AT.

D DETAILS ON σ-OVERFITTING

In this section, we provide experiments related to the σ-
overfitting phenomenon on ImageNet-100 and provide a
further discussion on it.

σ-overfitting on ImageNet. On ImageNet-100-C, the gap
between 50% Gaussian augmentation and 100% Gaussian
augmentation is even larger than on CIFAR-10-C (see Ta-
ble. 2). To study the σ-overfitting phenomenon in more
detail, we repeat the experiment behind Fig. 4 on ImageNet-
100 and show the results in Fig. 9.

We first focus on large Gaussian perturbations (up to σ = 1
for image pixels in [0, 1]) in Fig. 9 (a). We observe that
100% Gaussian augmentation severely overfits to the noise
magnitude used for training while the 50% Gaussian aug-
mentation scheme mitigates this problem. However, 50%
Gaussian augmentation does not completely solve the σ-
overfitting problem since we observe that the loss still has
a local maximum around σ = 0.2 (with a ≈ 1.6× increase
compared to the loss at σ = 0.45). Therefore, 50% Gaus-
sian augmentation may be a suboptimal method against
σ-overfitting. We believe that future research is needed to
better understand improved mitigation strategies.

We additionally plot the performance of standard and `2
adversarially trained models for a smaller range of Gaussian
perturbations with σ ∈ [0, 0.1] in Fig. 9 (b). We can observe
that there is no σ-overfitting trend for standard and `2 adver-
sarially trained models. Moreover, the latter has a slightly
smaller loss for small values of σ.

Ford et al. [2019] in the context of σ-overfitting. As a
Gaussian data augmentation baseline, Ford et al. [2019] use
a scheme that is actually different from both 50% and 100%
Gaussian augmentation schemes. They perform Gaussian
augmentation on each sample, however they sample the stan-
dard deviation uniformly at random from the range [0, σ]5.
This strategy can be seen as an interpolation between the

5We confirmed this implementation detail via private commu-
nication with the authors. Note that this also corresponds to what
[Rusak et al., 2020] report in Appendix H.
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Figure 9: The cross-entropy loss under Gaussian noise of different training methods for ImageNet-100. We see that 100%
Gaussian augmentation severely overfits to the noise magnitude used for training while the 50% Gaussian augmentation
scheme mitigates this problem, but not completely, since it has a noticeable local maximum σ = 0.2, and `2 adversarial
training does not suffer from this problem.

50% and 100% Gaussian augmentation schemes. Moreover,
another difference in the results from Ford et al. [2019]
compared to our paper is that they computed corruptions for
ImageNet-C in-memory which leads to some discrepancy
compared to static images (e.g., see Fig. 5 in Ford et al.
[2019] for an illustration).

σ-overfitting and adversarial training. As we can see
from Fig. 4 and Fig. 9, adversarial training does not suf-
fer from the σ-overfitting problem which may explain why
applying 50% adversarial training (as in Sec. C) does not
lead to better results compared to 100% adversarial training.
We believe that the difference between Gaussian augmenta-
tion and adversarial training can occur due to a much larger
norm of the perturbation used for data augmentation. On
CIFAR-10-C, the optimal `2 radius for adversarial training
is 0.1 while the norm of Gaussian vectors is approximately
σ100% ·

√
d = 0.05 ·

√
32 · 32 · 3 ≈ 2.77 for 100% Gaussian

augmentation and σ50% ·
√
d = 0.1 ·

√
32 · 32 · 3 ≈ 5.54 for

50% Gaussian augmentation. It is therefore likely that due
to a much larger norm of the perturbation, the model trained
with 100% Gaussian noise fails to generalize to perturba-
tions of smaller norms, while this failure can be alleviated
to some extent by using the 50% scheme. On a related note,
some variations of adversarial training are known to suffer
from a phenomenon called catastrophic overfitting [Tramèr
et al., 2018, Wong et al., 2020]. Catastrophic overfitting
shares some similarities with σ-overfitting, in the sense that
the model overfits to a particular perturbation type used
during training. Clarifying the relation of catastrophic over-
fitting and σ-overfitting is an interesting direction for future
work.

E SUITABILITY OF LPIPS FOR COM-
MON CORRUPTIONS

We first show that the LPIPS distance is more suitable
to common image corruptions than the `2 distance. We
note that previous works [Zhang et al., 2018b, Laidlaw
et al., 2021] have discussed its advantages over other com-
monly used distances, however not in the context of cor-
ruptions from CIFAR-10-C. Another difference to Zhang
et al. [2018b] is that here we compute the LPIPS distance
using full images instead of smaller image patches as we
are eventually interested in performing adversarial training
using full inputs.

We compute the average `2 and LPIPS distances based on a
standardly trained VGG network using the code from Zhang
et al. [2018b] for different corruptions from CIFAR-10-C.
The results are shown in Fig. 5 (see also Table 8 in the
Appendix), where we observe that for certain corruptions,
LPIPS clearly demonstrates a more preferable behavior than
the `2 distance. For example, the `2 distances of elastic
transformations are monotonically decreasing over the cor-
ruption severity which is the opposite of what we would
expect from a suitable distance between images. At the same
time, the LPIPS distance is first slightly decreasing and then
increasing which is a better behavior compared to `2. Sim-
ilarly, the `2 distances for JPEG corruption appear to be
roughly constant while they are noticeably increasing for
LPIPS. The LPIPS distances for the frost corruption start
from a low value and then monotonically increase whereas
the `2 distances start from a very high value and then fail to
be monotonic. At the same time, LPIPS behavior is more
unexpected on noise corruption where it shows a very fast
increase for impulse, Gaussian, and shot noises.

Therefore, the LPIPS distance appears to better capture the



Table 7: Correlation between distances and error rates of a
standard model taken across different corruption severities
and averaged over multiple corruptions. LPIPS distance is
better correlated with the error rates on different corruption
severity levels.

Corruption type

Metric All Noise Blur Weather Digital

`2 0.807 0.998 0.986 0.835 0.561
LPIPS 0.963 0.993 0.994 0.968 0.921

severity of these corruptions. To investigate further this qual-
itative assessment, we compute the correlation between the
l2 and the LPIPS distances and the error rates of a stan-
dardly trained model (shown in Fig. 11) in Table 7. More
precisely, each corruption has five severity levels for which
both the average distance value and the average error rate
can be calculated. Therefore, for a given corruption, we
compute the correlation between the vector composed of
the distances corresponding to each severity level and the
error-rate vector defined similarly. We take then the average
correlation over each corruption type. We observe that the
LPIPS distance is more correlated with the error rates for all
corruption types except the noise one. The main difference
comes from the digital corruptions where LPIPS leverages
the monotonic behavior of the frost and elastic transform
corruptions. Therefore, we conclude that LPIPS is quantifi-
ably more suitable to capture the distance between common
image corruptions.

Average perturbation distance for different corruptions.
In Table 8 we report the average distances between clean and
corrupted images for the LPIPS and l2 norms which is the
same data as in Fig. 5. We report exact numbers to further
illustrate the point that adversarial training with worst-case
perturbations in a small `2 ball (such as ε = 0.1) leads to
robustness against corruptions of a much larger magnitude.
We can observe from Table 8 that for some corruptions, the
perturbation norm does not grow monotonically (particu-
larly, glass blur and elastic transform) which we highlight in
red. We observe that for the LPIPS distance such behavior
occurs less often. Another observation is that the l2 distance
itself does not always accurately reflects the strength of the
performance degradation. For example, fog and brightness
have similar magnitude (and the largest among the other cor-
ruptions), but very different behavior in terms of accuracy:
degradation under fog is much higher than under brightness.

F DETAILS ON THE RELAXED LPIPS
ADVERSARIAL TRAINING

In this section, we first discuss in more detail the approach
of Laidlaw et al. [2021], then present complete derivations

for RLAT where LPIPS is defined using multiple layers,
discuss implementation details of RLAT, and evaluate the
`2 robustness of RLAT and a few other baselines.

Details on the perceptual attacks of Laidlaw et al.
[2021]. At each step of the Perceptual Projected Gradient
Descent (PPGD) proposed in Laidlaw et al. [2021], both
the loss ` and the neural network f used to define dLPIPS
are linearized, and the constrained problem (4) is approxi-
mated with a large linear system which is solved approxi-
mately with K iterations of the conjugate gradient method.
To satisfy the constraint in (4), the solution δ is then ap-
proximately projected onto the LPIPS-ball, i.e. onto the set
{δ : dLPIPS(x, x + δ) ≤ ε}, for which n iterations of the
bisection method are used. For T iterations of PPGD, the
algorithm in total requires T (K + n + 4) forward passes
and T (K + n+ 3) backward passes of the network which
makes it significantly more expensive than standard PGD
which requires T forward and backward passes.

The Lagrangian Perceptual Attack (LPA) uses the following
Lagrangian relaxation of the objective:

max
δ
`(x+ δ, y; θ)− λmax{dLPIPS(x, x+ δ)− ε, 0},

which is solved by gradient descent for several values of the
Lagrange multiplier λ (usually S = 5 in their experiments)
and whose solution is then projected back onto the LPIPS-
ball. In total, the attack requires 2ST +n+2 forward passes
and ST +n+ 2 backward passes of the network which also
makes it expensive due to the outer loop over S different
values of λ.

These two attacks are too computationally expensive to be
efficiently used during adversarial training. To speed up
the method, they additionally propose Fast-LPA where λ
is not searched over but is instead increased during the
training according to a fixed schedule and no projection
steps are included. Then Fast-LPA requires 2T + 1 forward
and T + 1 backward passes that represent a small overhead
compared to PGD but a large one when compared to single-
step methods such as FGSM. We note that the possibility of
using Fast-LPA with a few iterations is worth investigating
in future work, although it appears to be not straightforward
because of the Lagrangian formulation and the need to tune
the parameter λ over iterations of Fast-LPA.

Relaxation for multi-layer LPIPS. We derive here the re-
laxation of LPIPS adversarial training for a general multi-
layer version of the LPIPS distance. We recall from Eq. (3)
that the LPIPS distance can be written as

dLPIPS(x, x+ δ)2 =

L∑
l=1

αl‖φl(x)− φl(x+ δ)‖22.

We use the convention that αl = 0 if a layer l is not in the set
of the layers used in the LPIPS distance, i.e. if l 6∈ LLPIPS .
We consider the network f written in its compositional form,



Table 8: Average `2 and LPIPS distance for different corruptions and severity levels from CIFAR-10-C. Note that the
distances do not always monotonically increase with the corruption level. We mark such cases in red and observe that they
occur less often for LPIPS than for the `2 distance.

`2 distance at different LPIPS distance at different
severity levels severity levels

Corruption 1 2 3 4 5 1 2 3 4 5

Shot noise 1.67 2.35 3.68 4.22 5.13 0.089 0.143 0.245 0.284 0.341
Motion blur 2.40 3.51 4.33 4.32 4.97 0.059 0.114 0.166 0.166 0.211
Snow 2.92 5.83 6.60 9.10 12.17 0.068 0.155 0.160 0.188 0.227
Pixelate 1.25 1.77 1.97 2.48 3.04 0.130 0.060 0.074 0.138 0.202
Gaussian noise 2.19 3.26 4.31 4.83 5.34 0.027 0.217 0.294 0.328 0.359
Defocus blur 0.43 1.06 1.61 2.09 2.98 0.003 0.019 0.048 0.085 0.153
Brightness 2.26 4.59 6.85 9.01 12.95 0.006 0.022 0.045 0.071 0.132
Fog 2.81 5.54 7.18 8.45 10.20 0.022 0.086 0.147 0.215 0.332
Zoom blur 3.04 3.56 4.20 4.83 5.40 0.079 0.094 0.124 0.153 0.189
Frost 6.86 10.14 11.39 10.45 10.26 0.077 0.141 0.208 0.214 0.266
Glass blur 4.70 4.64 4.27 6.73 6.28 0.253 0.248 0.235 0.333 0.321
Impulse noise 3.08 4.37 5.35 6.92 8.20 0.136 0.223 0.289 0.387 0.452
Contrast 2.80 5.60 6.71 7.83 9.51 0.020 0.092 0.143 0.216 0.386
JPEG compression 1.59 1.95 2.07 2.20 2.38 0.073 0.108 0.121 0.134 0.153
Elastic transform 7.37 6.79 6.11 5.67 4.76 0.168 0.152 0.151 0.175 0.198

i.e., f(x) = gL◦· · ·◦g1(x). The LPIPS adversarial problem
defined in Eq. 4 is then equivalent to the problem

max
δ

`(gL(. . . g1(x+ δ) . . . ))

s.t.
L∑
l=1

αl ‖φl(x)− φl(x+ δ)‖22 ≤ ε
2 .

We introduce the slack variables δ̃(l) for l = 1, . . . , L,
defined as δ̃(l) = gl(gl−1(. . . g1(x + δ̃(1)) . . . ) +
δ̃(l−1))gl(. . . g1(x) . . . ) when l ∈ LLPIPS and δ̃(l) = 0
otherwise. The previous problem can be written as:

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L)))

s.t.
L∑
l=1

αl

∥∥∥δ̃(l)
∥∥∥2

2
≤ ε2,

δ̃(l) = gl(gl−1(. . . g1(x+ δ̃(1)) . . . ) + δ̃(l−1))−
gl(. . . g1(x) . . . ) ∀l ∈ LLPIPS ,

δ̃(l) = 0 ∀l 6∈ LLPIPS .

When relaxing the equality constraints on the slack variables
δ̃(l) for l ∈ LLPIPS we obtain the following relaxation

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L)))

s.t.
L∑
l=1

αl

∥∥∥δ̃(l)
∥∥∥2

2
≤ ε2,

δ̃(l) = 0 ∀l 6∈ LLPIPS .

We further relax the inequality constraint on∑L
l=1 αl

∥∥∥δ̃(l)
∥∥∥2

2
as individual constraints on each

∥∥∥δ̃(l)
∥∥∥

2
in the following way

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L)))

s.t.
∥∥∥δ̃(l)

∥∥∥
2
≤ ε
√
αl

∀l ∈ LLPIPS ,

δ̃(l) = 0 ∀l 6∈ LLPIPS .

Denoting by εl = ε√
αl

, we finally obtain the RLAT relax-
ation from Eq. 6

max
δ̃(1),...,δ̃(L)

`(gL(. . . g1(x+ δ̃(1)) · · ·+ δ̃(L))) (7)

s.t. ‖δ̃(l)‖2 ≤ εl ∀l ∈ LLPIPS ,
δ̃(l) = 0 ∀l 6∈ LLPIPS .

We provide the algorithm for a single iteration of weight
updates for RLAT in Algorithm 1. We show the weight
update for standard SGD but any other optimizer can be used
as well. We emphasize that one of the important advantages
of RLAT is its computational efficiency since it leads to only
2× overhead since we can successfully use a single-step
adversarial training for it (see Fig. 6 for LPIPS robustness
evaluation with an iterative attack). We refer to Table 3
for exact timings and comparison to Fast PAT and other
methods.

Layer selection. We choose to use the following layers for
LPIPS used for RLAT: input, conv1, conv2_x, conv3_x,
conv4_x, and conv5_x. We tried various combinations of
layers including all layers in the network, all BatchNorm
layers, and all convolution layers, and the best results were



Algorithm 1: Single iteration of relaxed LPIPS adver-
sarial training (RLAT)
input :network weights θ, batch of training samples

(xi, yi)
b
i=1

output :updated network weights θnew
1 for i in {1, . . . , b} do
2 ∀l ∈ {1, . . . , L}: δ̃(l)

i := 0
3 for l in LLPIPS do
4 ∇(l)

i :=

∇
δ̃
(l)
i
`(gL(. . . g1(xi + δ̃

(1)
i ) · · ·+ δ̃

(L)
i ), yi)

5 for l in LLPIPS do
6 δ̃

(l)
i := εl∇(l)

i /
∥∥∥∇(l)

i

∥∥∥
2

7 θnew := θ − η∇θ 1
b

∑b
i=1 `(gL(. . . g1(Π[0,1]d [xi +

δ̃
(1)
i ]) · · ·+ δ̃

(L)
i ), yi)

8 return θnew

obtained when perturbations are added to the outputs of
residual blocks and the first convolution layer.

Magnitude of layerwise perturbations. Similarly to
{αl}Ll=1 in the definition of the LPIPS distance in Eq. (3),
the constraints {εl}Ll=1 for different layers in Eq. (7) also
need to be carefully selected so that the perturbation magni-
tudes on different layers are balanced. Our final approach
sets the layerwise bounds εl proportionally to the layer’s
dimensionality and depth:

εl =
1

l

dl
din

ε,

where dl is the dimension of the l-th feature maps and din is
the input dimension. We choose this scaling since it is sim-
ple enough and empirically more effective than other simple
scaling methods that we have tried such as the constant or
inverse proportional strategies, or even more involved meth-
ods such as dynamic adjusting of the scale to the average of
the layer’s BatchNorm.

`2 robustness of RLAT. To complement the LPIPS robust-
ness evaluation in Fig. 6, we also report the `2 robustness
of the same set of models in Fig. 10: standard, `2 AT, Fast
perceptual AT, and RLAT models with their main hyperpa-
rameters selected to perform best on common corruptions.
We evaluate `2 robustness using the APGD-CE attack with
100 iterations and 5 random restarts [Croce and Hein, 2020]
for different `2 radii ε ∈ {0.05, 0.1, 0.25, 0.5}. We observe
that all three adversarial training methods improve the `2
robustness substantially compared to the standard model.
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Figure 10: `2 adversarial robustness of different training
schemes on CIFAR-10. All three adversarial training meth-
ods improve the `2 robustness substantially compared to the
standard model.

G PERFORMANCE UNDER VARIOUS
DISTRIBUTION SHIFTS

In this section, we provide additional experiments on distri-
bution shifts that are different from the common corruptions
that we studied throughout this paper.

For this, we use three distribution shifts to evaluate our
models: ImageNet-A, ImageNet-R, and Stylized ImageNet
(SIN). We report the results in Table 9 where we compute
the accuracy on Stylized ImageNet on all 100 classes, and
the accuracy on ImageNet-A and ImageNet-R on all classes
that overlap with the classes of ImageNet-100. We use the
same models for this evaluation as the ones reported in
Table 2, i.e. these models have been selected after a grid
search to maximize the performance on ImageNet-100-C.
We observe that for evaluations on ImageNet-100-A and
Stylized ImageNet-100, RLAT moderately improves the ac-
curacy (+0.4% and +1.1% respectively) but does not yield
improvements on ImageNet-100-R (−0.1%). As expected,
training on SIN gives very significant improvements for an
evaluation on SIN since the same distribution was used dur-
ing training and testing. We also note that the performance
of all methods could be improved if the model selection
was performed on the target datasets, and not on ImageNet-
100-C. Finally, we observe that for some data augmentation
methods like AugMix and SIN, using RLAT leads to further
improvements, e.g. from 35.1% to 37.0% for SIN + RLAT
on ImageNet-100-R. Overall, we conclude that there is no
method that performs best on all distribution shifts, and the
obtained improvements are relatively small unless one uses
a target distribution shift for training.



Table 9: Accuracy of various methods on different distribution shifts: ImageNet-100-A, ImageNet-100-R, and Stylized
ImageNet-100. Gray-colored numbers correspond to models trained and evaluated using Stylized ImageNet.

Method Standard IN-100-A IN-100-R IN-100-Stylized

Standard training 86.6% 5.9% 33.2% 16.6%
100% Gaussian augmentation 86.4% 5.8% 31.2% 17.1%
50% Gaussian augmentation 83.8% 5.7% 32.6% 18.9%
Fast PAT 71.5% 5.4% 34.6% 17.7%
`∞ AT 86.5% 5.0% 33.2% 18.1%
`2 AT 86.3% 5.5% 33.2% 17.7%
RLAT 86.5% 6.3% 33.1% 17.7%

AugMix 86.7% 5.5% 31.5% 20.1%
AugMix + RLAT 86.8% 5.1% 33.2% 20.6%

Stylized ImageNet 86.6% 6.5% 35.1% 62.5%
Stylized ImageNet + RLAT 86.5% 6.5% 37.0% 63.4%

ANT3x3 85.9% 5.6% 33.3% 20.8%
ANT3x3 + RLAT 85.3% 5.3% 32.8% 20.7%

H SUPPLEMENTARY FIGURES AND TA-
BLES

In this section, we present additional experimental results
related to Sections 4 and 6.

Stability analysis. To check the stability of the results re-
ported in Table 2, we repeated RLAT training on CIFAR-10
over 3 different random seeds. The corruption accuracy
has the average 84.0% with the standard deviation of 0.2%
which suggests that the method is quite stable with respect
to random seeds.

Performance of different methods across individual cor-
ruptions. First, we show the performance of the simple
baselines considered in Sec. 4 over each of the 15 corrup-
tions of CIFAR-10-C. We show in Fig. 11 the error rates of
the standard and the `2 adversarially trained models and in
Fig. 12 a breakdown of the accuracy of all simple baselines
(i.e., standard and `2 adversarially trained models, together
with the models trained with gradient regularization and
Gaussian data augmentation). We first note that `2 adversar-
ial training leads to better average performance compared to
other baselines, and improves on each corruption type (blurs,
digital, noises, weather) and particularly on JPEG compres-
sion, elastic transform, pixelate, and zoom blur. However,
compared to the standard model, adversarial training wors-
ens the performance on contrast and fog, and slightly on
brightness as has been observed in previous work for `∞ ad-
versarial training with a large ε = 8/255 [Ford et al., 2019].
Moreover, Fig. 11 complements Fig. 5 and helps to mo-
tivate why the LPIPS distance can be more suitable than
the `2 distance for the problem of being robust to common
corruptions (see the discussion in Sec. E).

We additionally compare these baselines together with 50%
Gaussian augmentation, AdvProp and RLAT in Table 10.
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Figure 11: Error rates of a standard and `2 adversari-
ally trained models on different common corruptions from
CIFAR-10-C.

We observe that RLAT leads to better average performance
than other baselines (not taking into account 50% Gaussian
augmentation since it is partially trained with a corruption
from CIFAR-10-C) and consistently improves upon `2 ad-
versarial training. AdvProp helps for the snow and elas-
tic transform corruptions, has a better behavior on corrup-
tions on which `2/RLAT adversarial training and Gaussian
augmentation perform poorly (such as brightness, fog, or
contrast) but performs suboptimally on noise. Finally, 50%
Gaussian augmentation obtains high accuracy, consistently
improving upon 100% Gaussian augmentation (in particular
on blur corruptions) due to its usage of clean samples which
mitigates σ-overfitting.

Detailed performance of `2 adversarial training trained
with different ε. We study further the influence of the ra-
dius ε on the performance of `2 adversarial training on
CIFAR-10-C. We present in Table 11 the accuracy of `2
adversarially trained model, trained with different values of
ε. Interestingly, Table 11 suggests that the same degradation
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Figure 12: Accuracy for different individual corruptions on CIFAR-10-C. `2 adversarial training leads to better average
performance compared to other baselines.

for fog and contrast occurs even for the smallest ε used for
training. We also observe that different corruptions require
different ε for optimal performance. In particular, the op-
timal ε for the frost corruptions is 0.05 while for impulse
noise the optimal ε is an order of magnitude larger, i.e. 0.5.
Despite being widely used in the literature on `2 robust-
ness, ε = 0.5 is suboptimal for many other corruptions, and
the optimal average performance over all corruptions for a
single model is obtained at ε = 0.1.

Detailed model comparison for different corruption
severity. In Tables 12 and 13 we report the accuracy of se-
lected models for each corruption level separately. We first
note that for all models, as one could expect, the accuracy
is gradually decreasing with the corruption severity. When
comparing all the baselines, RLAT shows the best accuracy
on the majority of corruption levels (three on Imagenet-100
and four on CIFAR-10). It is also worth mentioning that
AdvProp on CIFAR-10 works better for smaller corruption
levels which can be explained by its higher standard accu-
racy. On ImageNet-100-C, we can observe that the Fast PAT
model has the best accuracy at the highest severity level
despite having clearly suboptimal standard accuracy (71.5%
compared to 86.6% of the standard model) and average cor-
ruption accuracy (45.2% compared to 47.5% of the standard
model). We also observe that for the severity level 4, `2
adversarial training is slightly better than RLAT (37.0% vs
36.8%). Moreover, we notice that when RLAT is combined
with different data augmentation schemes, the improvement
is often achieved at multiple severity levels simultaneously.
For example, when RLAT is combined with AugMix, the
accuracy is improved on all severity levels.

Results of AugMix combined with `2 and `∞ adversar-
ial training. We report these results on CIFAR-10 in Ta-
ble 14. We can observe that RLAT still outperforms `2

and `∞ adversarial training when they are combined with
AugMix, both with and without the JSD consistency term
from Hendrycks et al. [2019b]. Moreover, our RLAT model
achieves 89.4% accuracy with the JSD term outperform-
ing the best model from the AugMix paper Hendrycks
et al. [2019b] despite being much smaller: we use ResNet-
18 while the best model of Hendrycks et al. [2019b] uses
ResNeXt-29.

Model selection based on validation corruptions. Many
previous works use the same model selection scheme as
we used, i.e. selecting the optimal hyperparameters on the
test corruptions Hendrycks et al. [2019b], Xie et al. [2020],
Rusak et al. [2020]. However, a proper validation-test split
would lead to a more rigorous evaluation which we report
in Table 15. We do a grid search based on the accuracy on
the four validation corruptions from CIFAR-10-C. We see
that for all adversarially trained models, the optimal ε is the
same as we reported in Table 2 except for the `∞ model on
ImageNet-100 for which, however, the final test accuracy
is unchanged. Overall, this is perhaps not too surprising as
the validation corruptions are from the same category of
corruptions and we optimize over a small one-dimensional
grid so we are unlikely to overfit to the test corruptions in
this way.

Results on larger architectures. Since we performed all
experiments for Table 15 on ResNet-18, we also test here an-
other architecture to make sure that our findings generalize
to other models. For this, we take the WRN-28-10 archi-
tecture on CIFAR-10 and similarly to other experiments,
perform a grid search over ε for adversarial training meth-
ods (`∞, `2, RLAT). We report the results on the best ε
for each method in Table 16 and observe that RLAT also
outperforms other adversarial training methods for this ar-
chitecture.



Table 10: Accuracy of clean training, gradient regularization, 100% and 50% Gaussian data augmentation, AdvProp, `2
adversarial training, and RLAT on CIFAR-10-C using ResNet-18. Gray-colored numbers correspond to methods that were
at least partially trained with the corruptions from CIFAR-10-C.

Corruption Clean GradReg 100% Gauss 50% Gauss AdvProp `2 AT RLAT

Shot noise 60.1% 75.1% 89.2% 91.2% 82.0% 86.4% 88.8%
Motion blur 79.1% 78.9% 72.0% 82.2% 82.2% 82.3% 82.3%
Snow 82.8% 82.8% 86.0% 85.9% 86.9% 86.6% 86.2%
Pixelate 76.7% 79.8% 87.4% 87.7% 87.7% 89.9% 90.2%
Gaussian noise 47.1% 67.6% 87.8% 90.8% 77.0% 83.4% 86.0%
Defocus blur 83.8% 83.9% 78.8% 86.5% 87.1% 87.1% 87.2%
Brightness 93.3% 91.9% 91.0% 91.2% 92.8% 92.0% 91.5%
Fog 88.5% 83.1% 71.5% 78.7% 88.2% 77.5% 76.7%
Zoom blur 79.7% 81.4% 76.0% 85.2% 85.8% 86.0% 86.1%
Frost 80.6% 83.0% 87.2% 87.2% 86.4% 86.9% 87.0%
Glass blur 56.6% 63.5% 76.0% 79.3% 74.4% 77.2% 80.4%
Impulse noise 51.4% 66.1% 76.8% 87.3% 71.8% 75.1% 79.6%
Contrast 76.4% 68.1% 58.4% 66.3% 68.6% 63.5% 62.6%
JPEG 79.3% 85.3% 88.6% 89.8% 89.8% 90.2% 90.5%
Elastic 84.4% 84.4% 80.2% 86.3% 87.9% 86.9% 87.2%

Average 74.6% 78.3% 80.5% 85.0% 82.9% 83.4% 84.1%

Table 11: Accuracy of `2 adversarial training for different ε on CIFAR-10-C. Similarly to Fig. 1 which was done for `∞
norm, we observe here that the widely used `2 radius ε = 0.5 leads to suboptimal corruption accuracy.

Radius ε used for `2 adversarial training

Corruption ε = 0 ε = 0.01 ε = 0.05 ε = 0.08 ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.5 ε = 1

Shot noise 60.1% 70.6% 81.6% 84.9% 86.4% 87.0% 86.9% 85.1% 79.6%
Motion blur 79.1% 79.4% 81.4% 81.8% 82.3% 82.1% 82.0% 80.0% 75.3%
Snow 84.7% 82.8% 86.6% 86.9% 86.6% 86.0% 85.5% 81.3% 75.0%
Pixelate 76.7% 82.0% 88.8% 89.7% 89.9% 90.2% 89.7% 86.5% 81.2%
Gaussian noise 47.1% 59.6% 76.0% 81.3% 83.4% 84.6% 85.1% 83.8% 78.4%
Defocus blur 83.8% 84.5% 86.2% 86.7% 87.1% 86.8% 86.5% 83.7% 78.6%
Brightness 93.3% 93.2% 93.0% 92.5% 92.0% 91.3% 90.2% 85.4% 79.0%
Fog 88.5% 86.7% 80.8% 78.5% 77.5% 74.4% 71.5% 61.5% 54.1%
Zoom blur 79.7% 81.9% 84.7% 85.6% 86.0% 85.7% 85.4% 82.7% 77.8%
Frost 80.6% 84.4% 87.5% 87.5% 86.9% 86.4% 85.7% 79.7% 71.5%
Glass blur 56.6% 62.7% 72.9% 76.1% 77.2% 80.7% 81.6% 81.5% 76.7%
Impulse noise 51.5% 58.7% 66.4% 73.2% 75.1% 76.5% 78.1% 79.7% 75.0%
Contrast 76.4% 72.3% 65.9% 63.7% 63.5% 61.1% 59.3% 50.5% 44.0%
JPEG 79.3% 86.0% 89.9% 90.4% 90.2% 90.3% 89.9% 86.7% 81.5%
Elastic 84.4% 85.7% 87.2% 87.2% 86.9% 86.6% 85.9% 82.4% 77.1%

Average 74.6% 78.2% 81.9% 83.1% 83.4% 83.3% 82.9% 79.4% 73.7%

Calibration before and after temperature rescaling. In
Table 17 we report ECE before and after calibration via tem-
perature rescaling [Guo et al., 2017] using in-distribution
data for the models reported in Table 2. We observe that cal-
ibration is substantially improved after temperature rescal-
ing, however it does not affect the ranking between different
methods. In particular, all adversarial training methods sig-
nificantly improve the calibration error, and RLAT leads
to the best calibration reaching 1.3% ECE on CIFAR-10-C
when combined with AugMix. Moreover, we note that all
the CIFAR-10 models are overconfident since their optimal
calibration temperature is greater than 1 (mostly in the range

from 1.2 to 1.5). On ImageNet-100, the picture is similar
and RLAT also improves calibration. For example, ANT3x3

leads to 4.5% ECE after calibration while ANT3x3 combined
with RLAT achieves 2.8% ECE.

Comparison of in-distribution vs. out-distribution cali-
bration. Throughout the paper, we focused only on calibra-
tion and accuracy on common image corruptions. Regarding
calibration on in-distribution images, it is known that `p ad-
versarial training can degrade the calibration quality (e.g.,
see Croce et al. [2020]). However, with the small ε that we
use for adversarial training, this degradation is minimal. To



Table 12: Accuracy of different methods on CIFAR-10-C. Gray-colored numbers correspond to methods that were at least
partially trained with the corruptions from CIFAR-10-C.

Accuracy at different severity levels

Method Standard 1 2 3 4 5 Average

Standard training 95.1% 87.6% 82.3% 76.2% 69.2% 57.9% 74.6%
Gradient regularization 93.4% 87.9% 84.9% 81.0% 74.8% 65.5% 78.8%
100% Gaussian augmentation 92.5% 89.2% 86.3% 82.3% 76.4% 68.1% 80.5%
50% Gaussian augmentation 93.2% 91.0% 89.1% 86.8% 82.6% 75.8% 85.0%
Fast PAT 93.4% 89.5% 87.2% 83.7% 79.0% 72.6% 82.4%
`∞ AT 93.3% 90.8% 88.3% 84.5% 78.5% 71.2% 82.7%
AdvProp 94.7% 91.5% 88.9% 85.2% 79.2% 69.5% 82.9%
`2 AT 93.6% 91.1% 88.8% 85.5% 79.8% 71.8% 83.4%
RLAT 93.1% 91.1% 89.0% 85.9% 80.9% 73.5% 84.1%

DeepAugment 94.1% 91.0% 89.0% 86.6% 82.7% 77.3% 85.3%
DeepAugment + RLAT 93.6% 91.7% 90.6% 89.1% 86.1% 81.6% 87.8%

AugMix 95.0% 92.2% 90.5% 88.5% 84.7% 78.8% 86.9%
AugMix + RLAT 94.8% 93.1% 91.8% 90.3% 87.0% 80.6% 88.5%

AugMix + JSD 95.0% 92.9% 91.5% 89.9% 86.8% 82.1% 88.6%
AugMix + JSD + RLAT 94.8% 93.3% 92.3% 90.9% 88.3% 83.3% 89.6%

Table 13: Accuracy of different methods on ImageNet-100-C. Gray-colored numbers correspond to methods that were at
least partially trained with the corruptions from ImageNet-100-C.

Accuracy at different severity levels

Method Standard 1 2 3 4 5 Average

Standard training 86.6% 70.9% 58.7% 47.3% 35.2% 25.4% 47.5%
100% Gaussian augmentation 86.4% 70.1% 57.2% 46.2% 34.9% 25.3% 46.7%
50% Gaussian augmentation 83.8% 73.8% 65.0% 56.9% 45.7% 34.8% 55.2%
Fast PAT 71.5% 61.7% 52.7% 45.7% 36.6% 29.1% 45.2%
`∞ AT 86.5% 70.6% 57.9% 46.5% 36.2% 27.4% 47.7%
`2 AT 86.3% 70.1% 58.3% 47.8% 37.0% 27.9% 48.4%
RLAT 86.5% 71.6% 59.6% 48.8% 36.8% 27.1% 48.8%

AugMix 86.7% 73.9% 63.3% 53.9% 41.1% 29.5% 52.3%
AugMix + RLAT 86.8% 75.4% 65.1% 56.2% 44.7% 32.8% 54.8%

Stylized ImageNet 86.6% 73.0% 63.5% 55.1% 43.5% 33.2% 53.7%
Stylized ImageNet + RLAT 86.5% 74.1% 64.4% 56.0% 44.1% 33.0% 54.3%

ANT3x3 85.9% 74.2% 66.5% 58.9% 49.8% 39.3% 57.7%
ANT3x3 + RLAT 85.3% 74.5% 66.4% 58.8% 50.5% 41.2% 58.3%

illustrate this, we report below the calibration results on
clean and corrupted CIFAR-10 data in Table 18. We can see
that, in line with the literature, `p adversarial training de-
grades the calibration on clean data but only slightly (from
2.9% to 4.0% for RLAT). At the same time, all adversarial
training methods significantly improve the calibration on
corrupted data (from 16.6% to 9.9% for RLAT).

Table 14: CIFAR-10-C accuracy of AugMix without and
with the JSD term combined with methods based on adver-
sarial training (`∞, `2, RLAT).

Method Accuracy

AugMix + `∞ adversarial training 87.8%
AugMix + `2 adversarial training 88.3%
AugMix + RLAT 88.5%

AugMix + JSD + `∞ adversarial training 89.0%
AugMix + JSD + `2 adversarial training 89.0%
AugMix + JSD + RLAT 89.6%



Table 15: Accuracy on the 15 test and 4 extra validation
corruptions from CIFAR-10-C / ImageNet-100-C for the
best models out of a grid of ε values for each method.

Method Test accuracy Validation accuracy Same εεε?

`∞ AT 82.7% / 47.7% 86.6% / 53.2% Yes / No
`2 AT 83.4% / 48.4% 86.9% / 54.0% Yes / Yes
RLAT 84.1% / 48.8% 87.1% / 54.7% Yes / Yes

Table 16: CIFAR-10-C accuracy of adversarial training
methods (`∞, `2, RLAT) using WRN-28-10 architecture.

Method Accuracy

Standard training 75.6%
`∞ adversarial training 84.8%
`2 adversarial training 85.5%
RLAT 85.9%

Table 17: Calibration of ResNet-18 models trained on
CIFAR-10 and ImageNet-100 before and after calibration
via temperature rescaling. Gray-colored numbers corre-
spond to methods partially trained with the corruptions from
CIFAR-10-C and ImageNet-100-C.

ECE before ECE after
Training calibration calibration

CIFAR-10-C

Standard 16.6% 11.3%
100% Gaussian 13.2% 7.8%
50% Gaussian 9.1% 4.6%
Fast PAT 12.0% 6.6%
AdvProp 10.1% 6.4%
`∞ adversarial 10.8% 6.5%
`2 adversarial 10.5% 5.8%
RLAT 9.9% 5.1%

DeepAugment 8.7% 4.4%
DeepAugment + RLAT 6.1% 2.3%

AugMix 6.9% 3.2%
AugMix + RLAT 4.5% 1.3%

AugMix + JSD 6.5% 4.2%
AugMix + JSD + RLAT 5.4% 3.3%

ImageNet-100-C

Standard 10.0% 6.4%
100% Gaussian 11.7% 8.9%
50% Gaussian 6.1% 4.5%
Fast PAT 8.0% 12.7%
`∞ adversarial 12.4% 10.9%
`2 adversarial 9.4% 6.5%
RLAT 9.1% 5.4%

AugMix 7.5% 5.8%
AugMix + RLAT 4.7% 5.3%

AugMix + JSD 1.9% 4.0%
AugMix + JSD + RLAT 1.8% 2.1%

SIN 6.7% 5.8%
SIN + RLAT 6.0% 5.1%

ANT3x3 5.1% 4.5%
ANT3x3 + RLAT 4.4% 2.8%

Table 18: A comparison of the expected calibration error
(ECE) on in-distribution (CIFAR-10) vs. out-distribution
(CIFAR-10-C) data.

ECE on ECE on
Method CIFAR-10 CIFAR-10-C

Standard training 2.9% 16.6%
`∞ adversarial training 3.9% 10.8%
`2 adversarial training 3.7% 10.5%
RLAT 4.0% 9.9%
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