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1 ON THE POSITIVITY ASSUMPTION

We first present some definitions and notations from [Lee et al., 2019] including their illustrations using the causal graph G
from Example 2 in the main text.

1.1 NOTATION

Definition 1 ([Lee et al., 2019]). Assume that R is a subset of observed variables V. A hedge is a pair of R-rooted c-forests
⟨F ,F ′⟩ such that F ′ is a subgraph of F .

In Figure 2 of the main text: Subgraphs F = G[{R, T1, T2, T3}] and F ′ = G[{R}] form a hedge ⟨F ,F ′⟩.

Denote by C(G) = {Wi}ki=1, the set of c-components that partition observed variables in G such that each Wi is a maximal
c-component. Maximal in the sense of number of nodes that is there is no W ∈ V such that Wi ⊊ W and W is a
c-component in G. Assume that T is the set of all observed variables in F but not in F ′. We define F ′′ := F [T].

In Figure 2 of the main text: C(G[{T1, T2, T3}]) = {{T1, T3}, {T2}}. Additionally, F ′′ = G[{T1, T2, T3}] for the hedge
constructed before.

Definition 2 (Lee et al. [2019]). Given a hedge ⟨F ,F ′⟩. Denote by V′ a set of all observed variables of F ′. The hedgelet
decomposition of a hedge ⟨F ,F ′⟩ is a collection of hedgelets {F(W)}W∈C(F ′′) where each hedgelet F(W) is a subgraph
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Figure 1: (a) Thicket is formed for the causal effect of {T1, T2, T3} on {R}
in Example 2; (b) and (c) are the hedgelets formed by the thicket J
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of F made of (i) F [W ∪V′] and (ii) F [DeF (W)] without bidirected edges, that is all observed descendants of W and all
directed edges between them. Let HF := {F(W)}W∈C(F ′′) be the set of hedgelets of ⟨F ,F ′⟩.

In Figure 2 of the main text: For the hedge ⟨F ,F ′⟩, where F = G[{R, T1, T2, T3}] and F ′ = G[{R}], there are two
hedgelets H1,H2 displayed in Figures (1b)-(1c). Moreover, we have HF = {H1,H2}.

Definition 3 ([Lee et al., 2019]). Let R be a non-empty set of variables and Z be a collection of sets of variables in G. A
thicket J is a subgraph of G which is an R-rooted c-component consisting of a minimal c-component over R and hedges

FJ := {⟨FZ,J [R]⟩ | FZ ⊆ G[V \ Z],Z ∩R = ∅}Z∈Z.

Let X and Y be disjoint sets of observed variables in G. A thicket J is said to be formed for Px(y) in G with respect to Z if
R ⊆ AncG[V\X](Y) and every hedgelet of each hedge ⟨FZ,J [R]⟩ intersects with X.

In Figure 2 of the main text: This graph is a thicket, also displayed in Figure 1a. Let FJ be

FJ = {⟨F ,F ′⟩},

where F = G[{R, T1, T2, T3}] and F ′ = G[{R}]. One can observe that thicket J is formed for the causal effect X =
{T1, T2, T3} on Y = {R}.

Denote by T all observed variables in thicket J outside of subgraph J [R]. Let H =
⋃

{⟨F,F ′⟩}∈FJ
HF , that is, a collection

of all hedgelets induced by the hedges of J .

In Figure 2 of the main text: T = {T1, T2, T3} and H = {H1,H2}.

1.2 ON THE POSITIVITY ASSUMPTION

Given the above definitions, we can state Lemma 3 in [Lee et al., 2019].

Lemma. Let T′ ⊊ T such that there exists a hedgelet H ∈ H \H(T′), where H(T′) is a set of hedgelets from H which
contain at least one variable from T′. Then, under the intervention do(t′), there exists R ∈ R, for any instantiation of U,
such that r = 0 in both models.

Note that by the construction in [Lee et al., 2019], R in the above Lemma is a binary random variable. In the above Lemma,
let T′ = ∅. Based on this Lemma, for any instantiation of unobserved variables U, P (V = v) = 0, where v is a realization
for observed variables in which r = 1. This clearly shows that the constructed models in [Lee et al., 2019] violate the
positivity assumption.

1.3 ON THE RELAXED POSITIVITY ASSUMPTION

Herein, we study Figure 2 of the main text in more details and show that the models in [Lee et al., 2019] violate the relaxed
positivity assumption. To this end, we present the models M1 and M2 constructed in [Lee et al., 2019] for the thicket J
which is defined for this case in Appendix 1.1. By the construction, each variable from {U1, U2, U3, T3} is a binary number,
i.e., {0, 1} and each variable from {T1, T2} is a vector of length two, because each variable from {U1, U2, U3, T3} appears
in only one hedgelet and each variables in {T1, T2} appears in exactly two different hedgelets. Thus, T1 = (T1,1, T1,2)
and T2 = (T2,1, T2,2), where T1,1, T1,2, T2,1, T2,2 are binary numbers. The first coordinate captures some properties of the
hedgelet H1 while the second coordinate captures some properties of the hedgelet H2. Lee et al. [2019] define both models
M1,M2 for the hedgelet H1 as

T3 = U2 ⊕ U3, T2,1 = T3, T1,1 = T2,1 ⊕ U2,

and for the hedgelet H2 as

T2,2 = U1, T1,2 = T2,2, T2,2 = U1.

Additionally, in model M1, variable R is defined by

R = 1T1,1=0 ∧ 1T1,2=0 ∧ 1U3=1 ∧ 1U1=1,

and in model M2, it is defined to be zero, i.e., R = 0.
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2 TECHNICAL PROOFS

In this section, we first present some technical lemmas which we use throughout our proofs. The proofs of the lemmas and
propositions within the main text are provided in Subsections 2.2 and 2.3.

The logical order of our proofs is depicted in Figure 2. For instance, we use Theorem 1 to prove Lemma 2. Also note that
the proof of Theorem 1 is provided in the main text using Lemmas 2, 3, 4, 5, and 6.

Definition 4 (Ancestral). We say a subset X of observed variables V is ancestral in G, if X = AncGV
(X).

2.1 TECHNICAL LEMMAS

Lemma 1 ([Tian and Pearl, 2003]). Let W ⊆ C ⊆ V, T = C \W, S = V \T. If W is an ancestral set in G[C], then:

Q[W] =
∑
C\W

Q[C].

Lemma 2. Consider a causal graph G with observed variables V. Suppose X ⊆ V and e := (X1, Z) is a directed edge
such that X1 ∈ X. Q[X] is g-identifiable from (A,G) if and only if Q[X] is g-identifiable from (A,H), where H is the
graph obtained by deleting e from G.

Proof. X has the same c-components in G and H since GV and HV have the same undirected edges. Let X1, · · · ,Xl be
the c-components of X. For any i ∈ [1 : l] and A ∈ A such that Xi ⊆ A, Huang and Valtorta [2008] showed that Q[Xi] is
identifiable from G[A] if and only if Q[Xi] is identifiable from H[A]. Hence, Theorem 1 implies that Q[Xi] is g-identifiable
from (A,G) if and only if Q[Xi] is g-identifiable from (A,H). In this case, Proposition 4 implies that Q[X] is g-identifiable
from (A,G) if and only if Q[X] is g-identifiable from (A,H).

Lemma 3. Suppose that X and Y are disjoint subsets of V. Let (Y1, Y2) (i.e., Y1 → Y2) denotes a directed edge in G,
where Y1, Y2 ∈ Y. Let G′ denotes the resulting graph after removing edge (Y1, Y2) from G. If the causal effect of X on Y is
not g-identifiable from (A,G′), then the causal effect of X on Y \ {Y1} is not g-identifiable from (A,G).

Proof. Herein, we provide a proof that is similar to one of the proofs in [Huang and Valtorta, 2008].

Using Markov factorization property in graph G′, Px(y) is given by

Px(y) =
∑

V\(X∪Y)

∑
U

∏
W∈V\X

P (w | PaG′(W ))
∏
U∈U

P (u).

Similarly, in graph G we have

Px(y \ {Y1}) =
∑

{Y1}∪(V\(X∪Y))

∑
U

∏
W∈V\X

P (w | PaG(W ))
∏
U∈U

P (u).



Since the causal effect of X on Y is not g-identifiable from (A,G′), there exists M1 and M2 in M+(G′) such that:

QM1 [Ai](v) = QM2 [Ai](v), ∀v ∈ XV, ∀i ∈ [0 : m],

PM1
x (y) ̸= PM2

x (y), ∃x ∈ XX, ∃y ∈ XY.

Using M1 and M2, we construct two SEMs M′
1 and M′

2 in M+(G). Define a surjective function F : XY1
→ {0, 1} and

a function Ψ: {0, 1} × XY1
→ (0, 1) such that Ψ(0, y1) + Ψ(1, y1) = 1 for each y1 ∈ XY1

. We will later assume some
constraints for these functions, but for now lets assume they are arbitrary.

For any node S which is either unobserved or in V \ ({Y2} ∪ ChG(Y2)), we define

PM′
i(s|PaG(S)) = PMi(s|PaG′(S)),

where i ∈ {1, 2}. The domain of Y2 in M′
i is defined as XM

Y2
×{0, 1}, where XM

Y2
is the domain of Y2 in Mi. For y2 ∈ XM

Y2
,

i ∈ {0, 1}, and k ∈ {0, 1} we define:

PM′
i((y2, k) | PaG′(Y2), y1) = PMi(y2 | PaG′(Y2))Ψ(F (y1)⊕ k, y1).

Note that PaG′(Y2) ∪ {Y1} = PaG(Y2). Moreover, for a fixed realization (PaG′(Y2), y1), we have:∑
k∈{0,1}

∑
y2∈XM

Y2

PM′
i((y2, k)|pa(Y2), y1) = 1.

For each S ∈ ChG(Y2), we define:

PM′
i(s | PaG(S) \ {Y2}, (y2, k)) = PMi(s | PaG(S) \ {Y2}, y2).

Next, we show that QM′
1 [Ai](v) = QM′

2 [Ai](v) for each v ∈ XV and i ∈ [0 : m]. Suppose v is a realization of V in M′
1

with realizations y1 and (y2, k) for Y1 and Y2, respectively. Consider two cases:

• If Y2 /∈ Ai:

QM′
1 [Ai](v) =

∑
U

∏
A∈Ai

PM′
1(a | PaG(A))

∏
U∈U

PM′
1(u)

=
∑
U

∏
A∈Ai

PM1(a | PaG′(A))
∏
U∈U

PM1(u) = QM1 [Ai](v) = QM2 [Ai](v)

=
∑
U

∏
A∈Ai

PM2(a | PaG′(A))
∏
U∈U

PM2(u)

=
∑
U

∏
A∈Ai

PM′
2(a | PaG(A))

∏
U∈U

PM′
2(u)

= QM′
2 [Ai](v).

• If Y2 ∈ Ai:

QM′
1 [Ai](v) =

∑
U

∏
A∈Ai

PM′
1(a | PaG(A))

∏
U∈U

PM′
1(u)

= Ψ (F (y1)⊕ k, y1)
∑
U

∏
A∈Ai

PM1(a | PaG′(A))
∏
U∈U

PM1(u)

= Ψ(F (y1)⊕ k, y1)Q
M1 [Ai](v) = Ψ(F (y1)⊕ k, y1)Q

M2 [Ai](v)

= Ψ(F (y1)⊕ k, y1)
∑
U

∏
A∈Ai

PM2(a | PaG′(A))
∏
U∈U

PM2(u)

=
∑
U

∏
A∈Ai

PM′
2(a | PaG(A)))

∏
U∈U

PM′
2(u)

= QM′
2 [Ai](v).



Therefore, QM′
1 [Ai](v) = QM′

2 [Ai](v) for each v ∈ XV and i ∈ [0 : m].

We know that there exists x̂ ∈ XM
X and ŷ ∈ XM

Y such that PM1

x̂ (ŷ) ̸= PM2

x̂ (ŷ). Denote by ŷ1 and ŷ2 the realizations of Y1

and Y2 in the realization ŷ, respectively. Assume that PM1

x̂ (ŷ) = d1 > PM2

x̂ (ŷ) = d2. Assume that Ψ(F (ŷ1)⊕0, ŷ1) = 0.5

and Ψ(F (y)⊕ 0, y) = d1−d2

4 for all y ∈ XY1
\ {ŷ1}. Then we have:

P
M′

1

x̂ (ŷ \ {ŷ1}) =
∑

y1∈XY1

∑
V\(X∪Y)

∑
U

∏
Z∈V\X

PM′
1(z | PaG(Z))

∏
U∈U

P (u)

>
∑

y1=ŷ1

∑
V\(X∪Y)

∑
U

∏
Z∈V\X

PM′
1(z | PaG(Z))

∏
U∈U

P (u)

= PM1

x̂ (ŷ)Ψ(F (ŷ1)⊕ 0, ŷ1) = 0.5d1.

but,

P
M′

2

x̂ (ŷ \ {ŷ1}) =
∑

y1∈XY1

∑
V\(X∪Y)

∑
U

∏
Z∈V\X

PM′
1(z | PaG(Z))

∏
U∈U

P (u)

=
∑

y1=ŷ1

∑
V\(X∪Y)

∑
U

∏
Z∈V\X

PM′
1(z | PaG(Z))

∏
U∈U

P (u)

+
∑

y1∈XY1
\{ŷ1}

∑
V\(X∪Y)

∑
U

∏
Z∈V\X

PM ′
1(z | PaG(Z))

∏
U∈U

P (u)

≤ PM2

x̂ (ŷ)Ψ(F (ŷ1)⊕ 0, ŷ1) + PM2

x̂ (ŷ \ {ŷ1})Ψ(F (Y1 ̸= y1)⊕ 0, Y1 ̸= y1)

= 0.5d2 +
d1 − d2

4
< 0.5d1.

This implies that PM′
1

x̂ (ŷ \ {ŷ1}) ̸= P
M′

2

x̂ (ŷ \ {ŷ1}) which concludes the proof.

Lemma 4. Assume Y ⊂ W ⊂ V such that for each W ∈ W \ Y, there exists a directed path in G[W] from W to a
variable in Y. Then, the causal effect of V \W on Y is g-identifiable from (A,G) if and only if Q[W] is g-identifiable
from (A,G).

Proof. Let X := V \W.

Sufficient part: Suppose Q[W] is g-identifiable from (A,G). Since Q[W] = Px(W), we have

Px(y) =
∑
W\Y

Q[W].

Hence, Px(y) is uniquely computed and the causal effect of X on Y is g-identifiable from (A,G).

Necessary part: Suppose Q[W] is not g-identifiable from (A,G), we will show that Px(y) is also not g-identifiable. To this
end, first, we order the nodes in W \Y, say (W1,W2, · · · ,Wn), such that for each 1 ≤ i ≤ n, Wi is a parent of at least one
node in Y ∪ {W1,W2, . . . ,Wi−1}. Assume that ei is the directed edge from Wi to its child in Y ∪ {W1,W2, . . . ,Wi−1}.
We also define G′ to be the graph obtained by deleting all the edges {ei}ni=1 from G. Applying Lemma 2 repeatedly n times
imply that Q[W] is not g-identifiable from (A,G′).

Let Gn := G and for 0 ≤ i ≤ n− 1, we define Gi to be the graph obtained by removing ei+1 from Gi+1. From Lemma 3, we
know that if Q[W] is not g-identifiable from (A,G′), then adding edge e1 will make the causal effect of X on W \ {W1}
not g-identifiable from (A,G1). Note that G1 is obtained from G′ by adding edge e1. Using this lemma again implies that the
causal effect of X on W \ {W1,W2} is not g-identifiable from (A,G2). Repeating this procedure yields that the causal
effect of X on W \ {W1, . . .Wn} = Y is not g-identifiable from (A,Gn). Since Gn = G, the causal effect of X on Y is
not g-identifiable from (A,G).

Lemma 5. Consider a set of vectors {ci}ni=1, where ci ∈ Rd. Assume c ∈ Rd is a vector that is linearly independent of
{ci}ni=1, then there is a vector b ∈ Rd such that

⟨ci, b⟩ = 0, ∀i ∈ [1 : n],

⟨c, b⟩ ≠ 0.



Proof. Denote by {ϕi}li=1 a subset of {ci}ni=1 which forms a basis for the vectors in {ci}ni=1. Clearly, we have l < d. Now,
consider the following system of linear equations with respect to b:

⟨ϕi, b⟩ = 0, ∀i ∈ [1 : l],

⟨c, b⟩ = 13 ̸= 0.
(1)

By the assumption, vectors in {ϕi}li=1 ∪ {c} are linearly independent, thus there exists a solution to (1).

2.2 PROOFS OF SECTION 4

Proposition 3. Let X and Y be two disjoint subsets of V. The causal effect of X on Y is g-identifiable from (A,G) if and
only if Q[AncGV\X(Y)] is g-identifiable from (A,G).

Proof. Let W := AncGV\X(Y). Since Q[V \X] = Px(V \X), using marginalization, we obtain

Px(y) =
∑

V\(X∪Y)

Q[V \X] =
∑
W\Y

∑
V\(W∪X)

Q[V \X]. (2)

Since W is an ancestral set in G[V \X], Lemma 1 implies∑
V\(W∪X)

Q[V \X] = Q[W].

Substituting the above equation into (2) implies

Px(y) =
∑
W\Y

Q[W] = Pv\w(y). (3)

Sufficient part: Suppose Q[W] is g-identifiable from (A,G). Equation (3) implies that Px(y) is uniquely computable from
Q[W], and therefore, the causal effect of X on Y is g-identifiable from (A,G).

Necessary part: Suppose Q[W] is not g-identifiable from (A,G). For each W ∈ W \Y, there exists a directed path in
G[W] from W to a variable in Y. Hence, Lemma 4 implies that the causal effect of V \ W on Y is not g-identifiable
from (A,G). Hence, Equation (3) implies that Px(y) cannot be uniquely computed and the causal effect of X on Y is not
g-identifiable from (A,G).

Proposition 4. Suppose S ⊆ V and S1, · · · ,Sl are the c-components of S. Q[S] is g-identifiable from (A,G) if and only if
Q[Si] is g-identifiable from (A,G) for each i ∈ [1 : l].

Proof. Sufficient part: Suppose Q[Si] is g-identifiable from (A,G) for each i ∈ [1 : l]. Tian and Pearl [2003] showed that

Q[S] =

l∏
i=1

Q[Si].

Hence, Q[S] is uniquely computable and therefore, g-identifiable from (A,G).

Necessary part: Suppose Q[S] is g-identifiable from (A,G). For i ∈ [1 : l], Tian and Pearl [2003] provided a formula for
computing Q[Si] from Q[S] (Lemma 4, Equations (71) and (72) in [Tian and Pearl, 2003]). Hence, for each i ∈ [1 : l], Q[S]
is uniquely computable and therefore, g-identifiable from (A,G).



2.3 PROOFS OF SECTION 5

Lemma 2. If Q[S] is not g-identifiable from (A′,G′), then Q[S] is not g-identifiable from (A,G).

Proof. If Q[S] is not g-identifiable from (A′,G′), then there exists two models M′
1 and M′

2 in M+(G′) such that for each
i ∈ [0 : m] and any v ∈ XV′ ,

QM′
1 [A′

i](v) = QM′
2 [A′

i](v),

and there exists v0 ∈ XV′ such that
QM′

1 [S](v0) ̸= QM′
2 [S](v0).

Next, we will construct two models M1 and M2 in M+(G) to prove that Q[S] is not g-identifiable from (A,G). We define
the domains of variables in V′ in the model Mi similar to model M′

i, for i ∈ {1, 2}. Since for each node V ∈ V′, we have
PaG′(V ) ⊆ PaG(V ), then for all V ∈ V′ and i ∈ {1, 2}, we can define:

PMi(V |PaG(V )) := PM ′
i (V | PaG′(V )).

And for V ∈ V \V′, we define:
XV = {0}, P (V = 0) = 1.

Because variable V ∈ V \V′ can only take value 0 with probability one, then QMj [Ai](v) = QM′
j [A′

i](v) for all i and
QMj [S](v0) = QM′

j [S](v0) for j ∈ {1, 2}. Thus, we have

QM1 [Ai](v) = QM2 [Ai](v), i ∈ [0 : m],

QM1 [S](v0) ̸= QM2 [S](v0).

This shows that Q[S] is not g-identifiable from (A,G).

Lemma 3. Consider the following set of vectors in Rd

Ω := {θi(v) : i ∈ [0 : m],v ∈ XV} ∪ 1d, (4)

where 1d denotes the all-ones vector in Rd. If there exists v0 ∈ XV such that η(v0) is linearly independent from all the
vectors in Ω, then the system of linear equations in (11) admits a solution.

Proof. This is a direct consequence of Lemma 5 with {ci} to be Ω and c to be η(v0).

Lemma 4. The SEM constructed above belongs to M+(G′).

Proof. By the construction, it is clear that the model belongs to M(G′). Hence, we need to show that P (v) > 0 for any
v ∈ XV′ . To this end, it is enough to show that for any realization v ∈ X′

V, there exists a realization û ∈ XU′ such that
P (v, û) > 0, because in this case we have

P (v) =
∑

u=XU′

P (v,u) ≥ P (v, û) > 0.

Let v be a fixed realization in XV′ . For the rest of the proof, we assume all the realizations for V′ are consistent with v.

By Markov factorization property, for any u ∈ XU′ we have

P (v,u) =
∏

V ∈V′

P (v | PaG′(V ))
∏

U∈U′

P (u). (5)

By the construction of our model, we have P (u) > 0 for any U ∈ U′ and u ∈ XU . Moreover, for any X ∈ S and any
realization for PaG′(X) ∩U′ we have P (x | PaG′(X)) > 0. Hence, it is enough to show that there exists û ∈ XU′ such
that P (x | PaG′(X)) > 0 for each X ∈ T.



Recall that for each X ∈ T, we have X = (X[i1], · · · , X[iα(X)]), where X belongs to Fi1 , · · · ,Fiα(X)
and

X[ij ] ≡

 ∑
Y ∈PaFij

(X)

Y [ij ]

 (mod 2).

By the construction, we define the entries corresponding to each Fi separately. For each i ∈ [0 : k], let Ui to be the set of
unobserved variables in UT that are in Fi.

Let us fix an i ∈ [0 : k]. To finish the prove, we will introduce a method to determine û[i] for each U ∈ Ui such that

x[i] ≡

 ∑
Y ∈PaFi

(X)

y[i]

 (mod 2), (6)

for each X ∈ T ∩Bi.

Lets start with an arbitrary set of values for {û[i] : U ∈ Ui} which are either 0 or 1. Suppose X ∈ T ∩Bi. We introduce a
trick such that x[i] will be replaced by 1− x[i] while for all Y ∈ T ∩Bi, y[i] remains the same:
By the construction of Fi, there exists a path (X = X1, U1, X2, · · · , Xl, Ul, Z = Xl+1) from X to a variable Z ∈ S
such that {U1, · · · , Ul} ⊆ Ui, {X1, · · · , Xl} ⊆ Bi ∩T, and ChFi

(Uj) = {Xj , Xj+1} for each j ∈ [1 : l]. Now for each
j ∈ [1 : l], we replace ûj [i] by 1 − ûj [i]. Since Equation (6) is in mod 2, the value of xj [i] will be the same for each
j ∈ [2 : l] while x[i] will be replaced by 1− x[i]. Note that Xl+1 = Z /∈ T.

With the trick described above, we can construct any realization for the i-th bit of the variables in T ∩Bi. Hence, we can
construct û ∈ XU′ such that P (x | PaG′(X)) > 0 for each X ∈ T.

Lemma 5. For any v ∈ XV′ and i ∈ [0 : m],

θi,j1(v) = θi,j2(v) = · · · = θi,jκ+1
2

(v).

Proof. Lets fix a realization v for the observed variables V′. Suppose that l1 and l2 are two integers such that

γl1 = (2x, 0, . . . , 0)),

γl2 = (2x+ 2 (mod κ+ 1), 0, . . . , 0),

where x is any fixed integer in [0 : κ−1
2 ]. To show the result, we will prove that θi,l1(v) = θi,l2(v). Let

fi,j(v,u
T) :=

∑
u∈US

∏
V ∈A′

i

P (v | PaG′(V ))
∏

U∈U′\{U0}

P (u)

=
∏

V ∈A′
i\Bi

P (v | PaG′(V ))
∏

V ∈Bi\S

P (v | PaG′(V ))
∑

u∈US

∏
V ∈S

P (v | PaG′(V ))
∏

U∈U′\{U0}

P (u).

where index j indicates U0 = γj . Note that variable U0 may appear in the parent set of some observed variables. Using the
above definition, we have

θi,j(v) =
∑

uT∈UT

fi,j(v,u
T).

Hence, if we show fi,l1(v,u
T) = fi,l2(v,u

T) for any fixed realization uT, the above equation implies θi,l1(v) = θi,l2(v).

When T ∈ A′
i \ Bi, then for fixed realizations of uT, P (t|PaG′(T )) is the same for both realizations γl1 and γl2 since

γl1 ≡ γl2 mod 2.

When T ∈ Bi \ S, unobserved variables in PaG′(T ) are a subset of UT ∪ {U0}. Note that in the definition of fi,j(v,uT),
all such unobserved variables are fixed. Thus, if there exists T ∈ Bi \ S, such that P (t|PaG′(T )) = 0, then

fi,l1(v,u
T) = fi,l2(v,u

T) = 0.



When P (t|PaG′(T )) = 1 for all T ∈ Bi \S, to prove fi,l1(v,u
T) = fi,l2(v,u

S), we show that for any realization (u1, γl1)
of (US, U0), there is a realization (u2, γl2) of (US, U0) such that∏

V ∈S

P (v | PaG′(V ))
∣∣∣
(US,U0)=(u1,γl1

)
=

∏
V ∈S

P (v | PaG′(V ))
∣∣∣
(US,U0)=(u2,γl2

)
,

where P (v | PaG′(V ))
∣∣∣
(US,U0)=(u1,γl1

)
denotes the conditional probability of v given its parents in which the unobserved

variables (US, U0) are fixed to be (u1, γl1). To this end, we consider two cases depending on i.

First case, when i ∈ [0 : k]: In this case, we have

t[i] =

 ∑
Y ∈PaFi

(T )

y[i]

 (mod 2). (7)

Consider the set Λ := PaFi(S) \ PaFi[S](S), that is the set of all parents of nodes in S that are outside of S. By the
construction of our models, summation of the values of the observed and unobserved nodes in Λ are the same, i.e.,∑

W∈Λ∩Bi

w[i] ≡
∑

W∈Λ∩U′

w[i] (mod 2),

or equivalently ∑
W∈Λ

w[i] ≡ 0 (mod 2). (8)

This is because, in graph Fi, each observed variable outside of S has at most one child outside of S, and each unobserved
node has either one or two children outside of S. According to (7), those unobserved nodes with two children outside
of S do not belong to Λ ∩U′. Such unobserved nodes have exactly two observed descendants in Λ ∩ Bi, and because
both descendants appear in (8), their summation is zero mod 2. On the other hand, the unobserved nodes with only one
child outside of S belong to Λ ∩U′ and have exactly one observed descendant in Λ ∩Bi. Thus, the summation of such
unobserved variables and their observed descendant is again zero mod 2 in (8).

If I(S) = 0 for all S ∈ S, then by our model construction, for any variable W ∈ Λ \ {Ti}, w[i] is an even number but Ti

takes value 1 with probability one. Hence, the summation in (8) cannot be an even number. Therefore, there exists at least a
variable S ∈ S such that I(S) = 1. In this case, the value of P (S|PaG′(S)) does not depend on the realizations of variables
in US. Next, we show that for any realization u1 of US, there is a realization u2 such that

P (s|PaG′(S))
∣∣∣
(US,U0)=(u1,γl1

)
= P (s|PaG′(S))

∣∣∣
(US,U0)=(u2,γl2

)
. (9)

Since G′
S is a c-component, there exists a sequence of variables U0, Ŝ1, Û1, Ŝ2, Û2, . . . , Ûl, S, such that U0 is a parent of Ŝ1,

S is a children of Ûl and Ûj is a parent of variables Ŝj and Ŝj+1 for j ∈ [1 : l − 1]. Let Û := {Û1, . . . , Ûl}. For realization
u1, we define u2 by

u2,Ûj
:= u1,Ûj

+ 2(−1)j (mod κ+ 1), j ∈ [1 : l],

u2,U := u1,U , ∀U ∈ U′ \ (Û ∪ {U0}),
(10)

where u2,U denotes the realization for variable U in u2. It is straightforward to see that this mapping is a bijection between
u1 and u2 and (9) holds.

Second case, when i ∈ [k + 1 : m]: In this case, S \ A′
i ̸= ∅. Since G′

S is a c-component, there exists a sequence of
variables U0, Ŝ1, Û1, Ŝ2, Û2, . . . , Ûl, S, such that U0 is a parent of Ŝ1, S ∈ S \A′

i is a children of Ûl and Ûj is a parent of
variables Ŝj and Ŝj+1 for j ∈ [1 : l − 1]. Let Û := {Û1, . . . , Ûl}. Similar to the previous case, for a given realization u1 of
US, we define u2 ∈ XUS by

u2,Ûj
:= u1,Ûj

+ 2(−1)j (mod κ+ 1), j ∈ [1 : l],

u2,U := u1,U , ∀U ∈ U′ \ (Û ∪ {U0}),
(11)



where u2,Û denotes the realization for variable U in u2. Analogous to the previous setting, we have (9).

Herein, we proved that θi,l1(v) = θi,l2(v). By varying x within [0 : κ−1
2 ] in the definition of γl1 and γl2 , we conclude the

lemma.

Lemma 6. There exists 0 < ϵ < 1
κ such that there exists v0 ∈ XV′ and 1 ≤ r < t ≤ κ+1

2 such that

ηjr (v0) ̸= ηjt(v0).

Proof. Lets consider r and t such that γr = (0, 0, . . . , 0) and γt = (2, 0, . . . , 0). Recall that:

ηr(v) :=
∑

U′\{U0}

∏
X∈S

P (x | PaG′(X))
∣∣∣
U0=γr

∏
U∈U′\{U0}

P (u), (12)

ηt(v) :=
∑

U′\{U0}

∏
X∈S

P (x | PaG′(X))
∣∣∣
U0=γt

∏
U∈U′\{U0}

P (u). (13)

We choose v0 as follows: set all variables in S to be zero and select a realization for variables in V′ \ S such that I(S) = 0
for all S ∈ S. Denote by S0 a child of U0 in S.

Note that there is a term in the summation of the right side of equation (12) that is (1− κϵ)|S|. For instance, this occurs
when all realizations of unobserved variables in US are zero.

Next, we prove that there is no realization of unobserved variables US such that P (S|PaG′(S)) = 1− ϵκ for all S ∈ S and
U0 = γt. In other words, each term in the summation of (13) has at least a term ϵ. To do so, it suffices to show that there is
no realization of US such that:

s =
∑

W∈PaG′[S](S)

w, S ∈ S \ {S0},

s0 = u0[0] +
∑

W∈PaG′[S](S)

w.

Suppose there is a realization of US such that the above equations hold. In this case, since G′
S is a tree, we can color its

nodes with two colors, red and black, such that connected nodes by biderected edges have different colors. Suppose that S1

is the set of black variables and S2 is the set of red variables which (without loss of generality) contains S0 ∈ S1. Then:∑
W∈S1

w ≡ u0[0] +
∑

U∈US

u (mod κ+ 1),

∑
W∈S2

w ≡
∑

U∈US

u (mod κ+ 1).

The left-hand sides of both above equations are zero because of our choice of v0. However, the right-hand sides cannot
be the same since u0[0] = 2. Hence, in Equation (13), there exists a term in the summation with probability ϵ. Therefore,
in extreme case, when ϵ = 0, ηt(v′) = 0. However, ηr(v′) ≥ (1 − κϵ)|S|

∏
U∈U′\{U0}P (u) > 0. Since ηr(v) and ηt(v)

are polynomial functions of ϵ and they are not equal at ϵ = 0, then there exists a small enough 0 < ϵ < 1
κ such that

ηr(v
′) ̸= ηt(v

′).

3 A SPECIAL CASE IN THE PROOF OF THEOREM 1

In this section, we provide our proof for the necessary part of Theorem 1 when S ⊈ A′
i for all i ∈ [0 : m].

We define FS to be a minimal (in terms of edges) spanning subgraph of G[S] such that FS
S is a single c-component. In this

case, we can assume V′ = S, G′ is FS, and A′ = {A′
i := Ai ∩V′}mi=0. For each i ∈ [0 : m], we have A′

i ⊊ V′. Note that
Lemma 2 holds for this case. Hence, it is enough to show that Q[S] is not g-identifiable from (A′,G′).

Recall that our assumptions and goal in this section are as follows:
G′ is a DAG with observed variables V′ and unobserved variables U′ such that G′

V′ has no directed edges and its bidirected



edges form a spanning tree over V′. A′ = {A′
i}mi=0 is a collection of subsets such that A′

i ⊊ V′. The goal is to show that
Q[V′] is not g-identifiable from (A′,G′).

For this case we will define two model M1 and M2 such that for each i ∈ [0 : m] and any v ∈ XV′ ,

QM1 [A′
i](v) = QM2 [A′

i](v),

but there exists v0 ∈ XV′ such that
QM1 [S](v0) ̸= QM2 [S](v0).

For both models M1 and M2 we define each observed and unobserved variable to be binary, i.e XW = {0, 1} for all
W ∈ V′ ∪U′. Next, we define the equation of the variables in each model.

Model 1: For V ∈ V′:

V =


⊕

PaG′(V ), with probability 1− ϵ,

1, with probability ϵ
2 ,

0, with probability ϵ
2 ,

(14)

and for U ∈ U′:
P (U = 0) = P (U = 1) = 0.5.

Model 2: Suppose V1 is a fixed observed variable in V′. Then, for all V in V′ \ {V1} we define:

V =


⊕

PaG′(V ), with probability 1− ϵ

1, with probability ϵ
2 ,

0, with probability ϵ
2 ,

(15)

and for V1:

V1 =


⌝
⊕

PaG′(V1), with probability 1− ϵ

1, with probability ϵ
2 ,

0, with probability ϵ
2 ,

(16)

where ⌝ denotes the logical not. Similar to the first mode, for each unobserved variables U ∈ U′,

P (U = 0) = P (U = 1) = 0.5.

Lemma 11. Let i ∈ [0,m] and denote the cardinality of A′
i by n, i.e. |A′

i| = n. Then for any realization v ∈ XV′ :

QM1 [A′
i](v) = QM2 [A′

i](v) =
1

2n
.

Proof. Suppose A′
i := {A1, A2, . . . , An}. Since A′

i ⊊ V′, there are distinct unobserved variables U1, U2, . . . , Un, such
that Uj is a parent of the Aj for j ∈ [1 : n]. Denote by M any of the model M1 or M2.

Assume that for some realization of observed and unobserved variables, exactly t ∈ [0, n] variables in A′
i are defined by the

XOR or ⌝XOR of their parents. Without loss of generality, assume that these variables are {A1, A2, . . . , At}. If we know
all unobserved variables U′ except {U1, U2, . . . , Ut}, then we can determine uniquely the values of {U1, U2, . . . , Ut} from
the following equations:

Ai =
⊗

PaG′(Ai), i ∈ [1 : t],

where
⊗

denotes the corresponding equation, either XOR or ⌝XOR, for variable Ai in model M. Thus, by considering
all possible realizations of unobserved variables that lead to a realization v ∈ XV′ , we obtain

Q[A′
i] =

n∑
j=0

Cj
n(1− ϵ)j

( ϵ

2

)n−j
(
1

2

)j

=

(
1

2

)n

,

where Cj
n is the number of different ways to choose j variables out of n, such that with probability (1− ϵ) their values are

determined by either XOR or ⌝XOR equation. All other n− j variables are equal to either 0 or 1 with probability ϵ
2 .



Lemma 12. Let v = 0 be the realization of V′ such that all observed variables are equal to 0. Then QM1 [V′](v) ̸=
QM2 [V′](v).

Proof. Define n = |V′| and V′ = {V1, V2, . . . , Vn}. Firstly, we will prove that for any v ∈ XV′ , the value of QM2 [V′](v)
does not depend on the position of V1 in graph G′. Denote by V2 an observed variable which is connected to the V1 by a
bidirected edge in G′

V′ . Let U denotes the unobserved variable (corresponding to the bidirected edge) which is a parent of
V1 and V2. Next, we define a new model M′

2 in which all variables in V′ are defined similarly as they are defined in model
M2 except for variables V1 and V2. In M′

2, we define V2 in the same way as V1 is defined in M2. We also define V1 in M′
2

in the same way as V2 is defined in M2. Then, we have

n∏
i=1

PM2(vi|PaG′(Vi)) = PM2(v1|PaG′(V1))P
M2(v2|PaG′(V2))

n∏
i=3

P (vi|PaG′(Vi))

= PM′
2(v1|PaG′(V1) \ {U}, u⊕ 1)PM′

2(v2|PaG′(V2) \ {U}, u⊕ 1)

n∏
i=3

P (vi|PaG′(Vi)).

This implies that substituting V1 by V2 does not change the value of QM2 [V′](v).

Without loss of generality, suppose that V1 is a leaf in G′ and U1 is a parent of V1. Note that there are exactly n − 1
unobserved variables in graph G′. This is because G′

V′ is a tree with bidirected edges over V′. Therefore, we have

2n−1QM1 [V′](0) = PM1(V1 = 0|U1 = 0)
∑

U′\{U1}

∏
j>1

P (vj |PaG′(Vj)) + PM1(V1 = 0|U1 = 1)
∑

U′\{U1}

∏
j>1

P (vj |PaG′(Vj)),

2n−1QM2 [V′](0) = PM2(V1 = 0|U1 = 0)
∑

U′\{U1}

∏
j>1

P (vj |PaG′(Vj)) + PM2(V1 = 0|U1 = 1)
∑

U′\{U1}

∏
j>1

P (vj |PaG′(Vj)).

Note that:

PM1(V1 = 0|U1 = 0) = 1− ϵ

2

PM1(V1 = 0|U1 = 1) =
ϵ

2

PM2(V1 = 0|U1 = 0) =
ϵ

2

PM2(V1 = 0|U1 = 1) = 1− ϵ

2

More over, we have∑
U1=0,U′\{U1}

∏
j>1

P (vj |PaG′(Vj)) +
∑

U1=1,U′\{U1}

∏
j>1

P (vj |PaG′(Vj)) = Q[V′ \ {V1}] =
(
1

2

)n−1

This yields

2n−1QM1 [V′](0) =
(
1− ϵ

2

)
a+

ϵ

2
b,

2n−1QM2 [V′](0) =
(
1− ϵ

2

)
b+

ϵ

2
a,

where

a =
∑

U1=0,U′\{U1}

∏
j>1

P (Vj = 0|PaG′(Vj)),

b =
∑

U1=1,U′\{U1}

∏
j>1

P (Vj = 0|PaG′(Vj)).

To prove that QM1 [V′](0) ̸= QM2 [V′](0), it is enough to show that a ̸= b.

Denote by Sn an observed variable connected to the V1 by a bidirect edge in G′
V′ . We define V′

n−1 := V′ \ {V1},
U′

n−1 := U′ \ {U1} and Gn−1 := G′[V′ \ {V1}]. We also define models M(n−1)
1 and M(n−1)

2 as follows:



New model M(n−1)
1 : For V ∈ V′

n−1:

V =


⊕

PaGn−1(V ), with probability 1− ϵ,

1, with probability ϵ
2 ,

0, with probability ϵ
2 ,

(17)

and for U ∈ U′
n−1:

P (U = 0) = P (U = 1) = 0.5.

Model M(n−1)
2 : For all V in V′

n−1 \ {Sn}:

V =


⊕

PaGn−1
(V ), with probability 1− ϵ

1, with probability ϵ
2 ,

0, with probability ϵ
2 ,

(18)

and for Sn:

Sn =


⌝
⊕

PaGn−1(Sn), with probability 1− ϵ

1, with probability ϵ
2 ,

0, with probability ϵ
2 .

(19)

Similar to the first model, for each unobserved variables U ∈ U′
n−1, we define

P (U = 0) = P (U = 1) = 0.5.

Note that: (
1

2

)n−2 ∑
U1=0,U′

n−1

∏
j>1

P (Vj |PaG′(Vj)) =

(
1

2

)n−2

a = QM(n−1)
1 [V′

n−1](0),

(
1

2

)n−2 ∑
U1=1,U′

n−1

∏
j>1

P (Vj |PaG′(Vj)) =

(
1

2

)n−2

b = QM(n−1)
2 [V′

n−1](0).

It remains to show QM(n−1)
1 [V′

n−1](0) ̸= QM(n−1)
2 [V′

n−1](0). Note that if this holds, then by our construction,
QM1 [V′](0) ̸= QM2 [V′](0). In other words, we could reduce the size of the graph while keeping the same prob-
lem. Thus, by continuing this procedure, we eventually reach graph G2 that consists of only two observed nodes and showing
QM(2)

1 [V′
2](0) ̸= QM(2)

2 [V′
2](0) in that graph will conclude the result. For graph G2, we have

QM(2)
1 [V′

2](0) =
( ϵ

2

)2

+ 2
ϵ

2
(1− ϵ)

1

2
+ (1− ϵ)2

1

2
,

QM(2)
2 [V′

2](0) =
( ϵ

2

)2

+ 2
ϵ

2
(1− ϵ)

1

2
.

This clearly shows that QM(2)
1 [V′

2](0) ̸= QM(2)
2 [V′

2](0).
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