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A PROOFS AND LEMMAS FOR
SECTIONJ|

For certain operators, we note that subspace restriction dis-
tributes over operator composition:

Lemma 2. Let M and N be operators on RY such that
N|A = 1. Then (MN) Ac = M|AcN|Ac.

Proof. Fix any f € R4". Then

M

AN

acf = M{((Nf12)lac) ) ac

Note that since N|4 = I and ftx (z) = 0forall z € A,
we also have Nf 1ty (z) = 0 for all z € A. Hence in
particular, it holds that ((Nftx)|ac) tx= Nftx. We
therefore find that

M|acN|acf = (MNf12)|ac = (MN)|ac f,

which concludes the proof. O

This can be used in particular for certain operators associ-
ated with ) € Q and the associated lower- and upper rate
operators:

Lemma 3. Fixany A > 0 and any Q € Q. Then

(IT+AQ)a=T+AQ)a=T+AQ)a=1.

Proof. Fix any Q € Q, and first choose any f € R¥ and
x € A. By Assumption [I]and the definition of rate matrices,
we have Q(z,y) = 0 for all y € X, whence Qf(z) =

> yex Qx,y) f(y) = 0. Since Q € Q is arbitrary, we also
have Q f(x) = 0 and Q f () = 0. It follows that

f@) = [+AQ)f(z) = (I+AQ) f(z) = (I+AQ)f ().

Since this is true for all f € R and all 2 € A, the result is
now immediate. O

Corollary 3. Forall Q € Qandt € Rxg it holds that

th|A:th|A:th|A:I.

Proof. Use Lemma and the definitions of e@t, @t @t
O

Lemma 4. Let M and N be operators on RY such that
M|A :I:NlA. Then ||M|Ac —NlAcH < ||M—N||

Proof. Fix any f € RA" with || f|| = 1. Then || ftx| = 1.
Moreover, since f1Tx (x) = 0 for all z € A and since
M|a = I = N|a, we have that (M fTx)(z) = 0 =
(N ftx)(z) for all z € A. Hence we find

[(M]ac — N|ac) f]l
= |((M = N)ftx)
= [[(M = N)ftx|
< sup{||(M — N)g|| : g € RY, gl =1}
=|M—N| .

Ac

The result follows since f € R4 is arbitrary. O

Proof of Propositiond} Fix @ € Q and let G be its sub-
generator. First fix any ¢ € R and any ¢ > 0. Then by
definition of e@?, for all n € N large enough it holds that

||€Qt - (I—|—t/nQ)nH <e.
Moreover, by Lemmas [2]and [3] we have
((I + t/nQ)n)

and, by Corollary 3| that e??| 4 = I. Hence by Lemma
we find

€ — (14 aG)" < €9 — (T o)") <.

Ae = (I—‘y—t/nG)n,

Since € > 0 is arbitrary, we have

et = lim (I—i—t/nG)n.

n—-+oo
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This concludes the proof of the first claim.

To see that (th)tGRzo is a semigroup, note that (th)tGRzo
is a semigroup, then apply Lemma2]and Corollary[3] [

Proof of Proposition[6] The proof is completely analogous
to the proof of Proposition 5} simply replace () with either
Q or () as appropriate. O

Proof of Proposition[]] Let € := minge ae e9' 4 (z); then

€ > 0 due to Assumption[2] Fix any f € R4" with || f|| = 1.

By definition, we have €@ f = e@[4c f = (¢! fta)| ac.

Let 7; denote the set of transition matrices that dominates
e?!. Due to Proposition [3} there is some T° € 7; such
that Tftx= eQ'f1y. Fix any 2 € A°. Then, using that
fTa (y) =0forall y € A, together with the fact that T' is
a transition matrix, we have

yeX yeAe

and hence |Tf1Tx (2)] < Tlge(x). Wehave T4 + 14 =1
and T1(z) = 1 since T is a transition matrix. Using the
linear character of T', we find that

Tlae(x) =T —Ta)(x) =1 —TTs(x).
Since T' € T; and x € A€ we have

0<e= mgl QA (y) < e9a(2) < Tla(x).
yeA®

Combining the above we find that
Tty ()] <TTac(x) =1—TlIa(x) <1—c€.

Since this is true for all * € A° we find that
(T f1a)|ac]| <1 — e Moreover, since T ftr= e f1y,

it follows that H(eathXﬂAc H < 1 — ¢, or in other words,
that

Heétfugl—e, with € > 0.
The result follows since f € RA” with || f|| = 1 is arbitrary.
O

Proof of Lemmall] Let p(e€) := maxyc,(cc)|A| denote
the spectral radius of . We know from Section 4| that
|e“|| < 1, and hence we have p(e) < ||eGH < 1 [Taylor
and Lay, |1958, Thm V.3.5]. This implies that |A| < 1 for all
A€ a(e).

By the spectral mapping theorem [Engel and Nagell 2000}
Lemma 1.3.13] we then have e®¢* < 1 forall A € o(G), or
in other words, that Re A < 0 for all A € o(G). O

B PROOFS AND LEMMAS FOR
SECTION

Proof of Proposition[I1} This proof is a straightforward
generalization of an argument in [Engel and Nagel, 2000,
Prop 1.3.12].

Let first ¢ := @ ;then 0 < g < 1 dueto Proposition
Define .
m:= sup HeG“‘
s€0,1]

Then m > 1 since m > ’eéOH = |||| = 1. Moreover,
m < 1 due to Proposition [/] and hence m = 1. Now set

M :=1/gand £ := —logg; then £ > 0 since ¢ < 1.

Fix any t € R>¢. If ¢ = 0 then the result is trivial, so let us
suppose that ¢ > 0. Then there are k € Ny and s € [0, 1)
such that ¢ = k 4 s. Using the semigroup property, we have

_ —_—"
Hth HeGH < mgh = eklosa

_ "eé(erk)“ < Heés

We have k =t — sand s € [0,1), and so

th < ek log q

_ e(t—s) log q

_ etlogqe—slogq
_ e—fte—slogq
1

ZeEt — ]\/‘[6—5757
q

< e—&te— logg _
which concludes the proof. O

Proof of Proposition It follows from the definition that
for any upper transition operator 7" and any non-negative
f e RY also Tf is non-negative. In the sequel, we will
therefore say that upper transition operators preserve non-
negativity. Since e9? is an upper transition operator, this
property clearly extends also to e“*.

Now fix f,g € R4 and t € R>(. By preservation of non-
negativity we have for any x € A€ that

€1 + 91| (@) = e I + gl ).

Moreover, we clearly have |f 4+ g| < |f| + |g|, and so by
the monotonicity of upper transition operators, we have

et |f + gl (x) < (| f] + lg))(x).

Finally, by the subadditivity of upper transition operators,
we find that

S| f| + lg) (@) < eCtIf] () + Bt |g] ().



Again by preservation of non-negativity we have
111 @) + € lgl (2) = [ |1 (2) + ¢ Jgl| (@)
Because this is true for all z € A¢, we find that

16515 + o = 5151+ 5

[l v+ oo

Multiplying both sides with ¢! and noting that t € Rxg is
arbitrary, we find that

17+l = sup [Je€te® |7 + |
tERzO
< sup efteCt |f|H + Hegteét |g|H
tERZO
< sup eft66t|f|H—|— sup efteCt |g\H
teR>q teR>q
= [ fll. + llgll. -

Hence we have established that ||-||, satisfies the triangle
inequality.

Next, fix any f € R4" and ¢ € R. Then

lefll, = sup
tERZO

eﬁteét ‘C-ﬂH

sup
tERZO

<t |e] |1

le| sup
tERZO

G
S 1] = lel 1. -

So |||, is absolutely homogeneous.

Finally, fix f € R4" and suppose that || f||, = 0. It holds
that

0= 171l = [ 11| = 0.

whence it holds that Hegoeéo | f] H = 0. This implies that

also

eé(] ‘f|H = 0. Since €é0 = I’ we have

0= |l 71| = msi = 171
whence f = 0. Hence ||-||, separates R4". O

Lemma 5. Forany Q € Q with subgenerator G, any f €
R4, and any t > 0, it holds that HthfH* < ‘thfH )

Proof. Choose f € R4, Let T be any matrix with non-
negative entries. Then |T'f(z)| < |T'|f| (x)| for all x € A°.

In particular, we have

Tf@) =Y T(xy)f(y)

yeEA®

> Tyl ()]

yeAe
=T|fl () =T[f| (=),

where the final two equalities follow from the fact that T’
only has non-negative entries. Since this is true for any
matrix 7" with non-negative entries, we have in particular
that [e“! f| () < " | f| (2). Similarly, it holds that

IA

€% 1| ) = |sup T4()

< sup |Tf(z)|
TeT:

< sup T'|f| (z) = O || ().
TeT:

It follows that, for any s € R>, we have
eés ‘thf’ (:L‘) < eésth |f| (CU) )

Due to preservation of non-negativity, and since this is true
for any x € A€, we have

G |6th|H <

eésth |f|H )

Now let f € RA" be such that |f|, = 1 and

l€¥]|, = ||e“* f|,; this f clearly exists since RA® is finite-
dimensional. Then we have
(], = [l £,
= sup et5eCs ’thf|H
s€R>q
< sup 65003 Gt mH _ Hth If] < HthH* ’
seR>o

where the final inequality used that ||| f||, = ||f]l, = 1.
Hence we have found that [|e“*|| = [|e“ |f]]..

Since %t € T; by Equation (7), we also have
eIl < e If|

By monotonicity of upper transition operators, this implies
that _ _
eGsth ‘f| < eGsth |f‘

and, due to the preservation of non-negativity, we have
Gs Gt Gs Gt
eFrelt|f] = |eTrel ||

and o o
eGsth |f| _ ‘eGsth ‘fl' )



Hence for all x € A° we have
[ 1] (@) < [ ]| @),
or in other words, that

Heasth |f|H < Heaseét ‘le )

Since this holds for all s € R>(, we have

Hth — ||€Gt‘f| = sup e{seésth“ﬂH
* * s€R>0
< sup e{seéseét ‘f|H
SEREO
=[] <], -
* *
which concludes the proof. O

Proof of Proposition[I3] The argument is analogous to the
well-known case for linear quasicontractive semigroups; for
a similar result, see e.g. [Renardy and Rogers, 2006, Thm
12.21]. So, fix any ¢t € R>g and f € RA".

Using a similar argument as used in the proof of Lemma 3]
we use the preservation of non-negativity and the monotonic-
ity of upper transition operators, to find for any s € R>g
that

H 65 s eGs

eétf‘H < Hegseéseéth _
Hence we have

= sup ||e%e“®

* SERZO

Heétf

A

e{seéseat ‘f| H

IN

sup
SERZO

— e~&teft sup o85G (s+1) ‘le

s€R>q

= e78t sup |[ef(TD G+ | f'H
s€R>q

= sup [e€el g < ey g,
SER>¢

where for the second equality we used the semigroup prop-
erty. Since f € R“” is arbitrary, this implies that

Hth

—sup{[| || s FeRN AL =1} <,

which completes the proof. O

Proof of Proposition[I4] This is immediate from Lemma ]
and Proposition T3] O

C PROOFS AND LEMMAS FOR
SECTION

The following result is well-known, but we state it here for
convenience:

Lemma 6. Let T be a linear bounded operator on a Banach
space with norm ||-||,. Suppose that |T||, < 1 and that
(I —T)~ ! exists. Then
1

(I-1)! LS
| I = 7=y
Proof. Since ||T]|, < 1 wehave (I —T)~' = 3,25 Tk,
Taking norms,

(T =7)7|, =

+oo +oo . 1
TR <D TN = s
21 = =

where the final step used the value of the geometric series
and that | T, < 1. O

*

Lemma 7. There is some C' > 0 such that for any A > 0
with A& < 1, and any Q € Q with subgenerator G, it holds
that ||(I — eS2)71|| < ¢/a.

Proof. Let§ > Obeasin Proposition and let ||-||, be the
norm from Equation (8. Since R“" is finite-dimensional
the norms ||-|| and ||-||, are equivalent, and hence there is
some ¢ > 0 such that || f|| < c||f||, for all f € RA". Set
C := 2¢/¢; then C' > 0 since £ > 0.

Fix any A > 0 such that A < 1, and any Q € Q
with subgenerator G. It follows from Proposition [T4] that
|e€2]|, < e~¢4. Using a standard quadratic bound on the
negative scalar exponential, we have
52, < et <1-eat A% <1- o<1,
(14)
where the third inequality used that A¢ < 1. Notice that
€S2 |, < e84 < 1. Moreover, (I — e“2)~! exists by
Proposition 8] By the norm equivalence, we have

(I =) <ell(T =7, as)
and, by Lemma 6] that

1

_GAy-1
=7 < e

Using Equation (I4) we obtain

1 1 12

Ay—1 < < -
S e < T A

H(I—eG

Combining with Equation (T3)) yields
12_¢
NN

which concludes the proof. O

H(I — eGA)_lu <c



Proof of Proposition[I3] Let {,C > 0 be as in Lemma[7]
and let § := /¢ and L := C||Q|* with |Q] :=
Supgeo ||Q]]; note that || Q]| € Rx¢ since Q is bounded
by assumption. Observe that we must have || Q|| > 0 due to
Assumption 2} whence L > 0.

Choose any A € (0,9) and Q € Q. It is immediate from
the definitions that h?(z) = 0 = h¥(z) forall z € A and
all Q € Q, so it remains to bound the norm on A°€.

Let G be the subgenerator of Q on A°. By Proposition[9|we
have that h% Xlae = (I —e%?)~1AL. Using the definition
of h@? this implies that

he|ae — e“Ph|4e = A1 = —AGh®| 4 .

Re-ordering terms we have

Qae = 28| 4e — AGH? | 4e .

Let B = ¢“2 — (I + AG). We find that

he|ae — h9| e
= e%2nG | ae — AGh®| e — h®| ac
= 9202 pe — (I + AG)I?| 4
= 2 (S| ac — 79 ac) + (€S2 — (I + AG)) A9 ac
= A (h|ac — h®|ac) + B9 4c .
We see that the difference on the left-hand side occurs again

on the right-hand side. Hence we can substitute the same
expansion n € N times to get

h§|Ac

. eGA(n+1)(h§|AC _ hQ|Ac) + ZGGAthQMC .
k=0

_hQ|Ac

Since we know from Section@]that limy 4 oo eCt =0, we
see that the left summand vanishes as we take n — +oo and,
using Proposition we have (I — e@2)~1 = 3120 cGAk,
So, passing to this limit and taking norms, we find

814 = B9

= ||(I — e“2) "' Bh®| 4
< (=27 1B [|h®] 4

Using Lemmas [3|and [ and Corollary 3] we have
1B = []e“* - (I +AQ)

and so, due to [Krak| 2021, Lemma B.8], we have || B|| <
A?[|Q||>. Since Q € Q it follows that ||Q]| < ||Q]|, and so
|B|| < A2 ||Q||>. Since A < § we have A¢ < 1, whence

|(I = e“2)~1|| < ¢/a due to Lemma(7} In summary we
find

(I +AG)| < [|e?* -

C
[PR1ae = 19Lac || < ZA211QIP (194

which concludes the proof. O

Proposition 17. [Krak} 2020, Prop 7] Fix any A > 0, and
let Ta denote the set of transition matrices that dominate
e@2 . Choose any Ty € Ta. For all n € Ny, let hy, be the
(unique) non-negative solution to hy, = Al gc + 1T hy,
and let Ty, 11 € Ta be such that T, 11 h,, = 9%,

Then limy,_ 4 oo hyp, = ha.

Proof. The preconditions of the reference actually require
every T}, to be an extreme point of T, but inspection of the
proof of [Krak, 2020, Prop 7] shows that this is not required;
the superfluous condition is only used to streamline the
statement of an algorithmic result further on in that work.

O

We next need some results that involve transition matri-

es T corresponding to (not-necessarily homogeneous)
Markov chains P € IP’l\Q/I. We recall from Section that
these are defined for any ¢, s € R with ¢ < s as

PTé(x,y) = P(X,=y| X; =) forallz,yc X.

Lemma 8. Consider the sequence (hy,)nen, constructed as
in Proposition[I7} For any n € Ny, there is a Markov chain
P, 11 € PY with corresponding transition matrix "t DT
such that "TOTAh, = eQ2h,,.

Hence in particular, we can choose the co-sequence
(T))nen in Proposition|17|to be ((”)T()A)neN.

Proof. This follows from [Krak, 2021, Cor 6.24] and the
fact that Q is non-empty, compact, convex, and has sepa-
rately specified rows. O

Proposition 18. For all A > 0 there is a Markov chain
P e ’Pg[ with corresponding transition matrix T = TTS,
such that the unique solution h to h = Allgc + 14cTh
satisfies h = ha.

Proof. Let TA' := {FT§* : P € PY}, and let (hy,)en be
as in Proposition with the co-sequence (7}, )nen chosen
as in Lemma8]to consist of transition matrices correspond-
ing to Markov chains in 735[. Then (T},)nen lives in TAL.

The set TAM is compact by [Krak, 2021, Cor 5.18] and the
fact that Q is non-empty, compact, and convex. Hence we
can find a subsequence (75, ) en With lim; o T, =:
T € TAV. Since T € T, there is a Markov chain P € Py
with corresponding transition matrix 7' = T2,

Moreover, since T, T,, € TA', it follows from [Krak,
2021, Cor 6.24] that the transition matrices 7' and all
T,,. dominate the lower transition operator eQA, Together
with Assumption 2] this allows us to invoke [Krakl 2020,
Prop 6], by which we can let A be the unique solution
to h = Allgec + [4.Th, and it holds for any j € N that
hn;la =0, and

hnj|Ac = (I_Tnj|AC)_11A‘



Similarly, it holds that h| 4 = 0, and
h|Ac = (I — T|Ac)711A.

Since limy ;4o Ty; = T and by continuity of the map
M + (I — M)~'—which holds since all these inverses
exist—it follows that h|4c = lim; o fin;|a=. Since also
hla = hn,|a, it follows that lim;_, 4 o by, = h.

By Propositionwe have lim,,_, 4 o hn, = h A, and hence
we conclude that by = lim; 4 o0 iy, = h. O

Proposition 19. Fix any t > 0 and consider any Markov
chain P € 731\9/[ with transition matrix ©'T}. Choose any
€ > 0. Then there is some m € N such that for alln > m
there are QQ1, ...,Q, € Q, such that

Pry - TTU +4/nQ0)

i=1

Proof. The result is trivial if ¢ = 0, so let us consider the
case where ¢ > 0. Let ¢’ := ¢/2¢. By [Krakl, 2021, Lemma
5.12] there is some m € N such that for all n > m and with

= t/n, forall i = 1,...,n there is some @); € Q such
that '

HPT&%M 1+ AQ)| < A

Since P is a Markov chain, we can factor its transition
matrices [Krakl 2021, Prop 5.1] as

Pﬂt A*H T1 A -

Using [Krakl 2021, Lemma B.5] for the first inequality, we
have

n

15— H(I +AQ;)
H P H(I +AQ:)
i=1

<ZH A a— (I +AQ))

€
< Ad =n—— = -
Z ‘ ”n Tt
which concludes the proof. O

Lemma 9. Consider a sequence (Qp)nen in Q with limit
Qs = limy, oo Qn. Foralln € N, let h,, denote the min-
imal non-negative solution to Iah,, = Tgc 4+ [4cQhnp,
and let h, denote the minimal non-negative solution to
Tahe =1ge + TacQuhy. Then hy = limy, s 4 oo hy-

Proof. Since Q is closed, we have Q. € Q. Let (G, )nen
and G, denote the subgenerators of (Qy,)nen and Q. re-
spectively. Then G5! and G;;!, n € N exist by Corollary|[l}

and hence we also have lim, ., G,;! = G;!. Right-
multiplying with —1 and applying Proposition[I0| gives
lim hylae = lim -G, "1 = -G, '1 = hy|a- .
n—-+oo n—-+oo
Finally, by definition we trivially have h,,(x) = 0 = h.(z)
for all x € A. Hence also lim,, s+ oo hp|a = hyla. O

Lemma 10. [Krak et al| 2019 Cor 13] Fix any A > 0
and let hp be the minimal non-negative solution to the
non-linear system (12). Let Ta denote the set of transition
matrices that dominate e and forall T € T, let hr de-
note the minimal non-negative solution to the linear system
ht = Al ge + 14T hy. Then it holds that

ha = Tlél7f’A hr.

Proof of Proposition[16] We only give the proof for the
lower hitting times, i.e. that ima_ o+ ||[ha — &|| = 0. The
argument for the upper hitting times is completely analo-
gous.

Choose any two sequences (A, )nen and (€, )nen in Rsg
such that lim, 400 A, = 0 and lim, 400 €, = 0. We
will assume without loss of generality that A,, || Q|| < 1 for
all n € N, where || Q|| = SUPeo Q|-

Now first fix any n € N, and consider h by, . By Proposi-
tlon . there is a Markov chain P,, € PQ with transition

matrix 1), := "To ™ such that the unique solution h,, to
hn = An]IAc + I[ALTnhn satisfies hn = hAn

By Proposition [19] there are m,, € N with m,, > n and

an), ce 5,?) in Q such that, with
T An )
D, = I+ =0, ,
1+ 2a)

it holds that ||T,, — ®,,|| < €,,. Now define

Mn

Q=) — Q“’

=1

Then @, € Q since Q is convex. Let hg, denote the mini-
mal non-negative solution to [4hg, = Lac +14:Qrhq,,.

By repeating this construction for all n € N, we obtain
a sequence (@, )nen in Q. Since Q is (sequentially) com-
pact, we can consider a subsequence (@, );en such that
lim; oo Qn, =: Qs € Q.

Let h. be the minimal non-negative solution to I4h, =
Tpc+14:Qhy. We now need to estimate some norm bounds
that hold by choosing j large enough. Let K = 5 and fix
any § > 0.

Since (Qy, ) jen converges to Q., it follows from LemmaE]
that for j large enough, we have

< i (16)

ho  —h.
H Qn; K




Since h. is bounded, this also implies that the sequence
(han )jen is eventually uniformly bounded above in norm
by some constant M > 0, say.

For all j € N, let anj be such that ﬁnj lae == (I —
eCnjBn; )"'A,,1 and fznj |4 := 0. Then

]Alnj = A’I’Lj ]IAC + HAC ean Anj }/\7/71 .

J

For j large enough we eventually have A,, . < 1, and so
by Proposition[T3] we then have
N ‘ < AnjLHhQn_

with L, M independent of j. Hence for j large enough we
have

I

S ATL]' LM )

5
hn, — ha., ‘ <= 17)

Let next h,,. . be the minimal non-negative solution to iL
A, ]IAL + I[AJI) hn Since my,; > ny, for j large enough
we have H ;| ac]| < 1dueto Assumptlonl

By [Krak, [2021] Lemmas B.8 and B.12] we have

A
o -

and so, for any ¢ > 0, we can choose j large enough so that

eventually H‘D”j — eW@niA

the map 7' + (I — T)~! on operators T for which this
inverse exists, for large enough j we therefore find that

[z

n; |AC - ilnj |AC

(I = @, 4e) — (I — €Qns2ns |Ac)—1)Anj1H

) )
— <=
< Ay TS%
Since anj la=0= an]. | a, this implies that then also
~ - )
J N ) 18
[ny = on, || < 5 (18)

Next, we recall that by, = hy,;, and
J

HTM o (I)nj H < €n; -

Hence by continuity of the map 7' — (I—T)~! on operators
T for which this inverse exists, for large enough 7 we find
that

‘ hnj|A° - ilnj |AC
= [[((I = Toylae) ™ = (I = @yl ac) 1) A 1]
< Ay, % < %

Since iy [a =0 = ?Lnj | a, this implies that also

Putting Equations (T6)—(T9) together, we find that for any
large enough 7 it holds that

< i (19)

hnj - hnj K

|, =1 o
< [[n, = P,
[, = o,
+ ’ hiny = ha,
e,
)
< A? ) (20)

Since § > 0 is arbitrary this clearly implies that

lim hA = hy. 21

Jj—4o0

Next, let us show that A, = h. To this end, assume ex
absurdo that there is some Q € Q such that h9(z) < h. ()
for some z € A°. Let § := h.(z) — hg(xz) > 0. Due to
Corollary 2] for any A > 0 small enough it holds that

0
hQ_hQH 2
H A K

This implies in particular that for large enough j it holds
that hQ ( ) < h9(x) + ¢/K. Moreover, it follows from

Equatlon (20) that for large enough j we have b ( ) >

hs(x) — 49/K. Tt holds that hg(x) = h.(x) — 4, and hence,
since K' = 5, we find that that for large enough 7,

hg, (@) < h9() +9/x
=he(x) — 0+ 9/K

= ha(e) ~ K+ 9
0
= h(2) = (K~ 1)
= h.(z) — 4% < ﬁAn,j (x).
In other words, and using Lemma|[I0] we then have
hgnj (z) < ﬁAnj (r) = inf hp(z) < hgn (x),

TGTAnj J

where the last step used that e9hn ¢ Ta,, . From this
contradiction we conclude that our earlier assu]mption must
be wrong, and so it holds that h, (r) < h9(z) forallz € X
and @ € Q. This implies that h, < h. Since it clearly also
holds that b < h, because Q. € Q, this implies that, indeed
as claimed, h, = h.



In summary, at this point we have shown that for any se-
quence (A, )nen in Ry with lim,, o A, = 0, there is
a subsequence such that lim; , 1 oo by~ = h.

J

So, finally, suppose ex absurdo that lima_,g+ hn # h.
Then there is some sequence (A,)nen in Rsg such
that lim, 4. A, = 0, and some ¢ > 0, such that
HQA” — @H > e for all n € N. By the above result, there
is a subsequence such that lim; ;4 o A, = h, which is a

contradiction. O

Proof of Theorem[I] The crucial approach of this proof is to
emulate Erreygers| [2021], Sec 6.3] and consider discretized
and truncated hitting times. By taking appropriate limits
of such approximations, we then recover the “real” hitting
times. We however need to be a bit careful with these con-
structions, since lower (and upper) expectation operators
for continuous-time imprecise-Markov chains are not neces-
sarily continuous with respect to arbitrary limits of such
approximations [Erreygers| 2021, Chap 5]. This—fairly
long—proof is therefore roughly divided into two parts;
first, we construct a specific sequence of approximations,
and establish the relevant continuity properties with respect
to this sequence. Then, in the second part of this proof,
we use this continuity to establish the main claim of this
theorem.

To this end, forany ¢t € R>p and A € R, we first consider
a fixed-step grid v/ over [0, ¢] with step-size A, as

vh = {iA : 1 € Np,iA < t}. (22)

We define the associated approximate hitting time functions
Th 1 Qr., = Rforallw € Qr_, as

Th(w) = min({s evh tw(s)e AU {t}) . (23)

Then by [Erreygers, 2021, Lemma 6.19], as we take the
time-horizon t to infinity and the step-size A to zero, we
have the point-wise limit to the actual hitting time function
TRs0» in that

forallw € Qg_,. (24)

TRy, (W) = TA(w)

im
t—+o00,A—0t
Let us now construct a specific sequence of approximate
hitting time functions that will converge to this limit. To
this end, first fix an arbitrary sequence (€, )nen, in Rsg
such that lim,,_, y , €, = 0. Moreover, for any n € Ny, we
introduce the (discrete-time) truncated hitting time 7., :
Qn, — R, defined for all w € Q, as

Tom (W) = min({t €{0,...,n} : w(t) € A}U {n}) .
Now fix any k € Ny, let A;, := 27", and let 7 denote the

set of transition matrices that dominate e2**. We now con-
sider discrete-time imprecise-Markov chains parameterized

by Tx. As discussed in [Krak et al.,2019], for all n € Ny

. =V .
there are functlonE%_ [T0:n | Xo] and E7; [T0. | Xo] in R¥
such that

E\'{'k [TOSTL | XO] S EITk [TO:n | XO]

—1 —V
< ETk [To:n | Xo] < ETk [To:n | Xo]
that, moreover, satisfy

im EY, [ro.0 | Xo] = Ex, [, | Xo] = B [, | Xo]

and

.=V —V —HM
lim Er [To:m | Xo] = Er [Ty, | Xo] = Er [T, | Xo] -

n—-+o0o

We already noted in Section [5|that the functions h,, and

ha, from Equations and satisfy

—HM — —HM
ﬁAk = AkETk [TNU |X0] and hAk = AkETk [TNO |X0] .
Combining the above, we find that

. \
ngr_{loo ARET, [To:n | Xo] = b,
and v B
nll}I«rkloo AkETk [T():n | Xo] = hAk .
Hence for all £ € Ny, we can now choose t;; € Ny large
enough such that ¢, > k, and so that with nj = 2kt we
have both

|AKEY, [Fone | Xo] = ba, | < e, @29)

and

7\/ —
HAkETk [y | Xo] — i, || < e . (26)

With these selections, we now define the sequence (7%)xen,
of approximate hitting times as 73 := TZ“}C for all £ € Ny.
Clearly we have limy_, { oo A = 0, and since t;, > k we
also find that limy,_, 4 o tx = +00. Hence by Equation (24)
we have the pointwise limit

TRo (W) = lm 7p(w) forallw € Qg ,. (27)
= k—s+o00 =
Having constructed this specific sequence that converges to
the “true” hitting time function, we will now demonstrate
the relevant continuity properties of the lower- and upper
expectations of interest, with respect to this sequence.

To this end, we define 7 : Qg_, — RU {400} as

#(w) := sup sup 74 (w) forallw € Qr.,. (28)
teNg neNg B

!These represent lower and an upper expectations with respect
to a game-theoretic imprecise-Markov chain, but the details don’t
concern us here.



Then for all k£ € Ny we have 73, (w) = TtAkk (w) < 7(w) for
all w € Qg.,. Moreover, since every 7 is non-negative,
it holds in fact that |73, (w)| < 7(w) for all K € Ny and
w € Qg Tlllis means that if we can show that the upper
expectation E4[7| Xo = 2] is bounded for all z € X,
then we can use the imprecise version of the dominated
convergence theorem [Erreygers, (2021, Thm 5.32] to take
lower- and upper expectations of the limit in Equation 7).
So, we will now show that this boundedness indeed holds.

We note that, for fixed ¢ € Ny, TfA" is monotonically de-
creasing as we increase n € Ny. To see this, first consider
the grids v, and v, over[0,¢]. Forany s € vj  there
is some 7 € Ng such that s = iA,,, and since A,, = 27" =
2A,, 41, we find that also s = 2iA,, 1 € VtAHl. Hence we
conclude that ytAn C I/tAn+1. From this set inclusion, we
also clearly have for any w € Qg , that
{sevh, 1w(s)eAyC{se VtAn,+1 tw(s) € A},
and so together with the fact that s < ¢ forall s € vtAnH, it
: t t

then follows from Equation (23) that 75 (w) > 74, (w).

Using this observation, we immediately find that for any
t € No and w € Qg it holds that
t

sup 75 (w) = A, (W) = T (w),
n€Ny

and so from Equation (28), we have

#(w) = sup 1} (w).
teNp

Next, we observe that 7f is monotonically increasing as
we increase ¢ € Ny. Indeed, for any ¢ € Ny the grid v}
over [0, t] simply constitutes the set v{ = {0,...,¢}. Hence
that 7} is monotonically increasing as we increase ¢ € No,
follows immediately from Equation (23)). In particular, this
implies that the sequence (7{);en, converges monotonically
to 7. Moreover, we have 7 (w) = 0 for all w € Qg.,, and
so we find that identically -

EL[ | Xl = inf Ep[rl| X, =0.
Eg[m | Xo P p[m | Xo

Hence by the continuity of upper expectations with respect
to monotonically increasing convergent sequences of func-
tions that are bounded below [Erreygers}, 2021, Thm 5.31],
we have

=1 .. . =1
Eol7 | Xo] = lim EQ[Tf | Xo] - (29)

t——+00,tENg

Now, for every ¢t € Ny, 7 only depends on finitely many
time-points; indeed, 7{(w) only depends on the value of
w(s) for s € {0,...,t}. Using [Krakl 2021, Thm 7.2],
this means that the lower- and upper expectations of these
functions with respect to the imprecise-Markov chain ”PIQ,

can also be expressed as lower (resp. upper) expectations
of this function with respect to an induced discrete-time
imprecise-Markov chain. Indeed, since the step-size used
in these approximating functions is uniformly equal to one,
and using the obvious correspondence between Tlt and 7.,
it is not difficult to see that

Eolr! | Xo) = Eylros | Xo] forallt € No,  (30)

where T is the set of transition matrices that dominates e<.

We now again invoke the previously mentioned results
from [Krak et all 2019]]; for any ¢ € Ny, there is a function

E;/’[TO:t | Xo] € RY that satisfies

v
Er[70:¢ | Xo] < Eq[r0:4 | Xo] - 3D

Combining Equations (29), (30), and (31), and using [Krak
et al.,[2019, Prop 7] to establish the limit on the final right-
hand side, we have

=1 =1
Eo[t|Xo]= lim Eg[rf|X
Q[T| o] H+éof{1teNo Q[Tl| o]
= lim  Epfro| X
R 770 | Xo]
< lim  Eylros| Xo] = Exfm, | Xol
S L T 0:t | X0] = By TN | Xo] -

By [Krak et al., 2019, Thm 12] it holds that
=V —HM
ET[TNO |X0} = ET [TNO ‘XO] ’

and, moreover, that there is some homogeneous discrete-

time Markov chain P € P?M with associated transition

matrix T = T € T and hitting times h = Ep[my, | Xo]
—HM . .

such that h = E 7y, | Xo]. Putting this together, we find

that

Elg[f | Xo =12] < h(z) forallz e X. (32)

By Proposition[I] A is also the minimal non-negative solu-
tion to the system

h=14e +14:Th. (33)

It is immediate from the definition that h| 4 = 0, and since
7 is clearly non-negative, we obtain from Equation (32)) that
for all z € A we have

0 < Eglf| Xo = 2] < h(z) =0,

. =1 .
or in other words, that Eq[7 | Xo = 2] = 0 forall z € A.
So, it remains to bound this upper expectation on A°€.

By our Assumption it holds for all z &€ A€ that
QI a(x) > 0. Since e? is the lower transition operator
corresponding to 7~ due to Proposition[3] it follows that €<
satisfies conditions C1-C3 and R1 from Reference [Krakl
2020]. We now recall that ' = £T" € T. Since the precon-
ditions C1—C3 and R1 of this reference are all satisfied, we



can now invoke [Krak, 2020, Lemma 10], which states that
the inverse operator (I — T'| 4c) ™! exists.

We note that h|4 = 0, and so h = (h|4<)Tx. Hence in par-
ticular, we have T'| gch|ac = (Th)]| ac. From Equation (33),
we now find that

h|Ac :1+(Th,)|Ac :1+T|ACh|AC,

and so re-ordering terms, we have (I — T'| gc)h|4c = 1. Us-
ing the existence of the inverse operator established above,
we obtain

hlac = (I —T|ac)~!

Since (I — T'| 4<) is an invertible bounded linear operator,
also clearly (I — T'|ac)~" is bounded. Hence we have

A acll = [|(I = Tlae) " 1]| < ||(I = T)ac) ] < +o0.
From Equation (32) we find that EIQ [7| X0 = 2] < 40
for all x € A°. In summary, at this point we have shown
that EIQ [7] Xo = z] is bounded for all z € X. Since we
already established that 7 absolutely dominates the sequence
(Tk)ken,» We can now finally use the limit and the

dominated convergence theorem [Erreygers, 2021, Thm
5.32] to establish that

lim sup EQ[Tk | Xo] < IEQ[TR>0 | Xo], (34)
k—+oo

and . i
Bolre., | Xo] < minfEoln | X0 (3

This concludes the first part of this proof. Our next step will
be to identify the limits superior and inferior in the above
inequalities as corresponding to, respectively, i and h.

Let us start by obtaining the required result for the lower
expectation. From the definition of the limit superior, there
is a convergent subsequence such that

s:= lim EQ[Tk | Xo] = limsup EQ[Tk | Xo]. (36)

B Jj—+oo k—+o0o

Now fix any J € N, and consider the approximate function

Tk, = TA . As before, this function really only depends on
the system ‘at finitely many time points; specifically, those on
the grid vx's over [0, ¢, ]. We can therefore again use [Krak|
2021, Thm J7 2], to express the lower- and upper expecta-
tions of this function with respect to the imprecise-Markov
chain 73{2, as lower- and upper expectations of a function
with respect to an induced discrete-time imprecise-Markov
chain. Since the step size of this grid is now equal to A,
rather than one, this requires a bit more effort than before.
In particular, we now need to compensate for the step-size
Ay, of the grid. Indeed, the corresponding discrete-time
imprecise-Markov chain should consider steps that are im-
plicitly of this “length”, so we consider the model induced
by the set T, of transition matrices that dominate QB4 Tt

then remains to find an appropriate translation 7y, of 7 to
the domain Q.

As a first observation, we note that this “translation” Tk, °
Qn, — R should depend on the same number of time points
as 75, . We note that since t, € NO it holds that ¢;, € Z/AJ

Hence it follows from Equation (22)) that Z/A contains ex-
actly A, 1tk = 2k7tk = nyg, time points, 1Jn addition to
the 0r1g1n 0, and that 7 depends exactly on these time
points. Indeed, 1nspect10n of Equation (23) reveals that, by
re-scaling to compensate for the step size Ay, the quantity
A;lTk (w) simply represents the natural index of the dis-

crete grid element of v Aa‘ on whichw € Qg_, did (or did
not) initially hit A. Adapting Equation (23), we therefore
define for any w € Q, that

i,

Ty (W) = mln({s RN w(A;jls) € A} U{ty, }) .
We see that, as required, A,;_li'kj (w) is again simply the
identity of the step on which w € y, did (or did not)
initially hit A. This implies the relation to the discrete-time
truncated hitting time To:n, 5 for any w € Q, we have

%kj (w)
= Ay, AL, (W)

= Ay, min({s € A,;jlvzzv tw(s) e A} U {A,;_ltkj})

= Ay, min({s €{0,....nk,} s w(s) € A}U {nk7})

= Akj TO:nk. (W) 3

and so we simply have that 75, = Ak Toing, . Following the
discussion in [Krak} 2021, Chap AR and [Krak 2021, Thm
7.2] in particular, we therefore find the identity

Eglmk, | Xo] = for all j € Ny.
(37)

[2019]] the objects

Ak,ElTkj [TO:nkj | Xo]

We again recall from [Krak et al.
E\T/kj [To;nkj | Xo] in RY satisfying

ET, 700, | Xo] < E7, [Tom,; | Xo] forall j € No.

Hence from Equations (36) and (37) we now find that
s = lim JEQ[T;c | Xo]

- j—+4oo

= lim Ay, ETk [7o: ni, | Xo]

j—+oo

> lim Ak E'Tk [TOnk |X0] (38)

Jj—+oo

We now note that, for all ;7 € Ny, we have
|8k EY, [rons, | Xo] = b
< |2 EY, [roms, | Xol — ha, ||+ ||, =4

.

<en, +||ha,, — b




where we used Equation for the final inequality. Using
that lim; o €; = 0 and lim; ;o Ag; = 0, together
with Proposition[T6] we see that both summands vanish as
we increase j € Ny, and so we have
. v

dim AGEY, [ron, | Xol =k (G9)
We already established in Section that h =
ESM [TR>, | Xo]. Hence by combining Equations (34), (36),
(38), and (B9), we now find that

EGM[mrao | Xo] = h < s <Eglrr., | Xo].  (40)

However, as noted in Section [3.1] we have the inclusion
PSM - 7951 - PIQ, so it immediately follows from the
definition of the lower expectations that

Eo[mrs, | Xo] < EQlmes, | Xo] < ESV R, | Xo] -
Hence by Equation (40) we obtain the identity
EIQ [T]Rzo |X0] = EI\Q/[[TRZO ‘XO] = EgM [T]Rzo ‘XO] ;

which concludes the proof that the lower expected hitting
times are the same for all three types of continuous-time
imprecise-Markov chains. We omit the proof for the upper
expected hitting times; this is completely analogous, starting
instead from Equation and using the norm bound

to pass to the limit o = ESM [TR=, | Xo]- O

Proof of Theorem[2] First fix any A > 0. For h, it then
holds that
bA = A]IAC + ]IAceQAhA

Since ha(z) = 0forall z € A, we have hn = [4cha and
ITahA = 0. We can therefore rearrange terms and add [ 4h 5
to the above, to obtain
QA
ex= — 1
Because the individual limits exist by Proposition
and [De Bock} 2017} Prop 9], taking A to zero yields

]IAE = HA lim QA
A—0t+

QA _ T
=Tge +14e lim ———h
AJFAALH& A A

QA T

lim QA

=Igc + 14 lim
A—0t+ A A—0t+

= I[Ac +]IACQE

So, h is indeed a solution to the system [ 4 h = [ 4¢ —HIACQQ.
It follows from a completely analogous argument that also
his asolutiontolg4h = Tgc + 14-Q h.

That h and h are non-negative is clear. We now first show
that h is the minimal non-negative solution to its correspond-
ing system. To this end, suppose ex absurdo that there is

some non-negative 1 € R? such that h(x) < h(z) for some
x € X,and [ ah = T4c +14cQh. Then clearly x € A€ since
h(y) =0forall y € A and h is non-negative.

By Proposition[d] there is then some () € Q such that Qh =
Qh,and soalso [4h = [ 4c +14-Qh. By Propositionthere
is some minimal non-negative solution A, to the system
Tqahye = Tge + I4cQhy, where the minimality implies in
particular that h, < h. Since () € Q, we obtain

hu(z) < h(2) < h(z) = inf he (2) < hy (),

which is a contradiction.

We next show that A is the minimal non-negative solution to
its corresponding system; this will require a bit more effort
and we need to start with some auxiliary constructions. By
Proposition there is some Q € Q such that Qh = Q h.
Let G be the subgenerator of Q).

Consider the £ > 0 from Proposition[11] and let -||, be the
norm from Section .1} Since R“" is finite-dimensional, the
norms ||-|| and ||-||, are equivalent, whence there is some
c € Ryg such that || f||, < c||f| forall f € RA".

Now let A > Obesuchthat A [|Q < 1, A ||QH <1,A€ <

2/3, and Ac||Q|® < ¢/3; this is clearly always possible.
Define the map H : RA" — RA" forall f € R4 as

H(f) = f+ A1+ AGf = Al + (I + AG)f.

Let us show that H is a contraction on the Banach space
(R, ||-|l.), or in other words, that there is some « € [0, 1)
such that |[(f) — H(g)ll, < a|f — gl forall f,g €
RA° [Renardy and Rogers, 2006, Sec 10.1.1]. So, fix any
f,g € RA". Then we have

IH(f) = H(g)ll, = (I + AG)f = (I + AG)g]|,

= [T +AG)(f = 9)ll.
<+ AGIL S =gl

from which we find that

IH(f) = H(g)ll.

< ([T +AG) = e“2 + |2 ) 1 —gll. -
(41)
By Propositionwe have ||e“2 ||, < e7¢4, and so using a

standard quadratic bound on the negative scalar exponential,
e8], < 1— A&+ %A%Q <1- %Ag, (42)
where we used that A{ < 2/3.
Moreover, we have that
[0+ 8G) e, < e[t +a6) 2

<c|(I+AQ) -2
<cA? QI



where the second inequality used Lemmas[3|and]and Corol-
lary [3} and the final 1nequa11ty used [Krakl 2021, Lemma
B.8]. Since Ac|Q|?> < &/3 we have

[(I+AG)—e“2|, < Ag 43)

Combining Equations (@I}, (42)), and #3)) we obtain
1
() - @1, < (1= 3a¢) 1 - al.
Since A > 0, £ > 0, and A < 2/3, we conclude that H

is indeed a contraction. Hence by the Banach fixed-point
theorem [Renardy and Rogers, 2006, Thm 10.1], there is a

unique fixed point f € R4 such that H(f) = f and, for
any g € R4", it holds that
lim H"(g) = f. (44)

n—-+oo

It is easy to see that this unique fixed point is given by A ac.
Indeed, from the choice of ) and the fact that / satisfies
Tah =14 +14.Q h, we have

]IAE =1T4c + ]IAcQE =1T4c + ]IACQE.

Moreover, since h|4 = 0 we have [4h = 0 and h =

(h| a<)Tx, whence
(QR)|ac = (Q (hlac)tx)|ac = Ghlac .

Noting that [ ACLAC = 1, after multiplying with A we find
that A1 + AG h| . = 0. Comparing with the definition of
H, we have

H(ElAC):ELAc +A1+AGE|AC :ElAC +0:E‘AC,

0 h|4c is indeed a fixed-point of H. Since we already
established that H has a unique fixed-point, we conclude
from Equation (@4)) that
hlac = lim H"(g) forallge RA".  (45)
n—-+oo
Next let us show that H is monotone. To this end, fix any
f,g € R such that f < g; then clearly also f1x< gtx.
Since A > 01is such that A || Q]| < 1, it follows from [Krak,
2021, Prop 4.9] that (I + AQ) is a transition matrix. By the
monotonicity of transition matrices [Krak, 2021} Prop 3.32],
we find that therefore

(I +AQ)ftx< (I +AQ)gTx,
which in turn implies that

(I+AG)f = ((I+AQ)ftx)la
< ((I+AQ)gtx)ac = (I +AG)g

From the definition of H we therefore conclude that
H(f) < H(g). Since f,g with f < g are arbitrary, this
concludes the proof of the monotonicity of H.

Now, let us define H : R¥
H(f) = Alse +Tac(I + AQ)f .

We first note that, since A HQH < 1, it follows
from [De Bock, 2017, Prop 5] that (I + AQ) is a lower

transition operator. From the conjugacy of @ and Q, we
have for any f € R? that

—(I+AQ)(=f) =
=f+AQf =

— R¥ forall f € RY as

f+A-=Q(—f)
(I+AQ)f,

which implies that (I + AQ) is the upper transition operator
that is conjugate to the lower transition operator (I + AQ).
By the monotonicity of upper transition operators—see
Section n—thls implies that H is monotone, or in other
words that for all f,g € RY with f < g it holds that
H(f) < H(g).

Let us next show that

H(f) > H(f|ac)tx forall f € RY with f|4 = 0.
(46)
Indeed, if f|4 = 0 then (f|ac)tx= f, and since Q € Q, it

follows from the definitions of @ and G that then

(@ N)lac = (Q Nlac = (Q (flae)Tx)|ac = Gflac.
Hence we have
H(f)|ac = A1+ flac + A(Q f)|ac
> A1+ flac + AG flae = H(f|ac).

Moreover, we immediately have from the definition that

H(f)la = 0 = (H(f]ae)Tx)|a, and so Equation (#6)
indeed holds.

Next, we note that for any f € R¥ itholds that H(f)|4 = 0,
and so by Equation (@6)) we find that

(f)lac)tx -

Provided that also f|4 = 0, then using the previously estab-
lished monotonicity of H we obtain

H(H(f)) > H( (N)lac)tx
H(H(f[ae)Tx |ac)tx

H(f|ac), whence

H(H(f)) = H(H

We clearly have H( f

ae)tx |ae =

ae) = (H*(flas)tx

Indeed, we can repeat this reasoning for n € N steps, to
conclude that

H'(f) = (H"(f

H(f) = H(H(f)) > HH(f

for all f € R with f|4 = 0.
(47)

ae)Tx

Now suppose ex absurdo that there is some non-negative
g € RY, such that g(z) < h(z) for some z € X, and



such that [4g = I 4c + I4-Q g. Since g is non-negative and
E| 4 = 0, we must have that x € A°. Moreover, we clearly
have [ 4g = 0, which implies that g| 4 = 0 and so g = [4¢g.
Hence it follows that Al + I4cAQg = 0, and we find
that H(g) = [ 4cg = g. Hence g is a fixed point of H. Since
gla = 0, and using Equation (@7), this implies that for any
n € Ny we have

g=H"(9) = (H"(glae))x -

Recalling that € A° is such that g(x) < h(z), we use
Equation (#3)) to take limits in n and find that

g(x) > lim H"(g|lac)(x) = h(z) > g(z),

n—-+oo

which is a contradiction. O
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