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A PROOFS AND LEMMAS FOR
SECTION 4

For certain operators, we note that subspace restriction dis-
tributes over operator composition:

Lemma 2. Let M and N be operators on RX such that
N |A = I . Then

(
MN

)
|Ac = M |AcN |Ac .

Proof. Fix any f ∈ RAc

. Then

M |AcN |Acf = M
((

(Nf↑X )|Ac

)
↑X

)
|Ac .

Note that since N |A = I and f↑X (x) = 0 for all x ∈ A,
we also have Nf ↑X (x) = 0 for all x ∈ A. Hence in
particular, it holds that

(
(Nf ↑X )|Ac

)
↑X= Nf ↑X . We

therefore find that

M |AcN |Acf =
(
MNf↑X

)
|Ac = (MN)|Acf ,

which concludes the proof.

This can be used in particular for certain operators associ-
ated with Q ∈ Q and the associated lower- and upper rate
operators:

Lemma 3. Fix any ∆ ≥ 0 and any Q ∈ Q. Then

(I +∆Q)|A = (I +∆Q)|A = (I +∆Q)|A = I .

Proof. Fix any Q ∈ Q, and first choose any f ∈ RX and
x ∈ A. By Assumption 1 and the definition of rate matrices,
we have Q(x, y) = 0 for all y ∈ X , whence Qf(x) =∑

y∈X Q(x, y)f(y) = 0. Since Q ∈ Q is arbitrary, we also
have Qf(x) = 0 and Qf(x) = 0. It follows that

f(x) = (I+∆Q)f(x) = (I+∆Q)f(x) = (I+∆Q)f(x) .

Since this is true for all f ∈ RX and all x ∈ A, the result is
now immediate.

Corollary 3. For all Q ∈ Q and t ∈ R≥0 it holds that

eQt|A = eQt|A = eQt|A = I .

Proof. Use Lemma 3 and the definitions of eQt, eQt, eQt.

Lemma 4. Let M and N be operators on RX such that
M |A = I = N |A. Then ∥M |Ac −N |Ac∥ ≤ ∥M −N∥.

Proof. Fix any f ∈ RAc

with ∥f∥ = 1. Then ∥f↑X ∥ = 1.
Moreover, since f ↑X (x) = 0 for all x ∈ A and since
M |A = I = N |A, we have that (Mf ↑X )(x) = 0 =
(Nf↑X )(x) for all x ∈ A. Hence we find

∥(M |Ac −N |Ac)f∥
=

∥∥((M −N)f↑X
)
|Ac

∥∥
= ∥(M −N)f↑X ∥
≤ sup

{
∥(M −N)g∥ : g ∈ RX , ∥g∥ = 1

}
= ∥M −N∥ .

The result follows since f ∈ RAc

is arbitrary.

Proof of Proposition 5. Fix Q ∈ Q and let G be its sub-
generator. First fix any t ∈ R≥0 and any ϵ > 0. Then by
definition of eQt, for all n ∈ N large enough it holds that∥∥eQt −

(
I + t/nQ

)n∥∥ < ϵ .

Moreover, by Lemmas 2 and 3 we have((
I + t/nQ

)n)|Ac =
(
I + t/nG

)n
,

and, by Corollary 3, that eQt|A = I . Hence by Lemma 4
we find∥∥eGt −

(
I + t/nG

)n∥∥ ≤
∥∥eQt −

(
I + t/nQ

)n∥∥ < ϵ .

Since ϵ > 0 is arbitrary, we have

eGt = lim
n→+∞

(
I + t/nG

)n
.
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This concludes the proof of the first claim.

To see that (eGt)t∈R≥0
is a semigroup, note that (eQt)t∈R≥0

is a semigroup, then apply Lemma 2 and Corollary 3.

Proof of Proposition 6. The proof is completely analogous
to the proof of Proposition 5; simply replace Q with either
Q or Q as appropriate.

Proof of Proposition 7. Let ϵ := minx∈Ac eQtIA(x); then
ϵ > 0 due to Assumption 2. Fix any f ∈ RAc

with ∥f∥ = 1.
By definition, we have eGtf = eQt|Acf =

(
eQtf↑X

)
|Ac .

Let Tt denote the set of transition matrices that dominates
eQt. Due to Proposition 3, there is some T ∈ Tt such
that Tf ↑X= eQtf ↑X . Fix any x ∈ Ac. Then, using that
f↑X (y) = 0 for all y ∈ A, together with the fact that T is
a transition matrix, we have

|Tf↑X (x)| =

∣∣∣∣∣∣
∑
y∈X

T (x, y)f↑X (y)

∣∣∣∣∣∣ ≤
∑
y∈Ac

T (x, y) ,

and hence |Tf↑X (x)| ≤ T IAc(x). We have IA + IAc = 1
and T1(x) = 1 since T is a transition matrix. Using the
linear character of T , we find that

T IAc(x) = T (1− IA)(x) = 1− T IA(x) .

Since T ∈ Tt and x ∈ Ac we have

0 < ϵ = min
y∈Ac

eQtIA(y) ≤ eQtIA(x) ≤ T IA(x) .

Combining the above we find that

|Tf↑X (x)| ≤ T IAc(x) = 1− T IA(x) ≤ 1− ϵ .

Since this is true for all x ∈ Ac, we find that
∥(Tf↑X )|Ac∥ ≤ 1 − ϵ. Moreover, since Tf↑X= eQtf↑X ,
it follows that

∥∥∥(eQtf↑X )|Ac

∥∥∥ ≤ 1− ϵ, or in other words,
that ∥∥∥eGtf

∥∥∥ ≤ 1− ϵ , with ϵ > 0.

The result follows since f ∈ RAc

with ∥f∥ = 1 is arbitrary.

Proof of Lemma 1. Let ρ(eG) := maxλ∈σ(eG) |λ| denote
the spectral radius of eG. We know from Section 4 that∥∥eG∥∥ < 1, and hence we have ρ(eG) ≤

∥∥eG∥∥ < 1 [Taylor
and Lay, 1958, Thm V.3.5]. This implies that |λ| < 1 for all
λ ∈ σ(eG).

By the spectral mapping theorem [Engel and Nagel, 2000,
Lemma I.3.13] we then have eReλ < 1 for all λ ∈ σ(G), or
in other words, that Reλ < 0 for all λ ∈ σ(G).

B PROOFS AND LEMMAS FOR
SECTION 4.1

Proof of Proposition 11. This proof is a straightforward
generalization of an argument in [Engel and Nagel, 2000,
Prop I.3.12].

Let first q :=
∥∥∥eG∥∥∥; then 0 < q < 1 due to Proposition 7.

Define
m := sup

s∈[0,1]

∥∥∥eGs
∥∥∥ .

Then m ≥ 1 since m ≥
∥∥∥eG0

∥∥∥ = ∥I∥ = 1. Moreover,
m ≤ 1 due to Proposition 7, and hence m = 1. Now set
M := 1/q and ξ := − log q; then ξ > 0 since q < 1.

Fix any t ∈ R≥0. If t = 0 then the result is trivial, so let us
suppose that t > 0. Then there are k ∈ N0 and s ∈ [0, 1)
such that t = k+ s. Using the semigroup property, we have∥∥∥eGt

∥∥∥ =
∥∥∥eG(s+k)

∥∥∥ ≤
∥∥∥eGs

∥∥∥∥∥∥eG∥∥∥k ≤ mqk = ek log q .

We have k = t− s and s ∈ [0, 1), and so∥∥∥eGt
∥∥∥ ≤ ek log q

= e(t−s) log q

= et log qe−s log q

= e−ξte−s log q

≤ e−ξte− log q =
1

q
e−ξt = Me−ξt ,

which concludes the proof.

Proof of Proposition 12. It follows from the definition that
for any upper transition operator T and any non-negative
f ∈ RX , also Tf is non-negative. In the sequel, we will
therefore say that upper transition operators preserve non-
negativity. Since eQt is an upper transition operator, this
property clearly extends also to eGt.

Now fix f, g ∈ RAc

and t ∈ R≥0. By preservation of non-
negativity we have for any x ∈ Ac that∣∣∣eGt |f + g|

∣∣∣ (x) = eGt |f + g| (x) .

Moreover, we clearly have |f + g| ≤ |f | + |g|, and so by
the monotonicity of upper transition operators, we have

eGt |f + g| (x) ≤ eGt(|f |+ |g|)(x) .

Finally, by the subadditivity of upper transition operators,
we find that

eGt(|f |+ |g|)(x) ≤ eGt |f | (x) + eGt |g| (x) .



Again by preservation of non-negativity we have

eGt |f | (x) + eGt |g| (x) =
∣∣∣eGt |f | (x) + eGt |g|

∣∣∣ (x) .
Because this is true for all x ∈ Ac, we find that∥∥∥eGt |f + g|

∥∥∥ ≤
∥∥∥eGt |f |+ eGt |g|

∥∥∥
≤

∥∥∥eGt |f |
∥∥∥+

∥∥∥eGt |g|
∥∥∥ .

Multiplying both sides with eξt and noting that t ∈ R≥0 is
arbitrary, we find that

∥f + g∥∗ = sup
t∈R≥0

∥∥∥eξteGt |f + g|
∥∥∥

≤ sup
t∈R≥0

∥∥∥eξteGt |f |
∥∥∥+

∥∥∥eξteGt |g|
∥∥∥

≤ sup
t∈R≥0

∥∥∥eξteGt |f |
∥∥∥+ sup

t∈R≥0

∥∥∥eξteGt |g|
∥∥∥

= ∥f∥∗ + ∥g∥∗ .

Hence we have established that ∥·∥∗ satisfies the triangle
inequality.

Next, fix any f ∈ RAc

and c ∈ R. Then

∥cf∥∗ = sup
t∈R≥0

∥∥∥eξteGt |cf |
∥∥∥

= sup
t∈R≥0

∥∥∥eξteGt |c| |f |
∥∥∥

= |c| sup
t∈R≥0

∥∥∥eξteGt |f |
∥∥∥ = |c| ∥f∥∗ .

So ∥·∥∗ is absolutely homogeneous.

Finally, fix f ∈ RAc

and suppose that ∥f∥∗ = 0. It holds
that

0 = ∥f∥∗ ≥
∥∥∥eξ0eG0 |f |

∥∥∥ ≥ 0 ,

whence it holds that
∥∥∥eξ0eG0 |f |

∥∥∥ = 0. This implies that

also
∥∥∥eG0 |f |

∥∥∥ = 0. Since eG0 = I , we have

0 =
∥∥∥eG0 |f |

∥∥∥ = ∥|f |∥ = ∥f∥ ,

whence f = 0. Hence ∥·∥∗ separates RAc

.

Lemma 5. For any Q ∈ Q with subgenerator G, any f ∈
RAc

, and any t ≥ 0, it holds that
∥∥eGtf

∥∥
∗ ≤

∥∥∥eGtf
∥∥∥
∗
.

Proof. Choose f ∈ RAc

. Let T be any matrix with non-
negative entries. Then |Tf(x)| ≤ |T |f | (x)| for all x ∈ Ac.

In particular, we have

|Tf(x)| =

∣∣∣∣∣∣
∑
y∈Ac

T (x, y)f(y)

∣∣∣∣∣∣
≤

∑
y∈Ac

|T (x, y)| |f(y)|

= T |f | (x) = |T |f | (x)| ,

where the final two equalities follow from the fact that T
only has non-negative entries. Since this is true for any
matrix T with non-negative entries, we have in particular
that

∣∣eGtf
∣∣ (x) ≤ eGt |f | (x). Similarly, it holds that∣∣∣eGtf

∣∣∣ (x) = ∣∣∣∣ sup
T∈Tt

Tf(x)

∣∣∣∣
≤ sup

T∈Tt

|Tf(x)|

≤ sup
T∈Tt

T |f | (x) = eGt |f | (x) .

It follows that, for any s ∈ R≥0, we have

eGs
∣∣eGtf

∣∣ (x) ≤ eGseGt |f | (x) .

Due to preservation of non-negativity, and since this is true
for any x ∈ Ac, we have∥∥∥eGs

∣∣eGtf
∣∣∥∥∥ ≤

∥∥∥eGseGt |f |
∥∥∥ .

Now let f ∈ RAc

be such that ∥f∥∗ = 1 and∥∥eGt
∥∥
∗ =

∥∥eGtf
∥∥
∗; this f clearly exists since RAc

is finite-
dimensional. Then we have∥∥eGt

∥∥
∗ =

∥∥eGtf
∥∥
∗

= sup
s∈R≥0

∥∥∥eξseGs
∣∣eGtf

∣∣∥∥∥
≤ sup

s∈R≥0

∥∥∥eξseGseGt |f |
∥∥∥ =

∥∥eGt |f |
∥∥
∗ ≤

∥∥eGt
∥∥
∗ ,

where the final inequality used that ∥|f |∥∗ = ∥f∥∗ = 1.
Hence we have found that

∥∥eGt
∥∥
∗ =

∥∥eGt |f |
∥∥
∗.

Since eQt ∈ Tt by Equation (7), we also have

eGt |f | ≤ eGt |f | .

By monotonicity of upper transition operators, this implies
that

eGseGt |f | ≤ eGseGt |f |

and, due to the preservation of non-negativity, we have

eGseGt |f | =
∣∣∣eGseGt |f |

∣∣∣ ,
and

eGseGt |f | =
∣∣∣eGseGt |f |

∣∣∣ .



Hence for all x ∈ Ac we have∣∣∣eGseGt |f |
∣∣∣ (x) ≤ ∣∣∣eGseGt |f |

∣∣∣ (x) ,
or in other words, that∥∥∥eGseGt |f |

∥∥∥ ≤
∥∥∥eGseGt |f |

∥∥∥ .

Since this holds for all s ∈ R≥0, we have∥∥eGt
∥∥
∗ =

∥∥eGt |f |
∥∥
∗ = sup

s∈R≥0

∥∥∥eξseGseGt |f |
∥∥∥

≤ sup
s∈R≥0

∥∥∥eξseGseGt |f |
∥∥∥

=
∥∥∥eGt |f |

∥∥∥
∗
≤

∥∥∥eGt
∥∥∥
∗
,

which concludes the proof.

Proof of Proposition 13. The argument is analogous to the
well-known case for linear quasicontractive semigroups; for
a similar result, see e.g. [Renardy and Rogers, 2006, Thm
12.21]. So, fix any t ∈ R≥0 and f ∈ RAc

.

Using a similar argument as used in the proof of Lemma 5,
we use the preservation of non-negativity and the monotonic-
ity of upper transition operators, to find for any s ∈ R≥0

that ∥∥∥eξseGs
∣∣∣eGtf

∣∣∣∥∥∥ ≤
∥∥∥eξseGseGt |f |

∥∥∥ .

Hence we have∥∥∥eGtf
∥∥∥
∗
= sup

s∈R≥0

∥∥∥eξseGs
∣∣∣eGtf

∣∣∣∥∥∥
≤ sup

s∈R≥0

∥∥∥eξseGseGt |f |
∥∥∥

= e−ξteξt sup
s∈R≥0

∥∥∥eξseG(s+t) |f |
∥∥∥

= e−ξt sup
s∈R≥0

∥∥∥eξ(s+t)eG(s+t) |f |
∥∥∥

= e−ξt sup
s∈R≥t

∥∥∥eξ(s)eGs |f |
∥∥∥ ≤ e−ξt ∥f∥∗ ,

where for the second equality we used the semigroup prop-
erty. Since f ∈ RAc

is arbitrary, this implies that∥∥∥eGt
∥∥∥
∗
= sup

{∥∥∥eGtf
∥∥∥
∗
: f ∈ RAc

, ∥f∥∗ = 1
}
≤ e−ξt ,

which completes the proof.

Proof of Proposition 14. This is immediate from Lemma 5
and Proposition 13.

C PROOFS AND LEMMAS FOR
SECTION 5

The following result is well-known, but we state it here for
convenience:

Lemma 6. Let T be a linear bounded operator on a Banach
space with norm ∥·∥∗. Suppose that ∥T∥∗ < 1 and that
(I − T )−1 exists. Then∥∥(I − T )−1

∥∥
∗ ≤ 1

1− ∥T∥∗
.

Proof. Since ∥T∥∗ < 1 we have (I − T )−1 =
∑+∞

k=0 T
k.

Taking norms,

∥∥(I − T )−1
∥∥
∗ =

∥∥∥∥∥
+∞∑
k=0

T k

∥∥∥∥∥
∗

≤
+∞∑
k=0

∥T∥k∗ =
1

1− ∥T∥∗
,

where the final step used the value of the geometric series
and that ∥T∥∗ < 1.

Lemma 7. There is some C > 0 such that for any ∆ > 0
with ∆ξ < 1, and any Q ∈ Q with subgenerator G, it holds
that

∥∥(I − eG∆)−1
∥∥ < C/∆.

Proof. Let ξ > 0 be as in Proposition 11, and let ∥·∥∗ be the
norm from Equation (8). Since RAc

is finite-dimensional
the norms ∥·∥ and ∥·∥∗ are equivalent, and hence there is
some c > 0 such that ∥f∥ ≤ c ∥f∥∗ for all f ∈ RAc

. Set
C := 2c/ξ; then C > 0 since ξ > 0.

Fix any ∆ > 0 such that ∆ξ < 1, and any Q ∈ Q
with subgenerator G. It follows from Proposition 14 that∥∥eG∆

∥∥
∗ ≤ e−ξ∆. Using a standard quadratic bound on the

negative scalar exponential, we have∥∥eG∆
∥∥
∗ ≤ e−ξ∆ ≤ 1− ξ∆+

1

2
∆2ξ2 < 1− ∆ξ

2
< 1 ,

(14)
where the third inequality used that ∆ξ < 1. Notice that∥∥eG∆

∥∥
∗ ≤ e−ξ∆ < 1. Moreover, (I − eG∆)−1 exists by

Proposition 8. By the norm equivalence, we have∥∥(I − eG∆)−1
∥∥ ≤ c

∥∥(I − eG∆)−1
∥∥
∗ , (15)

and, by Lemma 6, that∥∥(I − eG∆)−1
∥∥
∗ ≤ 1

1− ∥eG∆∥∗
.

Using Equation (14) we obtain∥∥(I − eG∆)−1
∥∥
∗ ≤ 1

1− ∥eG∆∥∗
<

1

1− 1 + ∆ξ
2

=
1

∆

2

ξ
.

Combining with Equation (15) yields∥∥(I − eG∆)−1
∥∥ < c

1

∆

2

ξ
=

C

∆
,

which concludes the proof.



Proof of Proposition 15. Let ξ, C > 0 be as in Lemma 7,
and let δ := 1/ξ and L := C ∥Q∥2 with ∥Q∥ :=
supQ∈Q ∥Q∥; note that ∥Q∥ ∈ R≥0 since Q is bounded
by assumption. Observe that we must have ∥Q∥ > 0 due to
Assumption 2, whence L > 0.

Choose any ∆ ∈ (0, δ) and Q ∈ Q. It is immediate from
the definitions that hQ(x) = 0 = hQ

∆(x) for all x ∈ A and
all Q ∈ Q, so it remains to bound the norm on Ac.

Let G be the subgenerator of Q on Ac. By Proposition 9 we
have that hQ

∆|Ac = (I − eG∆)−1∆1. Using the definition
of hQ this implies that

hQ
∆|Ac − eG∆hQ

∆|Ac = ∆1 = −∆GhQ|Ac .

Re-ordering terms we have

hQ
∆|Ac = eG∆hQ

∆|Ac −∆GhQ|Ac .

Let B = eG∆ − (I +∆G). We find that

hQ
∆|Ac − hQ|Ac

= eG∆hQ
∆|Ac −∆GhQ|Ac − hQ|Ac

= eG∆hQ
∆|Ac − (I +∆G)hQ|Ac

= eG∆(hQ
∆|Ac − hQ|Ac) +

(
eG∆ − (I +∆G)

)
hQ|Ac

= eG∆(hQ
∆|Ac − hQ|Ac) +BhQ|Ac .

We see that the difference on the left-hand side occurs again
on the right-hand side. Hence we can substitute the same
expansion n ∈ N times to get

hQ
∆|Ac − hQ|Ac

= eG∆(n+1)(hQ
∆|Ac − hQ|Ac) +

n∑
k=0

eG∆kBhQ|Ac .

Since we know from Section 4 that limt→+∞ eGt = 0, we
see that the left summand vanishes as we take n → +∞ and,
using Proposition 8, we have (I − eQ∆)−1 =

∑+∞
k=0 e

G∆k.
So, passing to this limit and taking norms, we find∥∥∥hQ

∆|Ac − hQ|Ac

∥∥∥ =
∥∥(I − eG∆)−1BhQ|Ac

∥∥
≤

∥∥(I − eG∆)−1
∥∥ ∥B∥

∥∥hQ|Ac

∥∥ .

Using Lemmas 3 and 4 and Corollary 3, we have

∥B∥ =
∥∥eG∆ − (I +∆G)

∥∥ ≤
∥∥eQ∆ − (I +∆Q)

∥∥ ,

and so, due to [Krak, 2021, Lemma B.8], we have ∥B∥ ≤
∆2 ∥Q∥2. Since Q ∈ Q it follows that ∥Q∥ ≤ ∥Q∥, and so
∥B∥ ≤ ∆2 ∥Q∥2. Since ∆ < δ we have ∆ξ < 1, whence∥∥(I − eG∆)−1

∥∥ < C/∆ due to Lemma 7. In summary we
find∥∥∥hQ

∆|Ac − hQ|Ac

∥∥∥ <
C

∆
∆2 ∥Q∥2

∥∥hQ|Ac

∥∥ = ∆L
∥∥hQ

∥∥ ,

which concludes the proof.

Proposition 17. [Krak, 2020, Prop 7] Fix any ∆ > 0, and
let T∆ denote the set of transition matrices that dominate
eQ∆. Choose any T0 ∈ T∆. For all n ∈ N0, let hn be the
(unique) non-negative solution to hn = ∆IAc + IAcTnhn,
and let Tn+1 ∈ T∆ be such that Tn+1hn = eQ∆hn.

Then limn→+∞ hn = h∆.

Proof. The preconditions of the reference actually require
every Tn to be an extreme point of T∆, but inspection of the
proof of [Krak, 2020, Prop 7] shows that this is not required;
the superfluous condition is only used to streamline the
statement of an algorithmic result further on in that work.

We next need some results that involve transition matri-
ces PT s

t corresponding to (not-necessarily homogeneous)
Markov chains P ∈ PM

Q . We recall from Section 2.2 that
these are defined for any t, s ∈ R≥0 with t ≤ s as

PT s
t (x, y) := P (Xs = y |Xt = x) for all x, y ∈ X .

Lemma 8. Consider the sequence (hn)n∈N0
constructed as

in Proposition 17. For any n ∈ N0, there is a Markov chain
Pn+1 ∈ PM

Q with corresponding transition matrix (n+1)T∆
0

such that (n+1)T∆
0 hn = eQ∆hn.

Hence in particular, we can choose the co-sequence
(Tn)n∈N in Proposition 17 to be ((n)T∆

0 )n∈N.

Proof. This follows from [Krak, 2021, Cor 6.24] and the
fact that Q is non-empty, compact, convex, and has sepa-
rately specified rows.

Proposition 18. For all ∆ > 0 there is a Markov chain
P ∈ PM

Q with corresponding transition matrix T = PT∆
0 ,

such that the unique solution h to h = ∆IAc + IAcTh
satisfies h = h∆.

Proof. Let T M
∆ := {PT∆

0 : P ∈ PM
Q }, and let (hn)∈N be

as in Proposition 17, with the co-sequence (Tn)n∈N chosen
as in Lemma 8 to consist of transition matrices correspond-
ing to Markov chains in PM

Q . Then (Tn)n∈N lives in T M
∆ .

The set T M
∆ is compact by [Krak, 2021, Cor 5.18] and the

fact that Q is non-empty, compact, and convex. Hence we
can find a subsequence (Tnj )j∈N with limj→+∞ Tnj =:
T ∈ T M

∆ . Since T ∈ T M
∆ , there is a Markov chain P ∈ PM

Q
with corresponding transition matrix T = PT∆

0 .

Moreover, since T, Tnj ∈ T M
∆ , it follows from [Krak,

2021, Cor 6.24] that the transition matrices T and all
Tnj

dominate the lower transition operator eQ∆. Together
with Assumption 2, this allows us to invoke [Krak, 2020,
Prop 6], by which we can let h be the unique solution
to h = ∆IAc + IAcTh, and it holds for any j ∈ N that
hnj |A = 0, and

hnj
|Ac = (I − Tnj

|Ac)−11∆ .



Similarly, it holds that h|A = 0, and

h|Ac = (I − T |Ac)−11∆ .

Since limh→+∞ Tnj
= T and by continuity of the map

M 7→ (I − M)−1—which holds since all these inverses
exist—it follows that h|Ac = limj→+∞ hnj |Ac . Since also
h|A = hnj |A, it follows that limj→+∞ hnj = h.

By Proposition 17 we have limn→+∞ hn = h∆, and hence
we conclude that h∆ = limj→+∞ hnj = h.

Proposition 19. Fix any t ≥ 0 and consider any Markov
chain P ∈ PM

Q with transition matrix PT t
0 . Choose any

ϵ > 0. Then there is some m ∈ N such that for all n ≥ m
there are Q1, . . . , Qn ∈ Q, such that∥∥∥∥∥PT t

0 −
n∏

i=1

(I + t/nQi)

∥∥∥∥∥ < ϵ .

Proof. The result is trivial if t = 0, so let us consider the
case where t > 0. Let ϵ′ := ϵ/2t. By [Krak, 2021, Lemma
5.12] there is some m ∈ N such that for all n ≥ m and with
∆ := t/n, for all i = 1, . . . , n there is some Qi ∈ Q such
that ∥∥∥PT i∆

(i−1)∆ − (I +∆Qi)
∥∥∥ ≤ ∆ϵ′ .

Since P is a Markov chain, we can factor its transition
matrices [Krak, 2021, Prop 5.1] as

PT t
0 = PT∆

0
PT 2∆

∆ · · · PT t
t−∆ =

n∏
i=1

PT i∆
(i−1)∆ .

Using [Krak, 2021, Lemma B.5] for the first inequality, we
have ∥∥∥∥∥PT t

0 −
n∏

i=1

(I +∆Qi)

∥∥∥∥∥
=

∥∥∥∥∥
n∏

i=1

PT i∆
(i−1)∆ −

n∏
i=1

(I +∆Qi)

∥∥∥∥∥
≤

n∑
i=1

∥∥∥PT i∆
(i−1)∆ − (I +∆Qi)

∥∥∥
≤

n∑
i=1

∆ϵ′ = n
t

n

ϵ

2t
=

ϵ

2
,

which concludes the proof.

Lemma 9. Consider a sequence (Qn)n∈N in Q with limit
Q∗ := limn→+∞ Qn. For all n ∈ N, let hn denote the min-
imal non-negative solution to IAhn = IAc + IAcQnhn,
and let h∗ denote the minimal non-negative solution to
IAh∗ = IAc + IAcQ∗h∗. Then h∗ = limn→+∞ hn.

Proof. Since Q is closed, we have Q∗ ∈ Q. Let (Gn)n∈N
and G∗ denote the subgenerators of (Qn)n∈N and Q∗, re-
spectively. Then G−1

∗ and G−1
n , n ∈ N exist by Corollary 1,

and hence we also have limn→+∞ G−1
n = G−1

∗ . Right-
multiplying with −1 and applying Proposition 10 gives

lim
n→+∞

hn|Ac = lim
n→+∞

−G−1
n 1 = −G−1

∗ 1 = h∗|Ac .

Finally, by definition we trivially have hn(x) = 0 = h∗(x)
for all x ∈ A. Hence also limn→+∞ hn|A = h∗|A.

Lemma 10. [Krak et al., 2019, Cor 13] Fix any ∆ > 0
and let h∆ be the minimal non-negative solution to the
non-linear system (12). Let T∆ denote the set of transition
matrices that dominate eQ∆ and, for all T ∈ T∆, let hT de-
note the minimal non-negative solution to the linear system
hT = ∆IAc + IAcThT . Then it holds that

h∆ = inf
T∈T∆

hT .

Proof of Proposition 16. We only give the proof for the
lower hitting times, i.e. that lim∆→0+ ∥h∆ − h∥ = 0. The
argument for the upper hitting times is completely analo-
gous.

Choose any two sequences (∆n)n∈N and (ϵn)n∈N in R>0

such that limn→+∞ ∆n = 0 and limn→+∞ ϵn = 0. We
will assume without loss of generality that ∆n ∥Q∥ ≤ 1 for
all n ∈ N, where ∥Q∥ = supQ∈Q ∥Q∥.

Now first fix any n ∈ N, and consider h∆n
. By Proposi-

tion 18 there is a Markov chain Pn ∈ PM
Q with transition

matrix Tn := PnT∆n
0 such that the unique solution hn to

hn = ∆nIAc + IAcTnhn satisfies hn = h∆n
.

By Proposition 19, there are mn ∈ N with mn ≥ n and
Q

(n)
1 , . . . , Q

(n)
mn in Q such that, with

Φn :=

mn∏
i=1

(
I +

∆n

mn
Q

(n)
i

)
,

it holds that ∥Tn − Φn∥ < ϵn. Now define

Qn :=

mn∑
i=1

1

mn
Q

(n)
i .

Then Qn ∈ Q since Q is convex. Let hQn
denote the mini-

mal non-negative solution to IAhQn
= IAc + IAcQnhQn

.

By repeating this construction for all n ∈ N, we obtain
a sequence (Qn)n∈N in Q. Since Q is (sequentially) com-
pact, we can consider a subsequence (Qnj

)j∈N such that
limj→+∞ Qnj =: Q∗ ∈ Q.

Let h∗ be the minimal non-negative solution to IAh∗ =
IAc+IAcQ∗h∗. We now need to estimate some norm bounds
that hold by choosing j large enough. Let K = 5 and fix
any δ > 0.

Since (Qnj )j∈N converges to Q∗, it follows from Lemma 9
that for j large enough, we have∥∥∥hQnj

− h∗

∥∥∥ <
δ

K
(16)



Since h∗ is bounded, this also implies that the sequence
(hQnj

)j∈N is eventually uniformly bounded above in norm
by some constant M ≥ 0, say.

For all j ∈ N, let ĥnj be such that ĥnj |Ac := (I −
eGnj

∆nj )−1∆nj1 and ĥnj |A := 0. Then

ĥnj = ∆nj IAc + IAceQnj
∆nj ĥnj .

For j large enough we eventually have ∆njξ < 1, and so
by Proposition 15, we then have∥∥∥ĥnj − hQnj

∥∥∥ < ∆njL
∥∥∥hQnj

∥∥∥
≤ ∆nj

LM ,

with L,M independent of j. Hence for j large enough we
have ∥∥∥ĥnj

− hQnj

∥∥∥ <
δ

K
. (17)

Let next h̃nj
be the minimal non-negative solution to h̃nj

=

∆nj IAc + IAcΦnj h̃nj . Since mnj ≥ nj , for j large enough
we have

∥∥Φnj |Ac

∥∥ < 1 due to Assumption 2.

By [Krak, 2021, Lemmas B.8 and B.12] we have∥∥∥Φnj
− eQnj

∆nj

∥∥∥ ≤ 2∆2
nj

∥Q∥2 ,

and so, for any ϵ > 0, we can choose j large enough so that
eventually

∥∥∥Φnj
− eQnj

∆nj

∥∥∥ < ϵ. Using the continuity of

the map T 7→ (I − T )−1 on operators T for which this
inverse exists, for large enough j we therefore find that∥∥∥h̃nj

|Ac − ĥnj
|Ac

∥∥∥
=

∥∥∥((I − Φnj
|Ac)−1 − (I − eQnj

∆nj |Ac)−1
)
∆nj

1
∥∥∥

< ∆nj

δ

K
≤ δ

K
.

Since h̃nj |A = 0 = ĥnj |A, this implies that then also∥∥∥h̃nj
− ĥnj

∥∥∥ <
δ

K
. (18)

Next, we recall that h∆nj
= hnj

, and∥∥Tnj
− Φnj

∥∥ < ϵnj
.

Hence by continuity of the map T 7→ (I−T )−1 on operators
T for which this inverse exists, for large enough j we find
that ∥∥∥hnj |Ac − h̃nj |Ac

∥∥∥
=

∥∥((I − Tnj
|Ac)−1 − (I − Φnj

|Ac)−1
)
∆nj

1
∥∥

< ∆nj

δ

K
≤ δ

K
.

Since hnj |A = 0 = h̃nj |A, this implies that also∥∥∥hnj − h̃nj

∥∥∥ <
δ

K
. (19)

Putting Equations (16)–(19) together, we find that for any
large enough j it holds that∥∥∥h∆nj

− h∗

∥∥∥ =
∥∥hnj − h∗

∥∥
≤

∥∥∥hnj − h̃nj

∥∥∥
+

∥∥∥h̃nj − ĥnj

∥∥∥
+

∥∥∥ĥnj − hQnj

∥∥∥
+

∥∥∥hQnj
− h∗

∥∥∥
< 4

δ

K
. (20)

Since δ > 0 is arbitrary this clearly implies that

lim
j→+∞

h∆nj
= h∗ . (21)

Next, let us show that h∗ = h. To this end, assume ex
absurdo that there is some Q ∈ Q such that hQ(x) < h∗(x)
for some x ∈ Ac. Let δ := h∗(x) − hQ(x) > 0. Due to
Corollary 2, for any ∆ > 0 small enough it holds that∥∥∥hQ

∆ − hQ
∥∥∥ <

δ

K
.

This implies in particular that for large enough j it holds
that hQ

∆nj
(x) < hQ(x) + δ/K. Moreover, it follows from

Equation (20) that for large enough j we have h∆nj
(x) >

h∗(x)− 4δ/K. It holds that hQ(x) = h∗(x)− δ, and hence,
since K = 5, we find that that for large enough j,

hQ
∆nj

(x) < hQ(x) + δ/K

= h∗(x)− δ + δ/K

= h∗(x)−K
δ

K
+ δ/K

= h∗(x)− (K − 1)
δ

K

= h∗(x)− 4
δ

K
< h∆nj

(x) .

In other words, and using Lemma 10, we then have

hQ
∆nj

(x) < h∆nj
(x) = inf

T∈T∆nj

hT (x) ≤ hQ
∆nj

(x) ,

where the last step used that eQ∆nj ∈ T∆nj
. From this

contradiction we conclude that our earlier assumption must
be wrong, and so it holds that h∗(x) ≤ hQ(x) for all x ∈ X
and Q ∈ Q. This implies that h∗ ≤ h. Since it clearly also
holds that h ≤ h∗ because Q∗ ∈ Q, this implies that, indeed
as claimed, h∗ = h.



In summary, at this point we have shown that for any se-
quence (∆n)n∈N in R>0 with limn→+∞ ∆n = 0, there is
a subsequence such that limj→+∞ h∆nj

= h.

So, finally, suppose ex absurdo that lim∆→0+ h∆ ̸= h.
Then there is some sequence (∆n)n∈N in R>0 such
that limn→+∞ ∆n = 0, and some ϵ > 0, such that∥∥h∆n

− h
∥∥ ≥ ϵ for all n ∈ N. By the above result, there

is a subsequence such that limj→+∞ h∆nj
= h, which is a

contradiction.

Proof of Theorem 1. The crucial approach of this proof is to
emulate Erreygers [2021, Sec 6.3] and consider discretized
and truncated hitting times. By taking appropriate limits
of such approximations, we then recover the “real” hitting
times. We however need to be a bit careful with these con-
structions, since lower (and upper) expectation operators
for continuous-time imprecise-Markov chains are not neces-
sarily continuous with respect to arbitrary limits of such
approximations [Erreygers, 2021, Chap 5]. This—fairly
long—proof is therefore roughly divided into two parts;
first, we construct a specific sequence of approximations,
and establish the relevant continuity properties with respect
to this sequence. Then, in the second part of this proof,
we use this continuity to establish the main claim of this
theorem.

To this end, for any t ∈ R≥0 and ∆ ∈ R>0, we first consider
a fixed-step grid νt∆ over [0, t] with step-size ∆, as

νt∆ :=
{
i∆ : i ∈ N0, i∆ ≤ t

}
. (22)

We define the associated approximate hitting time functions
τ t∆ : ΩR≥0

→ R for all ω ∈ ΩR≥0
as

τ t∆(ω) := min
({

s ∈ νt∆ : ω(s) ∈ A} ∪ {t}
)
. (23)

Then by [Erreygers, 2021, Lemma 6.19], as we take the
time-horizon t to infinity and the step-size ∆ to zero, we
have the point-wise limit to the actual hitting time function
τR≥0

, in that

τR≥0
(ω) = lim

t→+∞,∆→0+
τ t∆(ω) for all ω ∈ ΩR≥0

. (24)

Let us now construct a specific sequence of approximate
hitting time functions that will converge to this limit. To
this end, first fix an arbitrary sequence (ϵn)n∈N0

in R>0

such that limn→+∞ ϵn = 0. Moreover, for any n ∈ N0, we
introduce the (discrete-time) truncated hitting time τ0:n :
ΩN0

→ R, defined for all ω ∈ ΩN0
as

τ0:n(ω) := min
({

t ∈ {0, . . . , n} : ω(t) ∈ A
}
∪ {n}

)
.

Now fix any k ∈ N0, let ∆k := 2−k, and let Tk denote the
set of transition matrices that dominate eQ∆k . We now con-
sider discrete-time imprecise-Markov chains parameterized

by Tk. As discussed in [Krak et al., 2019], for all n ∈ N0

there are functions1 EV
Tk
[τ0:n |X0] and EV

Tk
[τ0:n |X0] in RX

such that

EV
Tk
[τ0:n |X0] ≤ EI

Tk
[τ0:n |X0]

≤ EI

Tk
[τ0:n |X0] ≤ EV

Tk
[τ0:n |X0]

that, moreover, satisfy

lim
n→+∞

EV
Tk
[τ0:n |X0] = EV

Tk
[τN0

|X0] = EHM
Tk

[τN0
|X0]

and

lim
n→+∞

EV

Tk
[τ0:n |X0] = EV

Tk
[τN0

|X0] = EHM

Tk
[τN0

|X0] .

We already noted in Section 5 that the functions h∆k
and

h∆k
from Equations (12) and (13) satisfy

h∆k
= ∆kE

HM

Tk
[τN0

|X0] and h∆k
= ∆kE

HM

Tk
[τN0

|X0] .

Combining the above, we find that

lim
n→+∞

∆kEV
Tk
[τ0:n |X0] = h∆k

and
lim

n→+∞
∆kE

V

Tk
[τ0:n |X0] = h∆k

.

Hence for all k ∈ N0, we can now choose tk ∈ N0 large
enough such that tk ≥ k, and so that with nk = 2ktk we
have both ∥∥∥∆kEV

Tk
[τ0:nk

|X0]− h∆k

∥∥∥ < ϵk , (25)

and ∥∥∥∆kE
V

Tk
[τ0:nk

|X0]− h∆k

∥∥∥ < ϵk . (26)

With these selections, we now define the sequence (τk)k∈N0

of approximate hitting times as τk := τ tk∆k
for all k ∈ N0.

Clearly we have limk→+∞ ∆k = 0, and since tk ≥ k we
also find that limk→+∞ tk = +∞. Hence by Equation (24)
we have the pointwise limit

τR≥0
(ω) = lim

k→+∞
τk(ω) for all ω ∈ ΩR≥0

. (27)

Having constructed this specific sequence that converges to
the “true” hitting time function, we will now demonstrate
the relevant continuity properties of the lower- and upper
expectations of interest, with respect to this sequence.

To this end, we define τ̂ : ΩR≥0
→ R ∪ {+∞} as

τ̂(ω) := sup
t∈N0

sup
n∈N0

τ t∆n
(ω) for all ω ∈ ΩR≥0

. (28)

1These represent lower and an upper expectations with respect
to a game-theoretic imprecise-Markov chain, but the details don’t
concern us here.



Then for all k ∈ N0 we have τk(ω) = τ tk∆k
(ω) ≤ τ̂(ω) for

all ω ∈ ΩR≥0
. Moreover, since every τk is non-negative,

it holds in fact that |τk(ω)| ≤ τ̂(ω) for all k ∈ N0 and
ω ∈ ΩR≥0

. This means that if we can show that the upper
expectation EI

Q[τ̂ |X0 = x] is bounded for all x ∈ X ,
then we can use the imprecise version of the dominated
convergence theorem [Erreygers, 2021, Thm 5.32] to take
lower- and upper expectations of the limit in Equation (27).
So, we will now show that this boundedness indeed holds.

We note that, for fixed t ∈ N0, τ t∆n
is monotonically de-

creasing as we increase n ∈ N0. To see this, first consider
the grids νt∆n

and νt∆n+1
over [0, t]. For any s ∈ νt∆n

there
is some i ∈ N0 such that s = i∆n, and since ∆n = 2−n =
2∆n+1, we find that also s = 2i∆n+1 ∈ νt∆n+1

. Hence we
conclude that νt∆n

⊆ νt∆n+1
. From this set inclusion, we

also clearly have for any ω ∈ ΩR≥0
that

{s ∈ νt∆n
: ω(s) ∈ A} ⊆ {s ∈ νt∆n+1

: ω(s) ∈ A} ,

and so together with the fact that s ≤ t for all s ∈ νt∆n+1
, it

then follows from Equation (23) that τ t∆n
(ω) ≥ τ t∆n+1

(ω).

Using this observation, we immediately find that for any
t ∈ N0 and ω ∈ ΩR≥0

it holds that

sup
n∈N0

τ t∆n
(ω) = τ t∆0

(ω) = τ t1(ω) ,

and so from Equation (28), we have

τ̂(ω) = sup
t∈N0

τ t1(ω) .

Next, we observe that τ t1 is monotonically increasing as
we increase t ∈ N0. Indeed, for any t ∈ N0 the grid νt1
over [0, t] simply constitutes the set νt1 = {0, . . . , t}. Hence
that τ t1 is monotonically increasing as we increase t ∈ N0,
follows immediately from Equation (23). In particular, this
implies that the sequence (τ t1)t∈N0

converges monotonically
to τ̂ . Moreover, we have τ01 (ω) = 0 for all ω ∈ ΩR≥0

, and
so we find that identically

EI
Q[τ

0
1 |X0] = inf

P∈PI
Q

EP [τ
0
1 |X0] = 0 .

Hence by the continuity of upper expectations with respect
to monotonically increasing convergent sequences of func-
tions that are bounded below [Erreygers, 2021, Thm 5.31],
we have

EI

Q[τ̂ |X0] = lim
t→+∞,t∈N0

EI

Q[τ
t
1 |X0] . (29)

Now, for every t ∈ N0, τ t1 only depends on finitely many
time-points; indeed, τ t1(ω) only depends on the value of
ω(s) for s ∈ {0, . . . , t}. Using [Krak, 2021, Thm 7.2],
this means that the lower- and upper expectations of these
functions with respect to the imprecise-Markov chain PI

Q,

can also be expressed as lower (resp. upper) expectations
of this function with respect to an induced discrete-time
imprecise-Markov chain. Indeed, since the step-size used
in these approximating functions is uniformly equal to one,
and using the obvious correspondence between τ t1 and τ0:t,
it is not difficult to see that

EI

Q[τ
t
1 |X0] = EI

T [τ0:t |X0] for all t ∈ N0, (30)

where T is the set of transition matrices that dominates eQ.

We now again invoke the previously mentioned results
from [Krak et al., 2019]; for any t ∈ N0, there is a function
EV

T [τ0:t |X0] ∈ RX that satisfies

EI

T [τ0:t |X0] ≤ EV

T [τ0:t |X0] . (31)

Combining Equations (29), (30), and (31), and using [Krak
et al., 2019, Prop 7] to establish the limit on the final right-
hand side, we have

EI

Q[τ̂ |X0] = lim
t→+∞,t∈N0

EI

Q[τ
t
1 |X0]

= lim
t→+∞,t∈N0

EI

T [τ0:t |X0]

≤ lim
t→+∞,t∈N0

EV

T [τ0:t |X0] = EV

T [τN0 |X0] .

By [Krak et al., 2019, Thm 12] it holds that

EV

T [τN0
|X0] = EHM

T [τN0
|X0] ,

and, moreover, that there is some homogeneous discrete-
time Markov chain P ∈ PHM

T with associated transition
matrix T = PT ∈ T and hitting times h = EP [τN0 |X0]

such that h = EHM

T [τN0 |X0]. Putting this together, we find
that

EI

Q[τ̂ |X0 = x] ≤ h(x) for all x ∈ X . (32)

By Proposition 1, h is also the minimal non-negative solu-
tion to the system

h = IAc + IAcTh . (33)

It is immediate from the definition that h|A = 0, and since
τ̂ is clearly non-negative, we obtain from Equation (32) that
for all x ∈ A we have

0 ≤ EI

Q[τ̂ |X0 = x] ≤ h(x) = 0 ,

or in other words, that EI

Q[τ̂ |X0 = x] = 0 for all x ∈ A.
So, it remains to bound this upper expectation on Ac.

By our Assumption 2, it holds for all x ∈ Ac that
eQIA(x) > 0. Since eQ is the lower transition operator
corresponding to T due to Proposition 3, it follows that eQ

satisfies conditions C1–C3 and R1 from Reference [Krak,
2020]. We now recall that T = PT ∈ T . Since the precon-
ditions C1–C3 and R1 of this reference are all satisfied, we



can now invoke [Krak, 2020, Lemma 10], which states that
the inverse operator (I − T |Ac)−1 exists.

We note that h|A = 0, and so h = (h|Ac)↑X . Hence in par-
ticular, we have T |Ach|Ac = (Th)|Ac . From Equation (33),
we now find that

h|Ac = 1+ (Th)|Ac = 1+ T |Ach|Ac ,

and so re-ordering terms, we have (I − T |Ac)h|Ac = 1. Us-
ing the existence of the inverse operator established above,
we obtain

h|Ac = (I − T |Ac)−11 .

Since (I − T |Ac) is an invertible bounded linear operator,
also clearly (I − T |Ac)−1 is bounded. Hence we have

∥h|Ac∥ =
∥∥(I − T |Ac)−11

∥∥ ≤
∥∥(I − T |Ac)−1

∥∥ < +∞ .

From Equation (32) we find that EI

Q[τ̂ |X0 = x] < +∞
for all x ∈ Ac. In summary, at this point we have shown
that EI

Q[τ̂ |X0 = x] is bounded for all x ∈ X . Since we
already established that τ̂ absolutely dominates the sequence
(τk)k∈N0 , we can now finally use the limit (27) and the
dominated convergence theorem [Erreygers, 2021, Thm
5.32] to establish that

lim sup
k→+∞

EI
Q[τk |X0] ≤ EI

Q[τR≥0
|X0] , (34)

and
EI

Q[τR≥0
|X0] ≤ lim inf

k→+∞
EI

Q[τk |X0] . (35)

This concludes the first part of this proof. Our next step will
be to identify the limits superior and inferior in the above
inequalities as corresponding to, respectively, h and h.

Let us start by obtaining the required result for the lower
expectation. From the definition of the limit superior, there
is a convergent subsequence such that

s := lim
j→+∞

EI
Q[τkj

|X0] = lim sup
k→+∞

EI
Q[τk |X0] . (36)

Now fix any j ∈ N0, and consider the approximate function
τkj = τ tkj

∆kj
. As before, this function really only depends on

the system at finitely many time points; specifically, those on
the grid νtkj

∆kj
over [0, tkj

]. We can therefore again use [Krak,
2021, Thm 7.2], to express the lower- and upper expecta-
tions of this function with respect to the imprecise-Markov
chain PI

Q, as lower- and upper expectations of a function
with respect to an induced discrete-time imprecise-Markov
chain. Since the step size of this grid is now equal to ∆kj

rather than one, this requires a bit more effort than before.
In particular, we now need to compensate for the step-size
∆kj

of the grid. Indeed, the corresponding discrete-time
imprecise-Markov chain should consider steps that are im-
plicitly of this “length”, so we consider the model induced
by the set Tkj

of transition matrices that dominate eQ∆kj . It

then remains to find an appropriate translation τ̃kj of τkj to
the domain ΩN0 .

As a first observation, we note that this “translation” τ̃kj :
ΩN0 → R should depend on the same number of time points
as τkj

. We note that since tk ∈ N0 it holds that tk ∈ νtkj
∆kj

.
Hence it follows from Equation (22) that νtkj

∆kj
contains ex-

actly ∆−1
kj

tkj
= 2kj tkj

= nkj
time points, in addition to

the origin 0, and that τkj
depends exactly on these time

points. Indeed, inspection of Equation (23) reveals that, by
re-scaling to compensate for the step size ∆kj , the quantity
∆−1

kj
τkj

(ω) simply represents the natural index of the dis-
crete grid element of νtkj

∆kj
on which ω ∈ ΩR≥0

did (or did
not) initially hit A. Adapting Equation (23), we therefore
define for any ω ∈ ΩN0 that

τ̃kj
(ω) := min

({
s ∈ ν

tkj

∆kj
: ω

(
∆−1

kj
s
)
∈ A

}
∪ {tkj

}
)
.

We see that, as required, ∆−1
kj

τ̃kj
(ω) is again simply the

identity of the step on which ω ∈ ΩN0
did (or did not)

initially hit A. This implies the relation to the discrete-time
truncated hitting time τ0:nkj

; for any ω ∈ ΩN0 we have

τ̃kj
(ω)

= ∆kj
∆−1

kj
τ̃kj

(ω)

= ∆kj
min

({
s ∈ ∆−1

kj
ν
tkj

∆kj
: ω(s) ∈ A

}
∪ {∆−1

kj
tkj

}
)

= ∆kj
min

({
s ∈ {0, . . . , nkj

} : ω
(
s
)
∈ A

}
∪ {nkj

}
)

= ∆kjτ0:nkj
(ω) ,

and so we simply have that τ̃kj = ∆kjτ0:nkj
. Following the

discussion in [Krak, 2021, Chap 7], and [Krak, 2021, Thm
7.2] in particular, we therefore find the identity

EI
Q[τkj

|X0] = ∆kj
EI
Tkj

[τ0:nkj
|X0] for all j ∈ N0.

(37)
We again recall from Krak et al. [2019] the objects
EV
Tkj

[τ0:nkj
|X0] in RX satisfying

EV
Tkj

[τ0:nkj
|X0] ≤ EI

Tkj
[τ0:nkj

|X0] for all j ∈ N0.

Hence from Equations (36) and (37) we now find that

s = lim
j→+∞

EI
Q[τkj

|X0]

= lim
j→+∞

∆kj
EI
Tkj

[τ0:nkj
|X0]

≥ lim
j→+∞

∆kj
EV
Tkj

[τ0:nkj
|X0] . (38)

We now note that, for all j ∈ N0, we have∥∥∥∆kj
EV
Tkj

[τ0:nkj
|X0]− h

∥∥∥
≤

∥∥∥∆kj
EV
Tkj

[τ0:nkj
|X0]− h∆kj

∥∥∥+
∥∥∥h∆kj

− h
∥∥∥

< ϵkj
+

∥∥∥h∆kj
− h

∥∥∥ ,



where we used Equation (25) for the final inequality. Using
that limj→+∞ ϵkj = 0 and limj→+∞ ∆kj = 0, together
with Proposition 16, we see that both summands vanish as
we increase j ∈ N0, and so we have

lim
j→+∞

∆kj
EV
Tkj

[τ0:nkj
|X0] = h . (39)

We already established in Section 5 that h =
EHM
Q [τR≥0

|X0]. Hence by combining Equations (34), (36),
(38), and (39), we now find that

EHM
Q [τR≥0

|X0] = h ≤ s ≤ EI
Q[τR≥0

|X0] . (40)

However, as noted in Section 3.1 we have the inclusion
PHM
Q ⊆ PM

Q ⊆ PI
Q, so it immediately follows from the

definition of the lower expectations that

EI
Q[τR≥0

|X0] ≤ EM
Q [τR≥0

|X0] ≤ EHM
Q [τR≥0

|X0] .

Hence by Equation (40) we obtain the identity

EI
Q[τR≥0

|X0] = EM
Q [τR≥0

|X0] = EHM
Q [τR≥0

|X0] ,

which concludes the proof that the lower expected hitting
times are the same for all three types of continuous-time
imprecise-Markov chains. We omit the proof for the upper
expected hitting times; this is completely analogous, starting
instead from Equation (35) and using the norm bound (26)
to pass to the limit h = EHM

Q [τR≥0
|X0].

Proof of Theorem 2. First fix any ∆ > 0. For h∆ it then
holds that

h∆ = ∆IAc + IAceQ∆h∆ .

Since h∆(x) = 0 for all x ∈ A, we have h∆ = IAch∆ and
IAh∆ = 0. We can therefore rearrange terms and add IAh∆

to the above, to obtain

IAh∆ = IAc + IAc

eQ∆ − I

∆
h∆ .

Because the individual limits exist by Proposition 16
and [De Bock, 2017, Prop 9], taking ∆ to zero yields

IAh = IA lim
∆→0+

h∆

= IAc + IAc lim
∆→0+

eQ∆ − I

∆
h∆

= IAc + IAc lim
∆→0+

eQ∆ − I

∆
lim

∆→0+
h∆

= IAc + IAcQh .

So, h is indeed a solution to the system IAh = IAc+IAcQh.
It follows from a completely analogous argument that also
h is a solution to IAh = IAc + IAcQh.

That h and h are non-negative is clear. We now first show
that h is the minimal non-negative solution to its correspond-
ing system. To this end, suppose ex absurdo that there is

some non-negative h ∈ RX such that h(x) < h(x) for some
x ∈ X , and IAh = IAc+IAcQh. Then clearly x ∈ Ac since
h(y) = 0 for all y ∈ A and h is non-negative.

By Proposition 4, there is then some Q ∈ Q such that Qh =
Qh, and so also IAh = IAc+IAcQh. By Proposition 2 there
is some minimal non-negative solution h∗ to the system
IAh∗ = IAc + IAcQh∗, where the minimality implies in
particular that h∗ ≤ h. Since Q ∈ Q, we obtain

h∗(x) ≤ h(x) < h(x) = inf
Q′∈Q

hQ′
(x) ≤ h∗(x) ,

which is a contradiction.

We next show that h is the minimal non-negative solution to
its corresponding system; this will require a bit more effort
and we need to start with some auxiliary constructions. By
Proposition 4, there is some Q ∈ Q such that Qh = Qh.
Let G be the subgenerator of Q.

Consider the ξ > 0 from Proposition 11, and let ∥·∥∗ be the
norm from Section 4.1. Since RAc

is finite-dimensional, the
norms ∥·∥ and ∥·∥∗ are equivalent, whence there is some
c ∈ R>0 such that ∥f∥∗ ≤ c ∥f∥ for all f ∈ RAc

.

Now let ∆ > 0 be such that ∆ ∥Q∥ ≤ 1, ∆
∥∥Q∥∥ ≤ 1, ∆ξ <

2/3, and ∆c ∥Q∥2 < ξ/3; this is clearly always possible.
Define the map H : RAc → RAc

for all f ∈ RAc

as

H(f) := f +∆1+∆Gf = ∆1+ (I +∆G)f .

Let us show that H is a contraction on the Banach space
(RAc

, ∥·∥∗), or in other words, that there is some α ∈ [0, 1)
such that ∥H(f)−H(g)∥∗ ≤ α ∥f − g∥∗ for all f, g ∈
RAc

[Renardy and Rogers, 2006, Sec 10.1.1]. So, fix any
f, g ∈ RAc

. Then we have

∥H(f)−H(g)∥∗ = ∥(I +∆G)f − (I +∆G)g∥∗
= ∥(I +∆G)(f − g)∥∗
≤ ∥I +∆G∥∗ ∥f − g∥∗ ,

from which we find that

∥H(f)−H(g)∥∗
≤

(∥∥(I +∆G)− eG∆
∥∥
∗ +

∥∥eG∆
∥∥
∗

)
∥f − g∥∗ .

(41)

By Proposition 14 we have
∥∥eG∆

∥∥
∗ ≤ e−ξ∆, and so using a

standard quadratic bound on the negative scalar exponential,∥∥eG∆
∥∥
∗ ≤ 1−∆ξ +

1

2
∆2ξ2 < 1− 2

3
∆ξ , (42)

where we used that ∆ξ < 2/3.

Moreover, we have that∥∥(I +∆G)− eG∆
∥∥
∗ ≤ c

∥∥(I +∆G)− eG∆
∥∥

≤ c
∥∥(I +∆Q)− eQ∆

∥∥
≤ c∆2 ∥Q∥2 ,



where the second inequality used Lemmas 3 and 4 and Corol-
lary 3; and the final inequality used [Krak, 2021, Lemma
B.8]. Since ∆c ∥Q∥2 < ξ/3 we have∥∥(I +∆G)− eG∆

∥∥
∗ <

1

3
∆ξ . (43)

Combining Equations (41), (42), and (43) we obtain

∥H(f)−H(g)∥∗ ≤
(
1− 1

3
∆ξ

)
∥f − g∥∗ .

Since ∆ > 0, ξ > 0, and ∆ξ < 2/3, we conclude that H
is indeed a contraction. Hence by the Banach fixed-point
theorem [Renardy and Rogers, 2006, Thm 10.1], there is a
unique fixed point f ∈ RAc

such that H(f) = f and, for
any g ∈ RAc

, it holds that

lim
n→+∞

Hn(g) = f . (44)

It is easy to see that this unique fixed point is given by h|Ac .
Indeed, from the choice of Q and the fact that h satisfies
IAh = IAc + IAcQh, we have

IAh = IAc + IAcQh = IAc + IAcQh .

Moreover, since h|A = 0 we have IAh = 0 and h =
(h|Ac)↑X , whence(

Qh
)
|Ac =

(
Q (h|Ac)↑X

)
|Ac = Gh|Ac .

Noting that IAc |Ac = 1, after multiplying with ∆ we find
that ∆1+∆Gh|Ac = 0. Comparing with the definition of
H , we have

H(h|Ac) = h|Ac +∆1+∆Gh|Ac = h|Ac + 0 = h|Ac ,

so h|Ac is indeed a fixed-point of H . Since we already
established that H has a unique fixed-point, we conclude
from Equation (44) that

h|Ac = lim
n→+∞

Hn(g) for all g ∈ RAc

. (45)

Next let us show that H is monotone. To this end, fix any
f, g ∈ RAc

such that f ≤ g; then clearly also f↑X≤ g↑X .
Since ∆ > 0 is such that ∆ ∥Q∥ ≤ 1, it follows from [Krak,
2021, Prop 4.9] that (I +∆Q) is a transition matrix. By the
monotonicity of transition matrices [Krak, 2021, Prop 3.32],
we find that therefore

(I +∆Q)f↑X≤ (I +∆Q)g↑X ,

which in turn implies that

(I +∆G)f =
(
(I +∆Q)f↑X

)
|Ac

≤
(
(I +∆Q)g↑X

)
|Ac = (I +∆G)g .

From the definition of H we therefore conclude that
H(f) ≤ H(g). Since f, g with f ≤ g are arbitrary, this
concludes the proof of the monotonicity of H .

Now, let us define H : RX → RX for all f ∈ RX as

H(f) := ∆IAc + IAc(I +∆Q)f .

We first note that, since ∆
∥∥Q∥∥ ≤ 1, it follows

from [De Bock, 2017, Prop 5] that (I + ∆Q) is a lower
transition operator. From the conjugacy of Q and Q, we
have for any f ∈ RX that

−(I +∆Q)(−f) = f +∆ · −Q(−f)

= f +∆Qf = (I +∆Q)f ,

which implies that (I+∆Q) is the upper transition operator
that is conjugate to the lower transition operator (I +∆Q).
By the monotonicity of upper transition operators—see
Section 3.2—this implies that H is monotone, or in other
words that for all f, g ∈ RX with f ≤ g it holds that
H(f) ≤ H(g).

Let us next show that

H(f) ≥ H(f |Ac)↑X for all f ∈ RX with f |A = 0.
(46)

Indeed, if f |A = 0 then (f |Ac)↑X= f , and since Q ∈ Q, it
follows from the definitions of Q and G that then

(Qf)|Ac ≥ (Qf)|Ac = (Q (f |Ac)↑X )|Ac = Gf |Ac .

Hence we have

H(f)|Ac = ∆1+ f |Ac +∆(Qf)|Ac

≥ ∆1+ f |Ac +∆Gf |Ac = H(f |Ac) .

Moreover, we immediately have from the definition that
H(f)|A = 0 =

(
H(f |Ac) ↑X

)
|A, and so Equation (46)

indeed holds.

Next, we note that for any f ∈ RX it holds that H(f)|A = 0,
and so by Equation (46) we find that

H(H(f)) ≥ H(H(f)|Ac)↑X .

Provided that also f |A = 0, then using the previously estab-
lished monotonicity of H we obtain

H(H(f)) ≥ H(H(f)|Ac)↑X
≥ H(H(f |Ac)↑X |Ac)↑X .

We clearly have H(f |Ac)↑X |Ac = H(f |Ac), whence

H
2
(f) = H(H(f)) ≥ H(H(f |Ac))↑X= (H2(f |Ac))↑X .

Indeed, we can repeat this reasoning for n ∈ N steps, to
conclude that

H
n
(f) ≥ (Hn(f |Ac))↑X for all f ∈ RX with f |A = 0.

(47)

Now suppose ex absurdo that there is some non-negative
g ∈ RX , such that g(x) < h(x) for some x ∈ X , and



such that IAg = IAc + IAcQg. Since g is non-negative and
h|A = 0, we must have that x ∈ Ac. Moreover, we clearly
have IAg = 0, which implies that g|A = 0 and so g = IAcg.
Hence it follows that ∆IAc + IAc∆Qg = 0, and we find
that H(g) = IAcg = g. Hence g is a fixed point of H . Since
g|A = 0, and using Equation (47), this implies that for any
n ∈ N0 we have

g = H
n
(g) ≥ (Hn(g|Ac))↑X .

Recalling that x ∈ Ac is such that g(x) < h(x), we use
Equation (45) to take limits in n and find that

g(x) ≥ lim
n→+∞

Hn(g|Ac)(x) = h(x) > g(x) ,

which is a contradiction.
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