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A BACKGROUND MATERIALS

A.1 GRAPHICAL DEFINITIONS

A directed graph G over a set of measured variables V = {X1, ..., Xm} consists of m vertices v = {1, ...,m} where each
vertex i ∈ v associates to a variable Xi ∈ V, and each edge in G is directed with the form j → k and no vertex has a
directed edge to itself. A path p is a sequence of vertices ⟨i1, i2, ..., ik⟩ for some k ≥ 2 where ij ∈ v for each 1 ≤ j ≤ k,
and ij and ij+1 are connected by a directed edge (i.e., ij → ij+1 or ij+1 → ij). A path p is directed if ij → ij+1 for each
1 ≤ j < k. A directed acyclic graph (DAG) is a directed graph where no vertex can have a directed path to itself.

Denote E(G) as the set of directed edges in G. A pair of DAGs G1,G2 over the same set of variables V are equivalent
if and only if E(G1) = E(G2). Let Pa(j,G) = {k ∈ v : (k → j) ∈ E(G)} be the set of parents of j in G, and
Ch(j,G) = {k ∈ v : (j → k) ∈ E(G)} be the set of children of j in G. An(j,G), the ancestors of j in G, is defined by the
transitive closure of Pa(j,G). Similarly, De(j,G), the descendants of j in G, is defined by the transitive closure of Ch(j,G)
and union with {j} itself (i.e., j is its own descendant). Further let Nd(j,G) = v \ De(j,G) be the set of j’s non-descendants.

A pair of vertices j, k ∈ v are said to be adjacent in G if (j → k) ∈ E(G) or (k → j) ∈ E(G). For any triple of pairwise
distinct vertices i, j, k ∈ v, we say that (i, j, k) is unshielded if (i, j) and (j, k) are adjacent pairs in G, but not (i, k). (i, j, k)
forms a triangle if they are pairwise adjacent. If (i, j, k) is an unshielded triple or is a triangle, j is a collider (on the path
⟨i, j, k⟩) if (i→ j), (k → j) ∈ E(G), and a non-collider otherwise. A path p is a trek if it contains no collider.

For any j, k ∈ v and any i ⊆ v \ {j, k}, j and k are d-connected given i in G if there exists a path p between j and k in G
such that no non-collider on p is in i, and each collider l on p or a l’s descendant is in i. j and k are d-separated given i in G
if j and k are not d-connected given i. For any disjoint subsets of vertices j,k, i ⊆ v, j and k are d-separated given i in G if
j and k are d-separated by i in G for every j ∈ j and every k ∈ k.

Given a model (G,P) over V, G is said to be local Markov to P if Xj ⊥⊥P XNd(j,G) \XPa(j,G) |XPa(j,G) for every j ∈ v. It
is a well-known fact that G is local Markov to P if and only if I(G) ⊆ I(P) (i.e., global Markov as defined by d-separation).

A.2 GRAPHOID AXIOMS

For any pairwise disjoint sets of variables W,X,Y, and Z,

X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z (symmetry)

X ⊥⊥ Y ∪W |Z ⇒ (X ⊥⊥ Y |Z) ∧ (X ⊥⊥W |Z) (decomposition)

X ⊥⊥ Y ∪W |Z ⇒ X ⊥⊥ Y |Z ∪W (weak union)

(X ⊥⊥ Y |Z) ∧ (X ⊥⊥W |Z ∪Y) ⇒ X ⊥⊥ Y ∪W |Z (contraction)

(X ⊥⊥ Y |Z ∪W) ∧ (X ⊥⊥W |Z ∪Y) ⇒ X ⊥⊥ Y ∪W |Z (intersection)

(X ⊥⊥ Y |Z) ∧ (X ⊥⊥W |Z) ⇒ X ⊥⊥ Y ∪W |Z (composition)
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A distribution P is a semigraphoid if I(P) is closed under symmetry, decomposition, weak union, and contraction. A
semigraphoid P is a graphoid if I(P) is closed under intersection. A graphoid P is compositional if I(P) is closed under
composition. See Chapter 2 of [Studený, 2005] for a more comprehensive study of graphoid axioms. In addition, applications
of symmetry in our upcoming proofs will be done implicitly for the sake of simplicity.

Additionally, Spohn [1994] notes that the following property necessarily holds in the independence models induced by
positive discrete probability distributions. For any pairwise disjoint sets of variables W,X,Y, and Z,

(X ⊥⊥ Y |W ∪ Z) ∧ (W ⊥⊥ Z |X ∪Y) ∧ (W ⊥⊥ Z |X) ⇒ [(W ⊥⊥ Z |Y)⇔ (W ⊥⊥ Z |∅)] (Spohn condition)

A.3 DAG INDUCED FROM A PERMUTATION

Definition A.1 Given a semigraphoid P over V, for every X ∈ V, we say that M ⊆ V is a Markov blanket of X relative
to Z ⊆ V \ {X} if

(i) M ⊆ Z;

(ii) X ⊥⊥P (Z \M) |M.

Such a Markov blanket M is said to be a Markov boundary if it further satisfies the following condition:

(iii) there does not exist M′ ⊂M s.t. X ⊥⊥P (Z \M′) |M′.

Lemma A.2 [Verma and Pearl, 1988] Given a graphoid P over V, for every X ∈ V and every Z ⊆ V \ {X}, there is a
unique Markov boundary of X relative to Z.

In the following, we use MBP(X,Z) to refer to the unique Markov boundary of X relative to Z. The subscript P will be
suppressed if the underlying graphoid is clear from context.

Lemma A.3 Given a graphoid P over V, for every X ∈ V and every Z ⊆ V \ {X}, if M is a Markov blanket of X
relative to Z, then MB(X,Z) ⊆M.

Proof. Immediate from Definition A.1 and Lemma A.2. □

Next, we revisit the two methods of inducing a DAG from a permutation. Given a semigraphoid P over V, each π ∈ Π(v)
induces a DAG satisfying the following condition:

Xj ∈M⇔ (j → k) ∈ E(Gπ) (VP)

where M is a Markov boundary of Xk relative to XPre(k,π). (VP) is the construction of a boundary DAG in [Verma and
Pearl, 1988]. On the other hand, given a graphoid P over V, each π ∈ Π(v) induces a DAG satisfying the following
condition:

j ∈ Pre(k, π) and Xj ⊥/⊥P Xk |XPre(k,π)\{j} ⇔ (j → k) ∈ E(Gπ). (RU)

We want to show that the two DAG-inducing methods are equivalent when the underlying distribution is a graphoid.

Lemma A.4 Given a graphoid P over V, consider any π ∈ Π(v). Let Gπ be the DAG induced from π by (VP), andHπ be
the DAG induced from π by (RU). Then Gπ = Hπ .

Proof. We divide the proof into two directions: (VP)⇒ (RU), and (VP)⇐ (RU). Consider any j, k ∈ v where π[j] < π[k]
such that j ∈ Pre(k, π). Let M be the unique Markov boundary MB(Xk,XPre(k,π)).

[⇒] Suppose that (j → k) /∈ E(Gπ). We have Xj /∈M. By Definition A.1 (ii), we then have,

Xk ⊥⊥P((XPre(k,π) \M) \ {Xj}) ∪ {Xj} |M ∵ Xk ⊥⊥P XPre(k,π) \M |M (1)
Xk ⊥⊥PXj |M ∪ ((XPre(k,π) \M) \ {Xj}) ∵ (1),weak union (2)
Xk ⊥⊥PXj |XPre(k,π)\{j} ∵ (2) (3)



where the last formula amounts to (j → k) /∈ E(Hπ) by (RU).

[⇐] Suppose that (j → k) /∈ E(Hπ). We have Xk ⊥⊥P Xj |XPre(k,π)\{j}. Let M′ be XPre(k,π)\{j}. We have Xk ⊥⊥P
(XPre(k,π) \M′) |M′ such that M′ is a Markov blanket of Xk relative to XPre(k,π). By Lemma A.3, Xj /∈M ⊆M′ and
therefore (j → k) /∈ E(Gπ) by (VP). □

Theorem A.5 [Pearl, 1988] Given a semigraphoid P over V, Gπ induced by π using (VP) is Markovian and SGS-minimal
for any π ∈ Π(v).

Theorem 3.5 Given a graphoid P over V, Gπ induced by π using (RU) is Markovian and SGS-minimal for any π ∈ Π(v).

Proof. Immediate from Lemma A.4 and Theorem A.5.1 □

B CORRECTNESS RESULTS

First, we introduce some permutation-based notations to facilitate our coming proofs. In this section, we use Gπ to denote
the DAG induced by π from a graphoid P using (RU) unless specified otherwise.

Given a set of variables V, consider any π ∈ Π(v) and any pair j, k ∈ v where π[j] < π[k]. π can be written as
⟨δ<j , j, δj∼k, k, δ>k⟩ such that δ<j = ⟨πi : 1 ≤ i < π[j]⟩, δj∼k = ⟨πi : π[j] < i < π[k]⟩, and δ>k = ⟨πi : π[k] < i ≤
|π|⟩. When δj∼k = ∅, we say that j and k are π-adjacent. In that case, π can be written as ⟨δ<j , j, k, δ>k⟩ instead.

Definition B.1 Given a set of variables V, for any π, τ ∈ Π(v),

(a) τ is said to be (j, k)-different from π for some j, k ∈ v if j and k are π-adjacent (i.e., π = ⟨δ<j , j, k, δ>k⟩) and
τ = ⟨δ<j , k, j, δ>k⟩;

(b) π and τ are said to be in adjacent transposition (AT) if they are (j, k)-different for some j, k ∈ v.

Lemma B.2 Given a graphoid P over V, consider any H ∈ CMC(P). If π ∈ Π(v) is a causal order of G, then E(Gπ) ⊆
E(H). Also, Gπ = H ifH ∈ SGS(P).

Proof. Consider any k ∈ v and Nd(k,H) (i.e., the set of k’s non-descendants in H). Since H ∈ CMC(P), it follows that
Xk ⊥⊥P XNd(k,H) \XPa(k,H) |XPa(k,H). Also, we have Pa(k,H) ⊆ Pre(k, π) ⊆ Nd(k,H) from π’s being a causal order
of H. By decomposition, we have Xk ⊥⊥P XPre(k,π) \ XPa(k,H) |XPa(k,H) such that XPa(k,H) is a Markov blanket of
Xk relative to XPre(k,π). By Lemma A.3, we have MB(Xk,XPre(k,π)) ⊆ Pa(k,H). Consider Gπ induced by (VP). The
above entails that E(Gπ) ⊆ E(H) since Pa(k,Gπ) = MB(Xk,XPre(k,π)) ⊆ Pa(k,H) for each k ∈ v. Due to Lemma A.4,
E(Gπ) ⊆ E(H) still holds even if Gπ is induced by (RU). Lastly, Gπ = H follows from Definition 3.4 ifH ∈ SGS(P). □

Lemma B.3 [Solus et al., 2021] Given a graphoid P over V, consider any π, τ ∈ Π(v) where τ is (j, k)-different from π
for some j, k ∈ v. Then Gπ = Gτ if and only if Xj ⊥⊥P Xk |XPre(j,π).

Proof. Suppose that Xj ⊥/⊥P Xk |XPre(j,π). By (RU), we have (j → k) ∈ E(Gπ). Note that (j → k) /∈ E(Gτ ) since
τ [k] < τ [j] and τ is a causal order of Gτ by construction. Hence, Gπ ̸= Gτ .

On the other hand, suppose that Xj ⊥⊥P Xk |XPre(j,π). Since τ is (j, k)-different from π, we have π = ⟨δ<j , j, k, δ>k⟩
and τ = ⟨δ<j , k, j, δ>k⟩ according to Definition B.1 (a). By (RU), we know that (k → j) /∈ E(Gτ ). Hence, π is a causal
order of Gτ . By Theorem 3.5, Gτ ∈ SGS(P). Therefore, it follows from Lemma B.2 that Gτ = Gπ . □

Lemma B.4 Given a graphoid P over V, consider any π ∈ Π(v). Suppose that Gπ contains a covered edge j → k where
π = ⟨δ<j , j, δj∼k, k, δ>k⟩. If τ = ⟨δ<j , j, k, δj∼k, δ>k⟩, then Gπ = Gτ .

Proof. Since j → k is a covered edge in Gπ, it follows that (i → k) /∈ E(Gπ) for each i ∈ δj∼k, and thus Xi ⊥⊥P
Xk |XPre(i,π) by (RU). Hence, Gπ = Gτ can be obtained after |δj∼k| applications of Lemma B.3. □

1The two DAG-inducing methods were not differentiated in [Raskutti and Uhler, 2018]. Thus, we provide a proof of Theorem 3.5.



Theorem B.5 [Zhang, 2013] Given a set of variables V, for any G,H ∈ DAG(V), if E(G) ⊆ E(H), then I(H) ⊆ I(G).

Lemma B.6 [Chickering, 1995] Consider any DAG G. LetH be the result of reversing (i→ j) ∈ E(G). ThenH ∈ MEC(G)
if and only if i→ j is a covered edge.

Theorem B.7 [Chickering, 1995] Consider any pair of DAGs G andH over the same set of variables s.t.H ∈ MEC(G), and
for which there are k edges in G that have opposite orientation inH. Then there exists a sequence of k distinct covered edge
reversals in G s.t. G becomesH after all reversals.

Lemma B.8 Given a graphoid P over V, consider any π ∈ Π(v). Suppose that (j → k) ∈ E(Gπ) is a covered edge, and
letH be the DAG resulted from reversing (j → k) in Gπ . If τ = tuck(π, j, k), then

(a) τ is a causal order ofH;

(b) E(Gτ ) ⊆ E(H);
(c) |E(Gτ )| ≤ |E(Gπ)|;
(d) I(Gπ) ⊆ I(Gτ ).

Proof. A similar lemma has been shown in [Solus et al., 2021]. First, we write π = ⟨δ<j , j, δj∼k, k, δ>k⟩ as usual. Consider
π′ = ⟨δ<j , j, k, δj∼k, δ>k⟩. By Lemma B.4, we have Gπ = Gπ′ . Note that τ = tuck(π, j, k) = ⟨δ<j , k, j, δj∼k, δ>k⟩
because tuck(π, j, k) is a covered tuck. Thus, τ is (j, k)-different from π′. Also, since π′ is a causal order of Gπ , it follows
that τ is a causal order ofH and thus (a) is proven.

Next, observe that I(Gπ) = I(H) from Lemma B.6. From Gπ ∈ CMC(P) by Theorem 3.5, we know that H ∈ CMC(P).
Thus, (b) immediately follows from (a) and Lemma B.2. Also, (c) is entailed by |E(Gτ )| ≤ |E(H)| = |E(Gτ )|. Finally, by
Theorem B.5, we have I(Gπ) = I(H) ⊆ I(Gτ ) as desired in (d). □

Before we compare TSP and unbounded GRaSP0, we want to make an assumption related to how the set of covered edges in
any particular DAG is ordered. To see the importance of such an assumption, observe that different orderings of E0(Gπ) (i.e.,
the set of covered edges in an induced DAG Gπ) can alter the output of TSP and also GRaSP0. For example, suppose that
(j → k), (j′ → k′) ∈ E0(Gπ). Say the DFS of GRaSP0 starts with performing tuck(π, j, k) and leads to some permutation
τ . However, choosing to perform tuck(π, j′, k′) instead at the beginning of the DFS procedure can lead to some τ ′ where
Gτ ̸= Gτ ′ . Hence, we enforce the assumption that the ordering of E0(G) for any DAG G is fixed arbitrarily. For instance,
(j → k) precedes (j′ → k′) in E0(G) if j < j′, or j = j′ and k < k′. Consequently, the issue of order-dependence can be
avoided even when comparing a Chickering sequence found by TSP and a ct-sequence found by unbounded GRaSP0. In the
following, this assumption will be made implicitly.

Now we revisit how TSP works. Given a graphoid P over V and an initial permutation π ∈ Π(v), TSP begins with setting
G as the induced Gπ. Starting with the root G, TSP performs DFS to identify a SGS-minimal DAG H connected by a
Chickering sequence from G such that |E(G)| > |E(H)|. TSP returns G if no suchH is found. Otherwise, it updates G asH
and repeat the procedure.

The DFS procedure of TSP aims to traverse from one SGS-minimal DAG to another SGS-minimal DAG by the construction
of a Chickering sequence. Though we know that a Chickering sequence is obtained by the reversals of covered edges and
deletions of directed edges, Solus et al. [2021] did not specify any ordering of these operations. Below we provide a more
precise definition of the Chickering sequences considered by TSP.

Definition B.9 Given a graphoid P over V, a TSP-Chickering sequence C = ⟨G1, ...,Gm⟩ is a Chickering sequence
satisfying the following condition:

(a) G1,Gm ∈ SGS(P);
(b) Gi and Gi′ are pairwise distinct for 1 ≤ i < i′ ≤ m;

(c) if |E(G1)| = |E(Gm)|, then G1, ...,Gm ∈ SGS(P) where they differ by the reversals of some covered edges;

(d) otherwise, there exists a turning index 1 < l < m such that (i) G1, ...,Gl−1 ∈ SGS(P), (ii) G1, ...,Gl differ by the
reversals of some covered edges, and (iii) Gi+1 is obtained from deleting a directed edge in Gi /∈ SGS(P) for each
l ≤ i < m.



Readers are suggested to find the original pseudocode of TSP in Solus et al. [2021] to verify that our Definition B.9 is a
fair description of the Chickering sequences considered by TSP. Conditions (a) and (b) are straightforward. (c) refers to
the case where TSP cannot find a sparser SGS-minimal DAG. So if any Gi in C were non-SGS-minimal, then TSP would
have obtained a proper subgraph of Gi which is SGS-minimal by a series of edge-deletion. (d) refers to the case where
TSP manages to find a sparser SGS-minimal DAG. Notice that G2 must be obtained by a covered edge reversal from G1
since G1 ∈ SGS(P). If G2 /∈ SGS(P), then TSP can obtain the desired SGS-minimal DAG by a series of edge-deletion from
G2. But if G2 ∈ SGS(P), the procedure above repeats until finding the turning index l such that Gl /∈ SGS(P) and then the
sparser Gm ∈ SGS(P) can be obtained by a series of edge-deletion from Gl.

Now we compare TSP and unbounded GRaSP0 by considering their respective sequences traversed in the DFS procedure.

Lemma B.10 Given a graphoid P over V, consider any π ∈ Π(v) and τ = tuck(π, j, k) where (j → k) ∈ E0(Gπ). Given
that T = ⟨π, τ⟩ is a ct-sequence,

(a) if |E(Gτ )| = |E(Gπ)|, then C = ⟨Gπ,Gτ ⟩ is a TSP-Chickering sequence where Gτ is obtained from reversing (j → k) ∈
E0(Gπ);

(b) otherwise, there exists a TSP-Chickering sequence C = ⟨Gπ = G1, ...,Gm = Gτ ⟩ s.t. G2 is obtained from reversing
(j → k) ∈ E0(Gπ), and Gi+1 is obtained from deleting a directed edge in Gi for each 2 ≤ i < m.

Proof. First, consider the DAG H obtained from reversing (j → k) ∈ E0(Gπ). We start with the case in (a) where
|E(Gτ )| = |E(Gπ)| = |E(H)|. We want to show that Gτ = H. By Lemma B.8 (b), we have E(Gτ ) ⊆ E(H). If E(Gτ ) ⊂ E(H)
holds, then |E(Gπ)| = |E(H)| will be violated. Hence, we have Gτ = H and thus C = ⟨Gπ,H = Gτ ⟩ is our desired
TSP-Chickering sequence.

For (b), it follows from Lemma B.8 (c) that |E(Gτ )| < |E(H)| = |E(Gπ)|. Let Gπ and H be G1 and G2 respectively. By
Lemma B.8 (b) again, we have E(Gτ ) ⊂ E(G2) such that we can remove a directed edge from G2 once at a time until
obtaining Gτ . Therefore, we have the desired TSP-Chickering sequence in (b). □

Lemma B.11 Given a graphoid P over V, consider any TSP-Chickering sequence C = ⟨G1, ...,Gm⟩. Let π1 be a causal
order of G1. Then

(a) if |E(G1)| = |E(Gm)|, then Gi+1 = Gπi+1 = Gtuck(π,j,k) where j → k is the covered edge reversed to obtain Gi+1 from
Gi for each 1 ≤ i < m s.t. T = ⟨π1, ..., πm⟩ is a ct-sequence;

(b) otherwise, then Gi+1 = Gπi+1 = Gtuck(π,j,k) where j → k is the covered edge reversed to obtain Gi+1 from Gi for each
1 ≤ i < l where l is the turning index of C and Gπl = Gm s.t. T = ⟨π1, ..., πl⟩ is a ct-sequence.

Proof. (a) can be easily shown by Lemma B.8(a) and Lemma B.2. For (b), the proof of Gi = Gπi for each 1 ≤ i < l
is similar to that in (a). So we consider l where Gl /∈ SGS(P) according to Definition B.9(d). However, it follows from
Lemma B.8 (a) that πl is a causal order of Gl. Since E(Gm) ⊂ E(Gl), we know that πl is also a causal order of Gm. Lastly,
given that Gm ∈ SGS(P), it follows from Lemma B.2 that Gπl = Gm. □

Lemma 4.4 Given a graphoid P , for any π ∈ Π(v) and any Chickering sequence from Gπ to some H ∈ SGS(P)
considered by TSP, there exists a ct-sequence ⟨π, ..., τ⟩ s.t. Gτ = H.

Proof. Given that a Chickering sequence considered by TSP is simply a TSP-Chickering sequence defined in Definition
B.9, the lemma follows immediately from Lemma B.11. □

Theorem 4.7 Given a graphoid P over V and any initial permutation π ∈ Π(v), the DAG induced by the output of
unbounded GRaSP0 is equivalent to the DAG returned by TSP.

Proof. Immediate from Lemma B.10 and Lemma B.11. □

Now we turn to the discussion on the correctness of GRaSP0 under faithfulness.



Lemma B.12 Given a graphoid P over V and any π ∈ Π(v), if Gπ /∈ Pm(P), then there exists a ct-sequence T = ⟨π, ..., τ⟩
s.t. I(Gπ) ⊂ I(Gτ ).

Proof. Suppose that Gπ /∈ Pm(P). By Definition 3.7, it follows that there existsH ∈ CMC(P) s.t. I(Gπ) ⊂ I(H) ⊆ I(P).
By Theorem 3.6, we know that there exists a Chickering sequence C0 = ⟨Gπ = G1, ...,Gl = H⟩. Without loss of generality,
suppose that C0 is the shortest Chickering sequence where each Gi+1 differs from Gi ∈ SGS(P) by the reversal of a
covered edge in E0(Gi) for each 1 ≤ i < l − 1, and Gl is obtained from deleting a directed edge in Gl−1. Notice that
|E(Gl)| < |E(G1)| due to the edge deletion. If Gl ∈ SGS(P), then C0 is a TSP-Chickering sequence. Otherwise, we can
easily construct a TSP-Chickering sequence C = ⟨G1, ...,Gm⟩ with l−1 as the turning index and Gm ∈ SGS(P) obtained by
repeated edge-deletion from Gl such that I(G1) ⊂ I(Gl) ⊂ I(Gm). By Lemma B.11 (b), we have the desired ct-sequence.
□

Theorem 4.5 Given a graphoid P over V and any π ∈ Π(v), if Gπ /∈ Pm(P), then there exists a ct-sequence T = ⟨π, ..., τ⟩
s.t. Gτ ∈ Pm(P).

Proof. Immediate from Lemma B.12. □

Theorem B.13 Unbounded GRaSP0 is correct and pointwise consistent under faithfulness.

Proof. We review the argument for the correctness of unbounded GRaSP0 under faithfulness given in the main paper. Given
a graphoid P over V, consider any initial permutation π ∈ Π(v). Given that unbounded GRaSP0 greedily search for a
ct-sequence from π, it is guaranteed by Theorem 4.5 that τ returned by unbounded GRaSP0 in Algorithm 2 induces a
P-minimal DAG. Under faithfulness, we have Gτ ∈ MEC(G∗) due to Theorem 3.8 and hence unbounded GRaSP0 is correct.

Alternatively, the correctness and pointwise consistency of unbounded GRaSP0 can also be proven directly from Theorem
4.7 and the corresponding results of TSP in [Solus et al., 2021]. □

Corollary 4.6 Unbounded GRaSP0, GRaSP1, and GRaSP2 are correct and pointwise consistent under faithfulness.

In the following, we want to prove that faithfulness is not only sufficient, but also necessary for the correctness of TSP and
unbounded GRaSP0. We first want to prove an interesting and novel equivalence between two causal razors: faithfulness and
u-P-minimality.

Lemma B.14 Given a joint probability distribution P over V, for any ⟨Xi, Xj |Xk⟩ ∈ I(P), there exists G ∈ DAG(V) s.t.
I(G) = {⟨Xi, Xj |Xk⟩}.

Proof. Consider V = {X1, ..., Xm}. An empty DAG suffices when m = 2. So assume that m ≥ 3. Without loss of
generality, consider ⟨X1, Xk+2 |Xk⟩ ∈ I(P) where k = ⟨2, ..., k + 1⟩, and the remaining vertices are ⟨k + 3, ...,m⟩. We
propose a procedure which guarantees the existence of the desired DAG G.

1 G ← a complete undirected graph over v
2 remove the adjacency 1 — k + 2 in G
3 foreach (j, k) that are adjacent in G do
4 if j < k then
5 orient j → k in G

6 return G

Line 3 to 5 guarantee that G is a DAG since all edges are directed and pointing from lower indices to higher indices such
that no directed cycle can occur. Finally, 1 ⊥G k+ 2 |k holds because all paths from 1 to k+ 2 either contain a non-collider
i ∈ k or contain a collider i /∈ k. Therefore, I(G) = {⟨X1, Xk+2 |Xk)} because no other d-separation relations hold in G.
□



Theorem B.15 For any joint probability distribution P , CFC(P) = uPm(P).

Proof. [⊆] Suppose that G ∈ CFC(P). It follows that G ∈ Pm(P) by Definition 3.7. For any G′ ∈ CMC(P), if I(G′) ⊂ I(G),
then G′ /∈ Pm(P). Hence, if G′ ∈ Pm(P), then I(G′) = I(G). Hence, G ∈ uPm(P).

[⊇] Suppose that G /∈ CFC(P). Since uPm(P) ⊆ Pm(P) by Definition 3.7, if G /∈ Pm(P), we have G /∈ uPm(P) immediately.
So consider the case where G ∈ Pm(P). It follows from G /∈ CFC(P) that there exists a CI relation ψ ∈ I(P) \ I(G).
By Lemma B.14, we can construct a DAG G0 such that I(G0) = {ψ}. Consequently, there exists G1 ∈ Pm(P) such
that I(G0) ⊆ I(G1) ⊆ I(P). Since ψ ∈ I(G1), we know that G1 /∈ MEC(G). Given that both G,G1 ∈ Pm(P), we have
G /∈ uPm(P). □

Theorem 4.8 Given a graphoid P , faithfulness is necessary for the correctness of TSP.

Proof. Suppose that (G∗,P) is unfaithful. We consider the two kinds of unfaithfulness in [Zhang and Spirtes, 2008]:
detectable (i.e., CFC(P) = ∅) versus undetectable (i.e., G′ ∈ CFC(P) where G′ /∈ MEC(G∗)). For the latter, TSP can identify
Gτ ∈ Pm(P) = CFC(P) = MEC(G′). However, TSP is incorrect because Gτ /∈ MEC(G∗).

On the other hand, consider the case that CFC(P) = ∅. By Theorem B.15, there exists G ∈ Pm(P) such that G /∈ MEC(G∗)
even if G∗ ∈ Pm(P). Recall that Chickering algorithm can only allow us to traverse to a DAG H from G satisfying
I(G) ⊆ I(H). It entails that Chickering algorithm can only obtain DAGs that are in MEC(G) since G ∈ Pm(P) and hence
never be able to reach G∗ where I(Gπ) ⊈ I(G∗). Therefore, by setting π as the initial permutation to TSP where Gπ = G,
TSP will return Gπ incorrectly. □

Notice that Theorem 4.8 is contrary to what Solus et al. [2021] suggested. They proposed an example arguing that TSP can
be correct even under (detectable) unfaithfulness.2 However, the distribution used in the example is not a semigraphoid. This
renders their example illegitimate because every joint probability distribution is a semigraphoid.

C ESP AND GRASP-1

As shown in Theorem 4.8 in the last section, TSP cannot be correct under unfaithfulness by choosing an arbitrary initial
permutation. Consequently, one important question is how to relax the search space of TSP to identify a sparser permutation
under unfaithfulness. Solus et al. [2021] proposed the Edge SP (ESP) algorithm based on an assumption strictly weaker than
that assumed by TSP. However, unlike TSP, they did not provide an operational version of ESP in their work. In this section,
we are going to show a theorem similar to Theorem 4.7 but with respect to ESP and unbounded GRaSP1. In other words,
unbounded GRaSP1 is an operational version of ESP. In the following, we first examine some technical notations used in
[Mohammadi et al., 2018] and [Solus et al., 2021]. Readers are strongly suggested to visit [Solus et al., 2021] for the full
discussion of ESP and relevant notations.

Given a set of measured variables V, a permutohedron on v, denoted Av, is the convex hull in R|v| of all permutations in
Π(v). In simpler terms, Av is the state space with each state being a permutation π ∈ Π(v). The neighborhood of states in
Av is defined by adjacent transpositions (ATs) as in Definition B.1 (b).

Notice that different states in Av can induce the same DAG given a graphoid P . Thus, a natural way to narrow down the
search space is to identify permutations inducing the same DAG. Lemma B.3 provides such a characterization. Construct
Av(P) by contracting neighborhood in Av to ATs that correspond to the CI relations in I(P) specified in Lemma B.3. To
be more specified, the contracted permutohedron Av(P), also known as the DAG associahedron, is the state space with
each state being an induced DAG.3 Two states G1,G2 in Av(P) are neighbors if and only if there exist π1, π2 ∈ Π(v) s.t.
Gπ1 = G1, Gπ2 = G2, and π1 and π2 are neighbors in the permutohedron Av. As shown by Mohammadi et al. [2018], the
DAG associahedron is a convex polytope where each vertex of Av(P) corresponds to a different DAG.

To draw a clearer picture, consider any π, τ ∈ Π(v) where τ is (j, k)-different from π for some j, k ∈ v. They are neighbors
in Av but they do not necessarily induce the same DAG. If Xj ⊥⊥P Xk |XPre(j,π) holds, they induce the same DAG and

2See Figure 2 in the supplementary materials of [Solus et al., 2021].
3One can equivalently express each state in the DAG associahedron as the set of permutations which induce the same DAG. This is

the original representation in [Mohammadi et al., 2018]. However, we prefer the representation given in [Solus et al., 2021] in the sense
that one can easily compare DAGs that are in neighborhood.

https://academic.oup.com/biomet/article-abstract/108/4/795/6062392?redirectedFrom=fulltext#supplementary-data


thus correspond to the same state Gπ in the DAG associahedron Av(P). But if the CI relation does not hold, then Gπ and Gτ
are neighbors in Av(P). See Figure 1 for an example from [Solus et al., 2021].

π1 = ⟨1, 2, 3⟩ π2 = ⟨2, 1, 3⟩

π3 = ⟨2, 3, 1⟩

π4 = ⟨3, 2, 1⟩π5 = ⟨3, 1, 2⟩

π6 = ⟨1, 3, 2⟩

Gπ1

1

2

3

Gπ2

1

2

3

Gπ3

1

2

3

Gπ4

1

2

3

Gπ5 = Gπ6

1

2

3

Figure 1: Given V = {X1, X2, X3}, consider I(P) = {⟨X1, X3 |∅⟩}. The diagram on the left is the permutohedron Av

where each state is a permutation in Π(v). The one on the right is the DAG associahedron Av(P) where each state is a
different DAG in SGS(P). In particular, the two states π5 and π6 in Av are collapsed into a single state in Av(P) because
they induce the same DAG.

Observe that each state in the DAG associahedron Av(P) corresponds to a SGS-minimal DAG according to Theorem 3.5.
ESP performs a greedy DFS in Av(P). Given an initial permutation π ∈ Π(v), set G as the induced Gπ and traverse through
Av(P) by a weakly decreasing walk to obtainH where |E(H)| < |E(Gπ)|.4 If no suchH exists, ESP returns G = Gπ; else G
is reset asH and repeat.

As noted by Solus et al. [2021], the construction of Av(P) is inefficient since one is only required to know the neighboring
states instead of the entire Av(P) to perform the traversal. Below we show that unbounded GRaSP1 can efficiently learn the
neighbors of each state in Av(P) by our permutation-based operation tuck performed on singular edges. Before examining
this claim, we introduce some useful definitions.

Given the permutohedron Av, a walk W = ⟨π1, ..., πm⟩ is a sequence of neighboring states in Av such that πi, πi+1 ∈ Π(v)
are in AT for each 1 ≤ i < m.

Definition C.1 Given a graphoid P over V, for any walk W = ⟨π1, ..., πm⟩ in Av,

(a) W is said to be DAG-preserving if Gπ1 = ... = Gπm ;

(b) W is said to be DAG-changing if ⟨π1, ..., πm−1⟩ is DAG-preserving and Gπm−1 ̸= Gπm .

In addition, for each DAG-changing walk W = ⟨π1, ..., πm⟩, we say that W is relative to (j, k) if πm is (j, k)-different
from πm−1 for some j, k ∈ v. Thus, each DAG-changing walk is relative to a pair of vertices corresponding to the last AT
performed in the walk.

Definition C.2 Given a set of variables V, consider any j, k ∈ v. Two DAGs G,H ∈ DAG(V) are said to be (j, k)-reverse
if (j → k) ∈ E(G) and (k → j) ∈ E(H), and there does not exist any other j′, k′ ∈ v s.t. (j′ → k′) ∈ E(G) and
(k′ → j′) ∈ E(H).

Lemma C.3 Given a graphoid P over V, consider any j, k ∈ v. Then there exists a DAG-changing walk W = ⟨π1, ..., πm⟩
relative to (j, k) in Av if and only if Gπ1 and Gπm are neighbors in Av(P) that are (j, k)-reverse.

Proof. For the forward direction, given that πm−1 and πm are (j, k)-different but induce different DAGs, it follows from
the definition of Av(P) that Gπ1 = Gπm−1 and Gπm are neighbors in Av(P). Also, we know that (j → k) ∈ E(Gπm−1) and

4In [Solus et al., 2021], their pseudocode does not indicate that such a walk needs to be weakly decreasing but such a requirement is
imposed in the description of the algorithm.



(k → j) ∈ E(Gπm) by Lemma B.3 and (RU). The fact that Gπ1 = Gπm−1 and Gπm are (j, k)-reverse follows immediately
from (RU) and the assumption that πm−1 is (j, k)-different from πm.

For the backward direction, suppose that Gπ and Gτ are neighbors in Av(P) that are (j, k)-reverse. It entails from (RU)
that there exist π′, τ ′ ∈ Π(v) such that π′ and τ ′ are (j, k)-different where Gτ = Gτ ′ and Gπ = Gπ′ . Hence, ⟨π′, τ ′⟩ is our
desired DAG-changing walk relative to (j, k) in Av. □

Lemma C.4 Given a graphoid P over V, consider any pair π1, τ1 ∈ Π(v) such that π1 = ⟨δ1, j, k, δ2⟩ for some sub-
sequences δ1, δ2 of π1, and τ1 = ⟨ζ1, j, k, ζ2⟩ for some sub-sequences ζ1, ζ2 of τ1. Further consider π2 = ⟨δ1, k, j, δ2⟩
and τ2 = ⟨ζ1, k, j, ζ2⟩. If Gπ1 = Gτ1 , then Gπ2 = Gτ2 .

Proof. Notice that Gπ2 ∈ SGS(P) by Theorem 3.5. If we can show that τ2 is a causal order of Gπ2 , it follows from Lemma
B.2 that Gπ2 = Gτ2 . To do so, it suffices to show the following. For any i ∈ v \ {j, k},

(i) if (i→ j) ∈ E(Gπ2), then i ∈ ζ1;

(ii) if (i→ k) ∈ E(Gπ2), then i ∈ ζ1;

(iii) if (j → i) ∈ E(Gπ2), then i ∈ ζ2;

(iv) if (k → i) ∈ E(Gπ2), then i ∈ ζ2.

For (i), suppose that (i→ j) ∈ E(Gπ2). If (i→ j) ∈ E(Gπ1) as well, then (i→ j) ∈ E(Gτ1) since Gπ1 = Gτ1 . This entails
that i ∈ ζ1. On the other hand, consider the case that (i→ j) /∈ E(Gπ1). Then

Xi ⊥/⊥P Xj |Xδ1\{i} ∪ {Xk} ∵ (i→ j) ∈ E(Gπ2) (4)
Xi ⊥/⊥P {Xj , Xk} |Xδ1\{i} ∵ (4),weak union (5)

Xi ⊥⊥P Xj |Xδ1\{i} ∵ (i→ j) /∈ E(Gπ1) (6)
Xi ⊥/⊥P Xk |Xδ1\{i} ∪ {Xj} ∵ (5), (6), contraction (7)

By (RU), (8) entails that (i→ k) ∈ E(Gπ1) = E(Gτ1). Since τ1 is a causal order of Gτ1 , we have i ∈ ζ1.

For (ii), suppose that (i→ k) ∈ E(Gπ2). Similar to (i), the case for (i→ k) ∈ E(Gπ1) is simple. So consider the case where
(i→ k) /∈ E(Gπ1).

Xi ⊥/⊥P Xk |Xδ1\{i} ∵ (i→ k) ∈ E(Gπ2) (8)
Xi ⊥/⊥P {Xj , Xk} |Xδ1\{i} ∵ (8), decomposition (9)

Xi ⊥⊥P Xk |Xδ1\{i} ∪ {Xj} ∵ (i→ k) /∈ E(Gπ1) (10)
Xi ⊥/⊥P Xj |Xδ1\{i} ∵ (9), (10), contraction (11)

By (RU), (13) entails that (i→ j) ∈ E(Gπ1) = E(Gτ1) and hence i ∈ ζ1.

For (iii), suppose that (j → i) ∈ E(Gπ2). Then we have (j → i) ∈ E(Gπ1) by (RU) because Pre(i, π1) = Pre(i, π2). Hence
(j → i) ∈ E(Gτ1) since Gπ1 = Gτ1 . Given that τ1 is a causal order of Gτ1 , we have i ∈ ζ2. (iv) is analogous to (iii). □

Lemma C.5 Given a graphoid P over V, consider any two DAG-changing walks W = ⟨π1, ..., πm⟩ and W′ = ⟨τ1, ..., τn⟩
in Av where π1 = τ1. If W and W′ are both relative to the same (j, k) for some j, k ∈ v, then Gπm = Gτn .

Proof. Immediate from Definition C.1 and Lemma C.4. □

Lemma C.6 Given a graphoid P over V, consider any DAG-changing walk W = ⟨π1, ..., πm⟩ in Av which is relative to
(j, k) for some j, k ∈ v. Then j → k is a singular edge in Gπ1 .

Proof. Let W0 denotes the DAG-preserving walk ⟨π1, ..., πm−1⟩. Given that πm is (j, k)-different from πm−1, it follows
from Lemma B.3 and (RU) that (j → k) ∈ E(Gπm−1). Since W0 is a DAG-preserving walk in Av, we have (j → k) ∈
E(Gπ1) = E(Gπm−1).

Next, suppose by reductio that j → k is not a singular edge in Gπ1 . Then there is a directed path from j to k other than
j → k in Gπ1 . So there exists l ∈ v such that l ∈ De(j,Gπ1)∩An(k,Gπ1). In order to ensure that j and k are πm−1-adjacent,
either πm−1[l] < πm−1[j] or πm−1[l] > πm−1[k] holds. However, either case will violate that πm−1 is a causal order of
Gπm−1 = Gπ1 . □



Lemma C.7 Given a graphoid P over V, consider π ∈ Π(v) where (j → k) ∈ E(Gπ) is a singular edge for some j, k ∈ v.
Then there exists a DAG-changing walk W = ⟨π, ..., τ⟩ in Av relative to (j, k) where τ = tuck(π, j, k).

Proof. First, we rewrite π = ⟨δ<j , j, δj∼k, k, δ>k⟩ as usual. Then we partition δj∼k as follows: ζa = ⟨i ∈ δj∼k : i ∈
An(k,Gπ)⟩, and ζb = ⟨i ∈ δj∼k : i /∈ An(k,Gπ)⟩. Given that (j → k) is a singular edge, we know that De(j,Gπ1) ∩
An(k,Gπ1) = ∅. In other words, we know that (i) each vertex in ζa has no ancestor in δj∼k \ ζa in Gπ and (ii) each vertex
in ζb has no descendant in δj∼k \ ζb in Gπ .

Now consider the permutation τ ′ = ⟨δ<j , ζa, j, k, ζb, δ>k⟩ in particular. We want to show that there exists a DAG-
preserving walk from π to τ ′. Such a walk is easy to construct. First, perform repeated ATs by moving each i ∈ ζa prior to j
from left to right, and then repeated ATs by moving each i ∈ ζb behind k from right to left. The two sets of ATs are licensed
by (i) and (ii) respectively. Hence, we have Gτ ′ = Gπ . Finally, consider τ = tuck(π, j, k) = ⟨δ<j , ζa, k, j, ζb, δ>k⟩ which
is (j, k)-different from τ ′. By (RU) and Lemma B.3, we know that Gτ ̸= Gτ ′ and thus ⟨π, ..., τ ′, τ⟩ is a DAG-changing
walk in Av relative to (j, k). □

Theorem C.8 Given a graphoid P over V, consider any DAG-changing walk W = ⟨π1, ..., πm⟩ in Av which is relative to
(j, k) for some j, k ∈ v. Then Gπm = Gτ where τ = tuck(π1, j, k).

Proof. We obtain a DAG-changing walk W′ = ⟨π1, ..., τ⟩ in Av relative to (j, k) by Lemma C.7. Since both W and W′

are relative to the same (j, k), it follows from Lemma C.5 that Gπm = Gτ . □

Similar to the discussion in Appendix B, we want to fix the ordering of the set of singular edges in any DAG. This ensures
that ESP and unbounded GRasP1 will not yield different DAGs simply due to the issue of order-dependence. Below we
prove that ESP and unbounded GRaSP1 are equivalent algorithms.

Theorem C.9 Given a graphoid P and any initial permutation π ∈ Π(v), the DAG induced by the output of unbounded
GRaSP1 is equivalent to the DAG returned by ESP.

Proof. Consider any j, k ∈ v. By Lemma C.6 and Lemma C.7, every DAG-changing walk W = ⟨π1, ..., πm⟩ in Av

relative to (j, k) corresponds to a tuck operation of the singular edge j → k in E(Gπ1). Hence, by Lemma C.3, we know
that tuck(π1, j, k) corresponds to the neighboring relation between Gπ1 and Gπm in Av(P) that are (j, k)-reverse. Therefore,
every step taken by ESP to move to a neighboring state in Av(P) (relative to a unique pair of vertices) is equivalent to the
tuck operation taken by GRaSP1 over the same pair of vertices. □

D CAUSAL RAZORS AND GRASP

In this section, we first provide a logical analysis of the causal razors discussed in the main text.5 Then we construct new
causal razors with respect to each tier of GRaSP, and show how a higher tier of GRaSP requires a strictly weaker causal
razor.

Theorem D.1 The following statements are true:

(a) For any joint probability distribution P , uPm(P) = CFC(P) ⊆ uFr(P) ⊆ Fr(P) ⊆ Pm(P) ⊆ SGS(P).
(b) For any joint probability distribution P , if faithfulness is satisfied, CFC(P) = uFr(P) = Fr(P) = Pm(P).
(c) There exists a joint probability distribution s.t. CFC(P) ⊂ uFr(P).
(d) There exists a joint probability distribution s.t. uFr(P) ⊂ Fr(P).
(e) There exists a joint probability distribution s.t. Fr(P) ⊂ Pm(P).
(f) There exists a joint probability distribution s.t. Pm(P) ⊂ SGS(P).

5There are other causal razors discussed in the literature, including, but not limited to, adjacency-faithfulness and orientation-
faithfulness in [Ramsey et al., 2006], and triangle-faithfulness in Zhang [2013]. But they do not have a strong connection with our
discussion of GRaSP and so will not analyzed in this work.



Proof. For (a), uPm(P) = CFC(P) is our result in Theorem B.15. CFC(P) ⊆ uFr(P) is proven in [Raskutti and Uhler,
2018], uFr(P) ⊆ Fr(P) is true by Definition 3.3, Fr(P) ⊆ Pm(P) in [Forster et al., 2020], and Pm(P) ⊆ SGS(P) in
[Zhang, 2013]. (b) is a direct consequence of (a) and Theorem 3.8.

For (c), see [Raskutti and Uhler, 2018, Theorem 2.4]. For (d), see [Forster et al., 2020, Figure 6]. For (e), see [Raskutti
and Uhler, 2018, Theorem 2.5]. For (f), see [Zhang, 2013, Figure 2]. Additionally, the example in Theorem D.6 and its
corresponding Figure 2 verifies (c) and (e): G∗ ∈ uFr(P) \ CFC(P) and Gπ ∈ Pm(P) \ Fr(P). On the other hand, each of
Gπ1 ,Gπ2 ,Gπ3 , and Gπ4 in the DAG-associahedron in Figure 1 is in SGS(P) \ Pm(P) verifying (f). □

Definition D.2 (TSP-razor and ESP-razor) Given a graphoid P over V, let tsp(P, π) be the DAG returned by TSP on P by
setting π as the initial permutation. Define TSP(P) = {G ∈ DAG(V) : π ∈ Π(v) and G = tsp(P, π)} as the set of DAGs
returned by TSP on P over each initial permutation in Π(v). Further define

TSPr(P) = {G ∈ TSP(P) : ¬∃G′ ∈ TSP(P) s.t. G′ /∈ MEC(G)}.

(G∗,P) satisfies the TSP-razor if G∗ ∈ TSPr(P). Similarly for ESP, esp, ESP, ESPr, and ESP-razor.

One can observe that TSPr(P) = TSP(P) if every DAG in TSP(P) belongs to the same MEC, and TSPr(P) = ∅ otherwise.
The same is also true for ESPr(P) and ESP(P). These definitions will be proven useful when we compare them with the
classes of DAGs discussed in Theorem D.1. Below we provide a similar definition for each tier of GRaSP.

Definition D.3 (GRaSPt-razor) Given a graphoid P over V, for t ∈ {0, 1, 2}, define GRaSPt(P) = {Gτ ∈ DAG(V) : π ∈
Π(v) and τ = grasp(P, π, |v|, t)} as the set of DAGs returned by unbounded GRaSPt on P over each initial permutation
in Π(v). Further define

GRaSPtr(P) = {G ∈ GRaSPt(P) : ¬∃G′ ∈ GRaSPt(P) s.t. G′ /∈ MEC(G)}.

(G∗,P) satisfies the GRaSPt-razor if G∗ ∈ GRaSPtr(P).

Theorem D.4 Given a graphoid P , the following statement is true:

CFC(P) = TSPr(P) = GRaSP0r(P) ⊆ ESPr(P) = GRaSP1r(P) ⊆ GRaSP2r(P) ⊆ uFr(P).

Proof. CFC(P) = TSPr(P) = GRaSP0r(P) is directly entailed by Theorem 4.7 and Theorem 4.8. Solus et al. [2021]
showed that TSPr(P) ⊆ ESPr(P). ESPr(P) = GRaSP1r(P) is entailed by Theorem C.9.

Next, to show that GRaSP1r(P) ⊆ GRaSP2r(P), notice that GRaSP1r(P) = GRaSP1(P) when all DAGs in GRaSP1(P)
belong to the same MEC, and GRaSP1r(P) = ∅ otherwise. The latter case validates GRaSP1r(P) ⊆ GRaSP2r(P) trivially.
Now consider the former case where all DAGs in the non-empty GRaSP1(P) belong to the same MEC and so they have the
same number of edges. Now consider any π ∈ Π(v) satisfying Gπ ∈ Fr(P) (where Fr(P) is necessarily non-empty). We
know that Gπ ∈ GRaSP1(P). This is because every initial permutation in Π(v) is considered and unbounded GRaSP1 will
never return a denser permutation than its initial permutation. Hence, every DAG in GRaSP1(P) is the sparsest Markovian
DAG. (The same also holds when GRaSP2r(P) ̸= ∅.) Then the construction of Algorithm 2 entails that GRaSP2 will return
the same permutation as GRaSP1. Hence, GRaSP1r(P) = GRaSP2r(P) when all DAGs in GRaSP1(P) belongs to the same
MEC.

Lastly, to show that GRaSP2r(P) ⊆ uFr(P), we use a proof similar to the above. First, the case where GRaSP2r(P) = ∅
is trivial. Consider the case where GRaSP2r(P) = GRaSP2(P) s.t. all DAGs in GRaSP2(P) are in the same MEC. Using
a similar inference used in the last paragraph, we know that every DAG in GRaSP2(P) is the sparsest Markovian DAG.
Therefore, GRaSP2r(P) = uFr(P) when all DAGs in GRaSP2(P) belongs to the same MEC. □

Theorem D.5 There exists a graphoid P s.t. GRaSP0r(P) ⊂ GRaSP1r(P).

Proof. Given the equivalence between TSP and unbounded GRaSP0 shown in Theorem 4.7, and that between ESP and
unbounded GRaSP1 in Theorem C.9, we can borrow the example from [Solus et al., 2021] on how ESP requires a strictly
weaker causal razor than TSP. We refer the readers to Figure 3 in the supplementary materials of [Solus et al., 2021]. □

https://academic.oup.com/biomet/article-abstract/108/4/795/6062392?redirectedFrom=fulltext#supplementary-data


In the remainder of this section, we discuss two examples: how unbounded GRaSP2 requires a strictly weaker causal razor
than unbounded GRaSP1, and how unbounded GRaSP2 requires a strictly stronger causal razor than u-frugality. The joint
distribution of each example below is a compositional graphoid. For the sake of simplicity, we only include CI relations
that hold between two singleton sets of variables such that all other CI relations entailed by each of the graphoid axioms
discussed in Appendix A.2 are understood.

Theorem D.6 There exists a graphoid P s.t. GRaSP1r(P) ⊂ GRaSP2r(P).

Proof. Given V = {X1, ..., X4}, consider the unfaithful model (G∗,P) where the true DAG G∗ is shown on the left in
Figure 2, and I(P) = Φ ∪Ψ where Φ is the set of faithful CI relations and Ψ is the set of unfaithful CI relations as listed
below:

Φ = {ϕ1 = ⟨X1, X3 | {X2}⟩, ϕ2 = ⟨X2, X4 | {X1, X3}⟩};
Ψ = {ψ1 = ⟨X2, X4 |∅⟩}.

For every G ∈ CMC(P) where ψ1 ∈ I(G), we have 5 = |E(G)| > |E(G∗)| = 4. Also, all 4-edge Markovian DAGs are in the
same MEC. Hence, u-frugality is satisfied. Consider feeding the initial permutation π = ⟨2, 4, 1, 3⟩ to unbounded GRaSP1.
It will return the same π after the DFS procedure and the induced Gπ, as shown on the right in Figure 2, contains 5 edges.
Therefore, unbounded GRaSP1 fails to return the sparsest permutation under some initial permutation and GRaSP1r(P) = ∅.

On the contrary, |v|! = 24 initial permutations have been tested on unbounded GRaSP2 and it returns τ̂ where Gτ̂ ∈ MEC(G∗)
for each initial permutation. Hence, GRaSP2r(P) ̸= ∅. □

1

23

4

G∗

1

23

4

Gπ

Figure 2: An unfaithful model satisfying u-frugality. The true DAG G∗ is shown on the left where the two shaded
vertices indicate the unfaithful marginal independence X2 ⊥⊥P X4 |∅. Unbounded GRaSP1 returns its initial permutation
π = ⟨2, 4, 1, 3⟩. The induced DAG Gπ is shown on the right with 5 edges. However, unbounded GRaSP2 manages to return
one of the sparsest permutations under every initial permutation.

Theorem D.7 There exists a graphoid P s.t. GRaSP2r(P) ⊂ uFr(P).

Proof. The example below is one of the uDAGs studied in Table 1 in Section 5.1 where GRaSP2 fails to return one of the
sparsest permutations under u-frugality. Given V = {X1, ..., X5}, consider the unfaithful model (G∗,P) where the true
DAG G∗ is shown on the left in Figure 3, and I(P) = Φ ∪Ψ where Φ is the set of faithful CI relations and Ψ is the set of
unfaithful CI relations as listed below:

Φ = {ϕ1 = ⟨X1, X2 |∅⟩, ϕ2 = ⟨X1, X2 | {X3}⟩,
ϕ3 = ⟨X2, X3 |∅⟩, ϕ4 = ⟨X2, X3 | {X1}⟩,
ϕ5 = ⟨X2, X5 | {X1, X3, X4}⟩};

Ψ = {ψ1 = ⟨X1, X5 |∅⟩}.

For every G ∈ CMC(P) where ψ1 ∈ I(G), we have |E(G)| > |E(G∗)| = 7. Also, all 7-edge Markovian DAGs are in the same
MEC and there exists no sparser Markovian DAG. Hence, u-frugality is satisfied s.t. uFr(P) ̸= ∅.

Next, consider feeding the initial permutation π = ⟨5, 1, 3, 4, 2⟩ to unbounded GRaSP2. It will return the same π after the
DFS procedure and the induced Gπ , as shown on the right in Figure 3, contains 8 edges. Therefore, unbounded GRaSP2 fails
to return one of the sparsest permutations under some initial permutation and GRaSP2r(P) = ∅. □
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Figure 3: An unfaithful model satisfying u-frugality. The true DAG G∗ is shown on the left where the two shaded
vertices indicate the unfaithful marginal independence X1 ⊥⊥P X5 |∅. Unbounded GRaSP2 returns its initial permutation
π = ⟨5, 1, 3, 4, 2⟩. The induced DAG Gπ is shown on the right with 8 edges. Hence, GRaSP2 is not correct under u-frugality
alone.

Corollary 4.9 Given a graphoid P , unbounded GRaSP2 is correct under a strictly weaker causal razor than unbounded
GRaSP1, which is correct under a strictly weaker causal razor than unbounded GRaSP0.

E GROW-SHRINK ALGORITHM AND ITS PROPERTIES

Definition E.1 Given an observational dataset D with n i.i.d. observations from a joint probability distribution P over V
that belongs to a curved exponential family6, for every X ∈ V and every M ⊆ V \X ,

BICD(X,M) = ℓX|M(θ̂mle | D) + c
|θ̂mle|
2

log(n)

where ℓX|M is the conditional log likelihood function, |θ̂mle| is the absolute value of the maximum likelihood estimate, and c
is a multiplier for the parameter penalty.

BIC score is a decomposable scoring function in the sense that the BIC score of any DAG G (over the same set of variables
V as the observational dataset D), denoted as BICD(G), satisfies the following:

BICD(G) =
∑
i∈v

BICD(Xi,XPa(i,G)).

In addition, since we will be using BIC throughout this appendix, we assume that every joint probability distribution P
belongs to a curved exponential family in this section.

Algorithm 1: GROW: grow(D, X,Z)
Input: (a) D: an observational dataset over V; (b) X ∈ V; (c) Z ⊆ V \ {X}
Output: Mgr ⊆ Z

1 s← BICD(X,∅)
2 s′ ← s
3 Mgr ← ∅
4 do
5 s← s′

6 s′ ← maxY ∈Z\Mgr
BICD(X,Mgr ∪ {Y })

7 Y ′ ← argmaxY ∈Z\Mgr
BICD(X,Mgr ∪ {Y })

8 if s′ > s then
9 Mgr ←Mgr ∪ {Y ′}

10 while s′ > s
11 return Mgr

6See [Kass and Vos, 2011] for an in-depth analysis of curved exponential families.



Algorithm 2: SHRINK: shrink(D, X,Z)
Input: (a) D: an observational dataset over V; (b) X ∈ V; (c) Z ⊆ V \ {X}
Output: (i) Msh ⊆ Z; (ii) s = BICD(X,Msh)

1 s← BICD(X,Z)
2 s′ ← s
3 Msh ← Z
4 do
5 s← s′

6 s′ ← maxY ∈Msh
BICD(X,Msh \ {Y })

7 Y ′ ← argmaxY ∈Msh
BICD(X,Mgs \ {Y })

8 if s′ > s then
9 Msh ←Msh \ {Y ′}

10 while s′ > s
11 return Msh, s

Theorem E.2 [Chickering, 2002] Given an observational dataset D with n i.i.d. observations from a joint probability
distribution P over V, consider G,G′ ∈ DAG(V) where G′ is resulted from adding the edge j → k in G. In the large sample
limit of n,

(a) if Xj ⊥/⊥P Xk |XPa(k,G), then BICD(G′) > BICD(G);

(b) if Xj ⊥⊥P Xk |XPa(k,G), then BICD(G′) < BICD(G).

The theorem above is known as the local consistency of BIC score over DAGs. We can easily derive a lemma which concerns
the BIC score of a variable (relative to a set of variables).

Lemma E.3 Given an observational dataset D with n i.i.d. observations from a joint probability distribution P over V,
consider any distinct j, k ∈ v and i ⊆ v \ {j, k}. In the large sample limit of n,

(a) if Xj ⊥/⊥P Xk |Xi, then BICD(Xk,Xi ∪ {Xj}) > BICD(Xk,Xi);

(b) if Xj ⊥⊥P Xk |Xi, then BICD(Xk,Xi ∪ {Xj}) < BICD(Xk,Xi).

Proof. Construct a DAG G ∈ DAG(V) by drawing all and only directed edges from each vertex in i to k, and another DAG
G′ ∈ DAG(V) by adding j → k in G. Then the lemma immediately follows from Theorem E.2 and the decomposable
feature of BIC scores. □

Lemma E.4 Consider an observational dataset D with n i.i.d. observations from a compositional graphoid P over V. In
the large sample limit of n, for any X ∈ V and any Z ⊆ V \ {X}, MB(X,Z) ⊆Mgr where Mgr = grow(D, X,Z) ⊆ Z.

Proof. First, Algorithm 1 requires that Mgr ⊆ Z, and BICD(X,Mgr ∪ {Y }) < BICD(X,Mgr) for every Y ∈ Z \Mgr.
By Lemma E.3, we have X ⊥⊥P Y |Mgr for each Y ∈ Z \Mgr. By composition, we have X ⊥⊥P (Z \Mgr) |Mgr.
Therefore, by Definition A.1 and Lemma A.2, we have MB(X,Z) ⊆Mgr. □

Lemma E.5 Consider an observational dataset D with n i.i.d. observations from a graphoid P over V. In the large sample
limit of n, for any X ∈ V and any Z ⊆ V \ {X}, MB(X,Z) = Msh where Msh = shrink(D, X,Z) ⊆ Z.

Proof. We show the lemma by Msh ⊆ MB(X,Z) and Msh ⊇ MB(X,Z).

[⊆] By reductio, suppose that there exists Y ∈Msh ⊆ Z but Y /∈ MB(X,Z). Let S be Msh \ {Y }. Algorithm 2 requires
that BICD(X,Msh \ {Y }) < BICD(X,Msh). In other words, we have BICD(X,S) < BICD(X,S ∪ {Y }). By Lemma
E.3, we have X ⊥/⊥P Y |S.



Let W = S \ MB(X,Z). From Y /∈ MB(X,Z) and Y /∈ S, we have {Y } ∪W ⊆ Z \ MB(X,Z). Recall Definition A.1 that
X ⊥⊥P Z \ MB(X,Z) | MB(X,Z). Thus,

X ⊥⊥P {Y } ∪W | MB(X,Z) ∵ X ⊥⊥P Z \ MB(X,Z) | MB(X,Z), decomposition (12)
X ⊥⊥P Y | MB(X,Z) ∪W ∵ (12), weak union (13)
X ⊥⊥P Y |S ∵ (13),W = S \ MB(X,Z) (14)

Contradiction arises with X ⊥/⊥P Y |S.

[⊇] Observe that Algorithm 2 removes one variable in Z one at a time repeatedly to form Msh. Thus, the shrink-procedure
corresponds to a sequence of sets of variables ⟨M0, ...,Mk⟩ and a sequence of variables W = ⟨W1, ...,Wk⟩ = Z \Msh

such that M0 = Z, Mk = Msh, and Mi = Mi−1 \ {Wi} (where Wi ∈Mi−1) for each 1 < i ≤ k.

Notice that Mi−1 = Mi ∪ {Wi}. Algorithm 2 requires that BICD(X,Mi) > BICD(X,M
i−1) = BICD(X,Mi ∪ {Wi}).

We then have

X ⊥⊥P W1 |M1 ∵ BICD(X,M
1) > BICD(X,M

0),Lemma E.3 (15)

X ⊥⊥P W2 |M2 ∵ BICD(X,M
2) > BICD(X,M

1),Lemma E.3 (16)

X ⊥⊥P W1 |M2 ∪ {W2} ∵ (15),M1 = M2 ∪ {W2} (17)

X ⊥⊥P {W1,W2} |M2 ∵ (16), (17), contraction (18)
...

X ⊥⊥P {W1, ...,Wk} |Mk ∵ ..., contraction (19)

X ⊥⊥P W |Msh ∵ (19),W = ⟨W1, ...,Wk⟩ and Mk = Msh (20)
X ⊥⊥P Z \Msh |Msh ∵ (20),W = Z \Msh (21)

Hence, it follows from Definition A.1 that Msh ⊇ MB(X,Z). □

Theorem E.6 Consider an observational dataset D with n i.i.d. observations from a compositional graphoid P over
V. In the large sample limit of n, for any X ∈ V and any Z ⊆ V \ {X}, MB(X,Z) = Mgs where Mgs =
shrink(D, X, grow(D, X,Z)).

Proof. Immediate from Lemma E.4 and Lemma E.5. □

Theorem E.7 Consider an observational dataset D with n i.i.d. observations from a (compositional) graphoid P over V =
{X1, ..., Xm}, and any π ∈ Π(v). Let si and Mi be the score and the set of variables returned by shrink(D, Xi,XPre(i,π))
(or shrink(D, Xi, grow(D, Xi,XPre(i,π))) if P is a compositional graphoid) respectively. Denote sπ as

∑
i∈v si. In the

large sample limit of n, BICD(Gπ) = sπ where Gπ is induced from π by (VP).

Proof. Immediate from the decomposable feature of BIC scores, Lemma E.5 and Theorem E.6. □

Lastly, though a compositional graphoid is a sufficient condition for the correct identification of the unique Markov boundary
using the grow-shrink algorithm, we are aware of an assumption weaker than compositional graphoid to validate such an
identification. Nevertheless, this discussion will be beyond the scope of this paper and we will leave the formal proof to
future work.

F ADDITIONAL EXAMPLES

F.1 LU ET AL. COMPARISON

Reported below are average statistics obtained by running GRaSP2 on the published datasets used to generate Figure 6 in
[Lu et al., 2021]7. We cannot compare these results to Lu et al. precisely, since their statistics are given in figures and not

7https://github.com/ninalu/urlearning-cpp/tree/master/triplet_data

https://github.com/ninalu/urlearning-cpp/tree/master/triplet_data


exactly in tables, though judging from their figures it appears that GRaSP2 is dominating for adjacency precision and recall,
arrowhead recall, and most results for arrowhead precision. Timing results are not reported by Lu et al.; we include these to
show that GRASP2 returns quickly for all of these examples, where we know (personal communication) that some of the
results for Triple A∗ take much longer. Adjacencies in these graphs are sampled with uniform probability, “Edge-prob”.

Edge-prob 0.03 0.04 0.05 0.06 0.07 0.08
Precision 0.964 0.976 0.979 0.980 0.982 0.976

Recall 0.985 0.982 0.986 0.986 0.985 0.985
F1 0.974 0.979 0.983 0.983 0.983 0.980

Table 1: GRaSP2 Adjacency Statistics

Edge-prob 0.03 0.04 0.05 0.06 0.07 0.08
Precision 0.907 0.914 0.933 0.949 0.946 0.945

Recall 0.897 0.916 0.933 0.952 0.952 0.955
F1 0.898 0.913 0.932 0.950 0.948 0.950

Table 2: GRaSP2 Arrowhead Statistics

Edge-prob 0.03 0.04 0.05 0.06 0.07 0.08
Seconds 0.405 0.755 1.403 2.703 4.795 7.161

Table 3: GRaSP2 Timing Statistics

F.2 AIRFOIL EXAMPLE

Figure 4 gives the results of running GRaSP2, PC, and fGES on the Airfoil empirical example described in Section 6.
GRaSP2 gets the same uniquely frugal result as SP. To improve readability, we use the names of the variables (instead of
numerals) to label the vertices.

(a) GRaSP2 result

Attack

Velocity Chord

Pressure Displacement

Frequency

(b) fGES result

Attack

Velocity Chord

Pressure Displacement

Frequency

(c) PC result

Attack

Velocity Chord

Pressure Displacement

Frequency

Figure 4: Results of algorithms on NASA airfoil experiment.

Note that both the GRaSP2 and FGES results use the linear, Gaussian BIC score with a penalty multiplier of 2. For the
GRaSP2 result in (a), Attack is not exogenous, which is counter-intuitive, since it is experimentally controlled. Allowing for
latent variables could resolve this issues. However, we leave the development of such an algorithm to future work. On the
other hand, the FGES result in (b) is notably not the same as the SP result and so is not frugal. Also, the orientation between
Attack and Displacement is reversed.

The PC result in (c), which uses the zero partial correlation test with a significance level of 0.01, in fact has fewer edges
than the frugal result and makes Chord, another experimental variable, endogenous. Causally, PC is giving incorrect and
incomplete information.



G UNIT TESTS

We consider path cancellations in DAGs between pairs of vertices, one of which is exogenous, connected by two or more
unique treks. Furthermore, the path cancellations we consider elicit a marginal independence between the two vertices in
question. Below, we enumerate all possible path cancellations of this type (up to vertex relabeling). Each graph illustrates
a case where an unfaithful marginal independence is elicited between the two gray vertices due to path cancellation. A
complete list of all unfaithful CI relations (symmetry assumed) where the independent sets are singletons is also provided
for each graph.
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