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This supplementary material contains more detailed illustra-
tion of methods, implementation details and the network ar-
chitecture used in proposed method. In addition, we provide
additional experiments based on various affinity function.

1 EXAMPLE OF TARGET STATE TABLE
FOR EACH TARGETS

Figure 1 shows the whole possible case of target state and
corresponding event categorization. Figure 2 shows example
of target state for the ground-truth bounding boxes and the
corresponding detection boxes.

2 IMPLEMENTATION DETAILS

For reproducibility, here we provide additional implementa-
tion details including network architecture and hyperparam-
eters.

The proposed method was implemented using PyTorch
1.3 and tested on a six-core Intel i7@3.60 GHz CPU and
NVIDIA Titan Xp GPU environment. The training requires
4.6GB GPU memory storage and takes about 22-hours for
40 training epochs.

2.1 NETWORK ARCHITECTURE

We used an R-FCN architecture with SqueezeNet as the
backbone network for the MOTDT baseline and used the
Faster R-CNN detector with ResNet-101 and feature pyra-
mid networks (FPNs) Lin et al. [2017] as the backbone
network for the Tracktor baseline. The classification thresh-
old for target initialization was set to 0.3, and the maxi-
mum loss time for termination was set to 30 frames. The
association network for MOTDT uses GoogLeNet for the
association features, and the association network for the
Tracktor baseline was implemented based on the Siamese
CNN architecture trained on TriNet Hermans et al. [2017]

using ResNet-50. We followed the same tracking manage-
ment strategy baseline tracker excluding the association and
training steps. The minimum threshold value for the filtering
candidates was set to 0.4. We kill the missing target after
30 frames, without associating with any candidates. The
network was trained using stochastic gradient descent over
40 epochs with learning rates of ranging from 10−3 to 10−5.
The detailed network architectures are illustrated on Figure
3.

2.2 TRACKING MANAGEMENT

We followed the same tracking management strategy base-
line tracker excluding the association and training step. The
minimum threshold value for filtering candidates was set
to 0.4. We limited the possible change in the location to
1/10 of the diagonal length of the frame, and the possible
size change as 1/3 of the previous target size. We kill the
missing target after 30 frames, without associating with any
candidates.

2.3 TRAINING

The network was trained using stochastic gradient descent
over 40 epochs with learning rates of ranging from 10−3 to
10−5. We generated training samples from the 2D MOT2015
and MOT2017 training sets and split that into 7-fold to train
the network. We randomly selected two consecutive frames,
and run the simulation trackers to generate samples. We
fixed the network weight of DHN and re-identification layer
of baseline tracker. We set the α for event-aware loss as 0.5,
and β as 2.

3 EXPERIMENTS

In this section, we provide additional experimental results
including evaluation on MOT2020 dataset and test results
on various affinity function and loss hyperparameters.
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Figure 1: Process of assigning event for each detection box by associating with ground-truth boxes. If the ground-truth
box is undetected in the previous frame, we do not care about that box. If the box is detected in the previous frame and
undetected in the current frame, it is considered a missing target. If the target appears in the current frame, it is considered
a new target appearance. The disappeared target in ground-truth at current frame is considered a disappeared target. The
remaining detections that are not associated whether in previous and current frame are treated as false positives (FPs).

3.1 EVALUATION ON MOT2020 DATASET

he MOT2020 test dataset contains four test sequences, in-
cluding densely crowded scene. The results obtained for the
MOT2020 test dataset are reported in Table 1.

3.2 TEST RESULTS OF VARIOUS LOSS
WEIGHTING FACTOR

We trained proposed network using various loss weighting
factors. The results show that how each weighting factor
affect to each evaluation term, especially on FP and FN term.
In the results, we can see the balance of weight makes good
results and the FN factor have higher impact compared with
FP factor. The results are shown on Table 2.
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Figure 2: Example of target state table for each targets.

Table 1: Tracking Performance on the MOT2020 benchmark test set. Best in bold.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

GNNMatch 54.5 49.0 32.8 25.5 9522 223611 2038
Tracktor++v2 52.6 52.7 29.4 26.7 6930 236680 1648
SEAT (Tracktor++v2) 54.9 51.3 32.2 24.1 8509 223105 1877

Table 2: Training results of various loss weighting factor.

Loss weight MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
α = 0, β = 0 67.8 66.0 43.7 16.1 2771 32955 425
α = 0.5, β = 0 68.1 68.1 42.3 17.4 1007 34432 371
α = 1, β = 0 67.6 69.0 39.9 17.0 715 35295 337
α = 0, β = 0.5 68.7 69.5 42.8 17.5 2037 32818 425
α = 0, β = 1 68.9 70.2 45.6 16.8 1818 32707 379
α = 0, β = 2 69.0 70.1 45.0 16.7 1904 32522 305

α = 0.5, β = 0.5 69.2 69.9 45.2 16.3 1757 32563 388
α = 0.5, β = 2 69.3 71.8 45.6 16.5 2108 32078 297



Input Image Frame
Feature Map

Tracked Targets (t-1)

Detections (t)

Affinity 

Network 

(Siamese 

CNN)

Distance Matrix

DHN

Association Matrix

Answer 

Sheet

ResNet-101

(FPN)

Tracking

(Regression)

Classification

(Filtering)

Input Image Frame
Feature Map

Tracked Targets (t-1)

Detections (t)

Affinity 

Network 

(GoogLeNet)

Distance Matrix

DHN

Association Matrix

Answer 

Sheet

R-FCN

(SqueezeNet)

Tracking

(Kalman

Filter)

Classification

Figure 3: Network architectures of proposed methods.
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