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APPENDIX

APPENDIX A – PROOFS

PROOF OF LEMMA 1:.

Inserting qi = 0.5 and qj = 0.5 in (16) yields

ξ∗ij(0.5, 0.5) =
1

2αij

(
(1 + αij)−

√
(1 + αij)2 − αij(1 + αij)

)
=

1

2αij

(
(1 + αij)−

√
(1 + αij)

)
(15)
=

1

2
(
e4Jij − 1)

(e4Jij −
√
e4Jij

)
=

1

2

( e2Jij − 1

e2Jij − e−2Jij
)

=
1

4

(
tanh(Jij) + 1

)
=
σ(2 Jij)

2
.

PROOF OF LEMMA 2:.

Note first that one can interchange the role of qi and qj in the definition (16) of ξ∗ij due to symmetry. It is therefore sufficient
to consider only the left hand side equalities in (22) and (23). Let first qi → 0 and qj → k. From (9) we know that ξ∗ij is
bounded from above by min(qi, qj). As also ξ∗ij > 0, the first equality in (22) follows by continuity. Let now qi → 1 and
qj → k. Then the limit of both the lower bound and the upper bound in (9) equals k. Consequently, ξ∗ij must tend to k as
well, which yields the first equality in (23).

PROOF OF LEMMA 3:.

(a) We apply Lemma 1 of Dragomir et al. [2000] to the special case of binary random variables. For the upper bound, we
substitute the matching combinations of singleton and pairwise probabilities from table (1) into the right-hand formula
from (23):

I
(i,j)
B (qi, qj) ≤

(ξ∗ij)
2

qiqj
+

(qi − ξ∗ij)2
qi(1− qj)

+
(qj − ξ∗ij)2
(1− qi)qj

+
(1 + ξ∗ij − qi − qj)2

(1− qi)(1− qj)
− 1,
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and after a few simple algebraic manipulations we directly arrive at the desired result. Analogously, we derive the lower
bound by inserting the corresponding probabilities into the expression to the left of I(i,j)B in (23):

I
(i,j)
B (qi, qj) ≥

1

2

(
| ξ∗ij − qiqj | + | (1 + ξ∗ij − qi − qj)− (1− qi)(1− qj) |

+ | (qi − ξ∗ij)− qi(1− qj) |+ | (qj − ξ∗ij)− (1− qi)qj |
)2

Depending on whether we have an attractive or an repulsive edge, we either make us of result (a) or (b) in Lemma 2
and get rid of the absolute value symbols, after which – in both cases – the last expression simplifies to

1

2

(
4(ξ∗ij − qiqj)

)2
= 8(ξ∗ij − qiqj)2.

(b) According to 20, the boundary of the sliced Bethe Box B(i,j) is the union of four line segments

∂B(i,j) ={(qi, qj) ∈ R2 | qi = 0, 0 ≤ qj ≤ 1} ∪
{(qi, qj) ∈ R2 | qi = 1, 0 ≤ qj ≤ 1} ∪
{(qi, qj) ∈ R2 | 0 ≤ qi ≤ 1, qj = 0} ∪
{(qi, qj) ∈ R2 | 0 ≤ qi ≤ 1, qj = 1}.

Without loss of generality, we focus on the case where qi → 1 and qj → k for some k ∈ [0, 1]. The remaining cases
can be treated similarly. We further note that it is sufficient to prove the equality

lim
qi→1
qj→k

P̃ij(xi, xj) = lim
qi→1
qj→k

P̃i(xi)P̃j(xj) (1)

for all possible realizations xi, xj ∈ {+1,−1} of Xi, Xj , as this implies statistical independence of Xi and Xj at the
boundary and consequently their mutual information must equal zero in the limit. For checking equality (1), we utilize
Lemma 2. E.g., for xi = +1, xj = −1 we get

lim
qi→1
qj→k

P̃ij(+1,−1)
(1)
= lim

qi→1
qj→k

(qi − ξ∗ij(qi, qj))

(23)
= 1− k =

= lim
qi→1
qj→k

qi(1− qj)

(1)
= lim

qi→1
qj→k

P̃i(+1)P̃j(−1).

Analogous calculations for the three other possible combinations of xi, xj validate the statement.

PROOF OF LEMMA 4:.

(a) We utilize Lemma 3 of Welling and Teh [2001]. Then the first-order derivative of F \(i,j)B on B\(i,j) is

∂

∂qi
F
\(i,j)
B = −2 θi + 2

∑
k∈N(i)\j

Jij + log
( (1− qi)di−2

qdi−2i

∏
k∈N(i)\j

qi − ξ∗ij
1 + ξ∗ij − qi − qj

)
. (2)

Consequently, we obtain

∂

∂qi
∆F

(i,j)
B =

∂

∂qi
(FB − F

\(i,j)
B )

=
∂

∂qi
FB −

∂

∂qi
F
\(i,j)
B

= 2Jij+log
( (1− qi)(qi − ξ∗ij)
qi(1 + ξ∗ij − qi − qj)

)
.

(3)



(b) We can apply Theorem 1 from Weller and Jebara [2013]. Note, however, that we must also take the second derivatives
of the node entropies Si and Sj into account which are computed as

∂2

∂q2i
Si = − 1

qi(1− qi)
, (4)

∂2

∂q2j
Sj = − 1

qj(1− qj)
, (5)

and are zero for the cross derivatives. By definition, we have ∆F
(i,j)
B = ∆U

(i,j)
B + I

(i,j)
B = ∆U

(i,j)
B + Si + Sj − Sij .

Note that fij from Theorem 1 in Weller and Jebara [2013]corresponds precisely to ∆U
(i,j)
B − Sij . If we put these

observations together, the statement follows immediately.

PROOF OF LEMMA 5:.

The proof consists of two parts: in the first part, we show that (0.5, 0.5) is the only stationary point of ∆F
(i,j)
B on the sliced

Bethe box. In the second part, we show that the Hessian matrix∇2FB evaluated in (0.5, 0.5) is indefinite.

Part 1: Setting the gradient∇∆F
(i,j)
B with its components given by (3) to zero, leads to the following nonlinear equation

system:

2Jij + log
( qi − ξ∗ij − q2i + qiξ

∗
ij

qi + qiξ∗ij − q2i − qiqj

)
= 0

2Jij + log
( qj − ξ∗ij − q2j + qjξ

∗
ij

qj + qjξ∗ij − q2j − qiqj

)
= 0

which is equivalent to

e2Jij (qi − ξ∗ij − q2i + qiξ
∗
ij) = qi + qiξ

∗
ij − q2i − qiqj (6)

e2Jij (qj − ξ∗ij − q2j + qjξ
∗
ij) = qj + qjξ

∗
ij − q2j − qiqj . (7)

By subtracting (7) from (6), we can reduce the above system to one equation

(e2Jij − 1)(qj + qi)(qj − qi) + (−e2Jijξ∗ij − e2Jij + ξ∗ij + 1)(qj − qi) = 0. (8)

Note that (8) might possess additional solutions, that do not solve the original system (6) + (7); each solution of (8), however,
does also solve (6) + (7). Obviously all feasible pairs (qi, qj) such that qi = qj solve equation (8) and thus also (6) + (7).
Now assume that there exists a feasible solution to (8) with unequal components. If we divide (8) by (qj − qi) and simplify,
we end up with the contradictory result

(1 + ξ∗ij − qi − qj)︸ ︷︷ ︸
= P̃ij(Xi=−1,Xj=−1)> 0

(1− e2Jij )︸ ︷︷ ︸
6=0

= 0. (9)

Consequently, the only candidates for stationary points of ∆F
(i,j)
B on B(i,j) are those with equal components. This allows us

to substitute qi for qj in either of the two equations (6) + (7) and directly solve for qi. In other words, we must solve

e2Jij (qi − ξ∗ij − q2i + qiξ
∗
ij) − (qi + qiξ

∗
ij − 2q2i ) = 0,

or equivalently,

ξ∗ij =
(1− e2Jij )qi + (e2Jij − 2)q2i
−e2Jij − (1− e2Jij )qi

,

where we can replace ξ∗ij by formula (16) (with qj = qi):

(1 + 2αijqi)−
√

1 + 4αijqi(1− qi) = 2αij
(1− e2Jij )qi + (e2Jij − 2)q2i
−e2Jij − (1− e2Jij )qi︸ ︷︷ ︸

:=A



After isolating the radical and squaring both sides of the equation we get

(1 + αij)q
2
i − (1 + 2αijqi)A+ αijA

2 = 0,

which can be further simplified to
e2Jij (e2Jij − 1)(2qi − 1)(qi − 1)2

(qi + e2Jij − qie2Jij )2
= 0.

Finally, we multiply both sides by (qi+e
2Jij−qie2Jij )2

e2Jij︸︷︷︸
6=0

(e2Jij − 1)︸ ︷︷ ︸
6=0

(qi − 1)2︸ ︷︷ ︸
6=0

and end up with

2qi − 1 = 0 ⇒ qi = 0.5.

We conclude that (q̄i, q̄j) = (0.5, 0.5) is the only stationary point of ∆F
(i,j)
B .

Part 2: To compute the Hessian matrix∇2 ∆F
(i,j)
B , we use the second partial derivatives in (27) - (29). Lemma 1 provides

us with a simple expression of ξ∗ij evaluated in (0.5, 0.5). Furthermore, we make use of the relations

σ(2x)(1− σ(2x)) =
1

2
σ′(2x) =

1

4 cosh2(x)
(10)

and
(1− 2σ(2x)) = − tanh(x). (11)

Observe that

qiqj(1− qi)(1− qj)− (ξ∗ij − qiqj)2

=
1

16
−
(1

2
σ(2 Jij)−

1

4

)2
=

1

4
σ(2 Jij)

(
1− σ(2 Jij)

) (10)
=

1

16 cosh2(Jij)
.

(12)

Then the Hessian evaluated in (0.5, 0.5) is

∇2 ∆F
(i,j)
B (0.5, 0.5)

=

 1

σ(2 Jij)
(
1−σ(2 Jij)

) − 4
1−2σ(2 Jij)

σ(2 Jij)
(
1−σ(2 Jij)

)
1−2σ(2 Jij)

σ(2 Jij)
(
1−σ(2 Jij)

) 1

σ(2 Jij)
(
1−σ(2 Jij)

) − 4


(11),(12)

= 4

(
cosh2(Jij)− 1 − cosh2(Jij) tanh(Jij)

− cosh2(Jij) tanh(Jij) cosh2(Jij)− 1

)
= 4 sinh(Jij)

(
sinh(Jij) − cosh(Jij)
− cosh(Jij) sinh(Jij)

)
.

Finally, we compute the leading principal minors of the Hessian, i.e., the determinants of all upper left square submatrices.
The first leading principal minor is

|4 sinh2(Jij)| > 0. (13)

The second leading principal minor – and thus the determinant of the entire Hessian matrix – is

16 sinh2(Jij)
(

sinh2(Jij)− cosh2(Jij)
)︸ ︷︷ ︸

=−1

= − 16 sinh2(Jij) < 0.

(14)

Since the leading principal minors alternate in sign, starting with a positive number, it follows that the Hessian evaluated in
(0.5, 0.5) is indefinite.



PROOF OF LEMMA 6:.

We only prove the statement for attractive edges as the statement for repulsive edges can be proven analogously. Moreover,
we only consider the scenario that both qi, qj are > 0.5 (due to symmetry, the reverse scenario can be treated analogously).
Let B(i,j)

>0.5 ⊆ B(i,j) be the orthant of B(i,j) that consists of all points (qi, qj) with 0.5 < qi, qj < 1. We know from Lemma 5
that ∆F

(i,j)
B has no stationary point in B(i,j)

>0.5 and is thus bounded from above and below by the limit values of ∆F
(i,j)
B at

the boundary of B(i,j)
>0.5. If we can prove that all limit values of ∆F

(i,j)
B at the boundary of B(i,j)

>0.5 are at most zero, then the
statement follows immediately (as ∆F

(i,j)
B is continuous in the interior of B(i,j)).

The boundary of B(i,j)
>0.5 consists of four line segments. Let us first consider the line segments that connect (0.5, 1) to (1, 1)

and (1, 0.5) to (1, 1). In the proof of Theorem 1 it is shown1 that

lim
qi→0.5
qj→1

∆F
(i,j)
B (qi, qj) = 0,

lim
qi→1
qj→0.5

∆F
(i,j)
B (qi, qj) = 0,

lim
qi→1
qj→1

∆F
(i,j)
B (qi, qj) = −Jij ,

and that ∆F
(i,j)
B (qi, qj) is monotonically decreasing from (0.5, 1) to (1, 1) and from (1, 0.5) to (1, 1). Consequently the

statement for these two line segments is correct.

Now consider the two remaining line segments, i.e., that connect (0.5, 0.5) to (0.5, 1) and (0.5, 0.5) to (1, 0.5). Due to
symmetry, we can again focus on the first case. Let us explicitly compute the value of ∆F

(i,j)
B (qi, qj) in (0.5, 0.5). For that

purpose, we must first evaluate the pairwise entropy Sij in (0.5, 0.5), where we utilize Lemma 1:

Sij(0.5, 0.5) =− σ(2 Jij)

2
log(

σ(2 Jij)

2
) + (

σ(2 Jij)

2
) log(

σ(2 Jij)

2
)− 2(0.5− σ(2 Jij)

2
) log(0.5− σ(2 Jij)

2
)

=− 2(0.5− σ(2 Jij)

2
) log(0.5− σ(2 Jij)

2
).

Then we obtain

∆F
(i,j)
B (0.5, 0.5) = (−1− 2(2ξ∗ij(0.5, 0.5)− 0.5− 0.5))Jij +

=log(2)︷ ︸︸ ︷
Si(0.5) +

=log(2)︷ ︸︸ ︷
Sj(0.5)− Sij(0.5, 0.5)

= − Jij + 2Jij(1− σ(2Jij)) + log(2) + σ(2Jij) log(
σ(2Jij)

1− σ(2Jij)
) + log(1− σ(2Jij))

= Jij + log(2) + log(1− σ(2Jij))

= log(2eJij (1− σ(2Jij)))

= log(sech(Jij)) < 0.

If we can finally show that ∆F
(i,j)
B is monotonically increasing from (0.5, 0.5) to (0.5, 1), then the statement of the

Lemma follows. By an analogous calculation as in the proof of Lemma 5, we can conclude that the (one-dimensional)
function ∆F

(i,j)
B (0.5, qj) has no stationary point for qj ∈ (0.5, 1) and must therefore be monotonically increasing (as

∆F
(i,j)
B (0.5, 0.5) < 0 and lim

qi→0.5
qj→1

∆F
(i,j)
B (qi, qj) = 0).

1Note that these results follow independently from the current statement and can therefore be utilized, although Theorem 1 appears
chronologically later in this work than Lemma 6.



PROOF OF THEOREM 1:.

By Lemma 5, the Bethe energy difference function does not have any local optima and hence both its greatest lower bound
and least upper bound must be located at the boundary of the sliced Bethe box. As in the proof of Lemma 3 (b), we denote
this boundary by ∂B(i,j). Let further B(i,j) = B(i,j) ∪̇ ∂B(i,j) be the closure of B(i,j) and

∆F
(i,j)
B (qi, qj) := lim

(qi,qj)→B(i,j)

∆F
(i,j)
B (qi, qj) (15)

be the analytic continuation of ∆F
(i,j)
B to B(i,j). Without loss of generality, we assume (i, j) to be an attractive edge (the

calculations for a repulsive edge can be done analogously). We utilize Lemma 2 and Lemma 3 (b) to compute the limit
values of ∆F

(i,j)
B (qi, qj) at the four corner points of B(i,j):

lim
qi→0
qj→0

∆F
(i,j)
B (qi, qj)

= lim
qi→0
qj→0

∆U
(i,j)
B (qi, qj) +

=0︷ ︸︸ ︷
lim
qi→0
qj→0

I
(i,j)
B (qi, qj)

= lim
qi→0
qj→0

− (1 + 2 (2 ξij − qi − qj)) Jij)

=− Jij − lim
qi→0
qj→0

2Jij (

→ 0︷︸︸︷
2ξij −

→ 0︷︸︸︷
qi −

→ 0︷︸︸︷
qj ))

=− Jij ,

lim
qi→0
qj→1

∆F
(i,j)
B (qi, qj)

=− Jij − lim
qi→0
qj→1

2Jij (

→ 0︷︸︸︷
2ξij −

→ 0︷︸︸︷
qi −

→ 1︷︸︸︷
qj ))

= Jij ,

lim
qi→1
qj→0

∆F
(i,j)
B (qi, qj)

=− Jij − lim
qi→1
qj→0

2Jij (

→ 0︷︸︸︷
2ξij −

→ 1︷︸︸︷
qi −

→ 0︷︸︸︷
qj ))

= Jij ,

lim
qi→1
qj→1

∆F
(i,j)
B (qi, qj)

=− Jij − lim
qi→1
qj→1

2Jij (

→ 2︷︸︸︷
2ξij −

→ 1︷︸︸︷
qi −

→ 1︷︸︸︷
qj ))

=− Jij .

For the remainder of the proof, we observe that ∆F
(i,j)
B exhibits monotonic behavior between the corner points of B(i,j).



On the one hand, it is monotonically increasing over the two line segments that connect (0, 0) to (0, 1) and (0, 0) to (1, 0):

∆F
(i,j)
B (0, k) = lim

qi→0
qj→k

∆F
(i,j)
B (qi, qj)

= −Jij − lim
qi→0
qj→k

2Jij (

→ 0︷︸︸︷
2ξij −

→ 0︷︸︸︷
qi −

→ k︷︸︸︷
qj ))

= −Jij + 2kJij

= Jij (2k − 1)

and

∆F
(i,j)
B (k, 0) = −Jij − lim

qi→k
qj→0

2Jij (

→ 0︷︸︸︷
2ξij −

→ k︷︸︸︷
qi −

→ 0︷︸︸︷
qj ))

= −Jij + 2kJij

= Jij (2k − 1),

with both expressions being monotonically increasing if k increases in [0, 1]. On the other hand, it is monotonically
decreasing over the two line segments that connect (0, 1) to (1, 1) and (1, 0) to (1, 1):

∆F
(i,j)
B (k, 1) = −Jij − lim

qi→k
qj→1

2Jij (

→ 2k︷︸︸︷
2ξij −

→ k︷︸︸︷
qi −

→ 1︷︸︸︷
qj ))

= Jij − 2kJij

= Jij(1− 2k)

and

∆F
(i,j)
B (1, k) = −Jij − lim

qi→1
qj→k

2Jij (

→ 2k︷︸︸︷
2ξij −

→ 1︷︸︸︷
qi −

→ k︷︸︸︷
qj ))

= Jij − 2kJij

= Jij(1− 2k)

with both expressions being monotonically decreasing if k increases in [0, 1]. By this, we conclude that

min
(qi,qj)∈B(i,j)

∆F
(i,j)
B (qi, qj) = −Jij

and

max
(qi,qj)∈B(i,j)

∆F
(i,j)
B (qi, qj) = Jij .

According to the definition (15) of ∆F
(i,j)
B and in consequence of our previous observations, the statements (31), (32), and

hence (30) follow immediately.

PROOF OF COROLLARY 1:.

This is an immediate consequence of Theorem 1.



PROOF OF THEOREM 2:.

We prove that the derivative of ||∆F
(i,j)
B ||2L2 with respect to Jij is larger than 0 if Jij > 0, and smaller than 0 if Jij < 0.

Recall that we assume FB to be defined on the local polytope instead of the Bethe box (this implies also that ∆F
(i,j)
B is

defined on the sliced local polytope L (i,j) 19). We compute

∂

∂Jij
||∆F

(i,j)
B ||2L2 (16)

=
∂

∂Jij

∫∫∫
L (i,j)

(∆F
(i,j)
B )2dξijdqidqj (17)

=

∫∫∫
L (i,j)

∂

∂Jij
(∆F

(i,j)
B )2dξijdqidqj (18)

=

∫∫∫
L (i,j)

2 ·∆F
(i,j)
B · ∂

∂Jij
∆F

(i,j)
B dξijdqidqj (19)

Now observe that ∂
∂Jij

∆F
(i,j)
B = ∂

∂Jij
(∆U

(i,j)
B + I

(i,j)
B ) (this is just the definition of ∆F

(i,j)
B (18)), and that the mutual

information on the sliced local polytope is independent of Jij . Consequently ∂
∂Jij

I
(i,j)
B = 0. We continue with (19) and

split the integral:

2

∫∫∫
L (i,j)

(∆U
(i,j)
B + I

(i,j)
B ) · ∂

∂Jij
∆U

(i,j)
B dξijdqidqj

= 2

∫∫∫
L (i,j)

∆U
(i,j)
B · ∂

∂Jij
∆U

(i,j)
B dξijdqidqj

︸ ︷︷ ︸
(I.)

+ 2

∫∫∫
L (i,j)

I
(i,j)
B · ∂

∂Jij
∆U

(i,j)
B dξijdqidqj

︸ ︷︷ ︸
(II.)

The integral (I.) can be simplified, as

∂

∂Jij
∆U

(i,j)
B = −1− 2 (2ξij − qi − qj) =

1

Jij
∆U

(i,j)
B

and therefore

(I.) = Jij

∫∫∫
L (i,j)

(−1− 2(2ξij − qi − qj))2dξijdqidqj ,

which is larger than 0 for Jij > 0 and smaller than 0 for Jij < 0.

It remains to prove that the integral (II.) is equal to zero. It is sufficient to consider the integral over the halfspace of the
sliced local polytope where qi < qj (due to symmetry, the integral over the other halfspace where qi > qj is equal to the



first). We can split this halfspace in four ’sub-polytopes’:

L (i,j)
1 : {(qi, qj , ξij) ∈ L (i,j) :

0 < qj ≤
1

2
, 0 < qi ≤ qj , 0 < ξij < qi}

L (i,j)
2 : {(qi, qj , ξij) ∈ L (i,j) :

1

2
≤ qj < 1, 0 < qi ≤ 1− qj , 0 < ξij < qi}

L (i,j)
3 : {(qi, qj , ξij) ∈ L (i,j) :

1

2
≤ qj < 1, 1− qj ≤ qi ≤

1

2
,

qi + qj − 1 < ξij < qi}
L (i,j)
4 : {(qi, qj , ξij) ∈ L (i,j) :

1

2
≤ qj < 1,

1

2
≤ qi ≤ qj ,

qi + qj − 1 < ξij < qi}

(20)

We show that, for each point (q
(1)
i , q

(1)
j , ξ

(1)
ij ) in L (i,j)

1 we can find a point (q
(2)
i , q

(2)
j , ξ

(2)
ij ) in L (i,j)

2 such that the value of

the integrand I (i,j)
B · ∂

∂Jij
∆U

(i,j)
B of (II.) in (q

(2)
i , q

(2)
j , ξ

(2)
ij ) is precisely the negative of the value that I (i,j)

B · ∂
∂Jij

∆U
(i,j)
B

takes in (q
(1)
i , q

(1)
j , ξ

(1)
ij ). To this end, we map (q

(1)
i , q

(1)
j , ξ

(1)
ij ) from L (i,j)

1 to (q
(1)
i , 1− q(1)j , q

(1)
i − ξ

(1)
ij ) in L (i,j)

2 .

Then one can check that

∆U
(i,j)
B (q

(1)
i , 1− q(1)j , q

(1)
i − ξ

(1)
ij )

= −∆U
(i,j)
B (q

(1)
i , q

(1)
j , ξ

(1)
ij )

and

I
(i,j)
B (q

(1)
i , 1− q(1)j , q

(1)
i − ξ

(1)
ij )

= I
(i,j)
B (q

(1)
i , q

(1)
j , ξ

(1)
ij ),

and consequently

I
(i,j)
B · ∂

∂Jij
∆U

(i,j)
B (q

(1)
i , 1− q(1)j , q

(1)
i − ξ

(1)
ij )

= −I (i,j)
B · ∂

∂Jij
∆U

(i,j)
B (q

(1)
i , q

(1)
j , ξ

(1)
ij ).

As our so defined mapping is bijective, we conclude that the integral (II.) over L (i,j)
2 is exactly the negative of the integral

(I.) over L (i,j)
1 . Similarly, we can define a bijective mapping between L (i,j)

3 and L (i,j)
4 with the same result. We summarize,

that the integral (II.) over the entire sliced local polytope equals to zero, which completes the proof.

PROOF OF THEOREM 3:.

If ZB = ZB
\(i,j), the statement is trivial and we will therefore exclude this scenario. According to Theorem 1, each edge

contributes less than ±Jij to the ’overall’ Bethe function and removing an edge can only transpose the individual function
values by less than |Jij |. This means that for all q ∈ B,

|FB(q)− F
\(i,j)
B (q)| = |∆F

(i,j)
B (qi, qj)| < |Jij |. (21)

In particular, this is also valid for the global minimizer q∗1 of FB as well as for the global minimizer q∗2 of F\(i,j)B . We now
distinguish between two cases:
Case 1: ZB > ZB

\(i,j), or equivalently, FB(q∗1) < F
\(i,j)
B (q∗2). Then

0 < F
\(i,j)
B (q∗2)− FB(q∗1) < F

\(i,j)
B (q∗1)− FB(q∗1)

(21)
< |Jij |.



Case 2: ZB < ZB
\(i,j), or equivalently, FB(q∗1) > F

\(i,j)
B (q∗2). Then

0 < FB(q∗1)− F
\(i,j)
B (q∗2) < FB(q∗2)− F

\(i,j)
B (q∗2)

(21)
< |Jij |.

Together, we finally obtain

|Jij | > |FB(q∗1)− F
\(i,j)
B (q∗2)|

= |min
q∈B

FB −min
q∈B

F
\(i,j)
B | =

= |log(ZB)− log(ZB
\(i,j))|

=

∣∣∣∣ log
( ZB

ZB
\(i,j)

)∣∣∣∣.

PROOF OF THEOREM 4:.

Without loss of generality, we assume that all θi are larger than 0.5. From Lemma 4 [Knoll et al., 2021] we know, that the
global minimum − log(ZB) of FB must be located in a point of B where all components qi are larger than 0.5. If we remove
an edge, we obtain again a unidirectional model that satisfies the same property. By Lemma 6, we then know that the global
minimum of FB in the new model must be larger than the global minimum in the old model, i.e.,

− log(ZB) < − log(ZB
\(i,j)) (22)

(as the removed energy difference function ∆F
(i,j)
B makes in the original model a negative contribution to the energy of

all points q ∈ B with qi, qj > 0.5 – in particular, to the global minimum of the new model). Finally, we apply Theorem 2
from Ruozzi [2012] which says that in attractive models, the Bethe partition function is always a lower bound to the true
partition function, i.e., − log(Z) < − log(ZB). Together with (22), we conclude

|− log(Z) + log(ZB)| < |− log(Z) + log(ZB
\(i,j))|,

which is equivalent to the statement.

APPENDIX B – RESULTS FROM RELATED WORK

Lemma 1. Let X,Y discrete random variables with alphabets X,Y. Their mutual information I(X;Y ) is bounded by

1

2

( ∑
(x,y)∈X×Y

|pXY (x, y)− pX(x)pY (y)|
)2 ≤ I(X;Y ) ≤

∑
(x,y)∈X×Y

p2XY (x, y)

pX(x)pY (y)
− 1. (23)

Proof. Corollary 1 and 2 in Dragomir et al. [2000].

Lemma 2.

(a) If (i, j) is an attractive edge (i.e., Jij > 0), then ξ∗ij > qiqj .

(b) If (i, j) is an repulsive edge (i.e., Jij < 0), then ξ∗ij < qiqj .

Proof. Lemma 2 in Weller and Jebara [2013].

Lemma 3. The first-order derivatives of the Bethe free energy FB on the Bethe box B are

∂

∂qi
FB = −2 θi + 2

∑
j∈N(i)

Jij + log
( (1− qi)di−1

qdi−1i

∏
j∈N(i)

qi − ξ∗ij
1 + ξ∗ij − qi − qj

)
. (24)

Proof. This is an intermediate result in Welling and Teh [2001].



Theorem 1. The second partial derivatives of edge specific Bethe terms of the form

fij(qi, qj) = − (1 + 2 (2 ξij − qi − qj)) Jij − Sij (25)

are calculated as

∂2

∂q2i
fij =

qj(1− qj)
Tij

, (26)

∂2

∂qiqj
fij =

∂2

∂qjqi
fij =

qiqj − ξ∗ij
Tij

, and (27)

∂2

∂q2j
fij =

qi(1− qi)
Tij

, (28)

where Tij := qiqj(1− qi)(1− qj)− (ξ∗ij − qiqj)2.

Proof. Theorem 10 in Weller and Jebara [2013].

Lemma 4. Consider a unidirectional model and assume without loss of generality that θi > 0.5. Then, in the global
minimum q∗ of FB all components qi are > 0.5.

Proof. Lemma 2 in Knoll et al. [2021].

Theorem 2. For an attractive model with binary variables, the Bethe partition function is always a lower bound on the true
partition function. That is,

ZB ≤ Z,

or equivalently,
min
M

F = − log(Z) ≤ − log(ZB) = min
L

FB .

Proof. Theorem 4.1 in Ruozzi [2012].

APPENDIX C – FURTHER EXPERIMENTS

Here we present supplementary experiments that we have performed on a (non-toroidal) 5× 5-grid graph. The experimental
setting is the same as in Sec. 4. Again, we observe the beneficial effects of edge removal on the approximated marginals. In
this sparser model, the treshold beyond which the Bethe free energy becomes non-convex and the accuracy of BP degrades is
larger than for the fully connected graph considered in Sec. 4. Beyond that treshold, edge removal is particularly effective if
the local potentials are weak; but also for models with strong local potentials the results are mostly superior to the marginal
accuracy of BP in the original model. For attractive models with strong local potentials, we observe again the presence of a
’channel’ that specifies an optimal intermediate model state.
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Figure 1: Attractive models (5x5 - grid graph). First row: θi ∈ [−0.2, 0.2]; second row: θi ∈ [−0.5, 0.5]. (a) + (c):
BETHE-OPT criterion; (b) + (d): CHOW LIU criterion.

0.5 1 1.5 2
0

5

10

15

Ĵ
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Figure 2: General models (5x5 - grid graph). First row: θi ∈ [−0.2, 0.2]; second row: θi ∈ [−0.5, 0.5]. (a) + (c): BETHE-OPT
criterion; (b) + (d): CHOW LIU criterion.


