
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
(Supplemental Material)

Alexander K. Lew1 Marco Cusumano-Towner1 Vikash K. Mansinghka1

1Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

SUPPLEMENTARY MATERIAL FOR “RECURSIVE MONTE CARLO AND VARIATIONAL
INFERENCE WITH AUXILIARY VARIABLES”

This document and the accompanying code files contain supplementary material for the submission “Recursive Monte Carlo
and Variational Inference with Auxiliary Variables.” In particular, we provide:

1. In Section A, proofs of Theorems 1-4.

2. In Section B, RAVI inference strategies for many existing algorithms.

3. In Section C, a further discussion of the absolute continuity requirements for RAVI and how they can be relaxed.

4. In Section D, other applications of RAVI inference strategies, to parameterize rejection sampling and KL divergence
estimation algorithms.

A OMITTED PROOFS.

Throughout this section, we use the notation introduced in Section 4: the random variable Ẑ(π̃,S) is the weight returned by
IMPORTANCE(π̃,S), and Ž(π̃,S) is the reciprocal of the weight returned by HME(π̃, x,S), for x ∼ π.

A.1 PROOF OF THEOREM 1.

Theorem 1. Let π̃(x) = Zπ(x) be an unnormalized target density, and S an inference strategy targeting π(x). Then:

• IMPORTANCE(S, π̃) generates (x, Ẑ) with x ∼ S.q and E[Ẑ | x] = Z π(x)
S.q(x) . Furthermore, the unconditional

expectation E[Ẑ(π̃,S)] = Z.

• E[Ž(π̃,S)−1] = Ex∼π[HME(S, x, π̃)] = Z−1.

Proof. The proof is by induction on the level of nesting present in the inference strategy.

First consider the case where S.q has a tractable marginal density. Then:

• IMPORTANCE samples x ∼ S.q on line 2, and computes Ẑ = π̃(x)
S.q(x) = Z π(x)

S.q(x) exactly (lines 3 and 7). By the standard

importance sampling argument, the unconditional expectation E[Ẑ(π̃,S)] = Ex∼S.q[Z π(x)
S.q(x)] = ZEx∼π[1] = Z.

(This argument relies on the fact that, because S targets π, π is absolutely continuous with respect to S.q.)

• HME(S, x, π̃) returns exactly S.q(x)
π̃(x) (lines 2 and 5), and

Ex∼π
[
S.q(x)

π̃(x)

]
=

∫
π(x)

S.q(x)

Zπ(x)
dx =

1

Z

∫
S.q(x)dx =

1

Z
,

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<alexlew@mit.edu>?Subject=Your UAI 2022 paper
mailto:<marcoct@mit.edu>?Subject=Your UAI 2022 paper
mailto:<vkm@mit.edu>?Subject=Your UAI 2022 paper

where the last step follows because S.q is a normalized probability density, and S.q is absolutely continuous with
respect to π.

Now consider the inductive step. Assume S.q(x) =
∫
S.q(r, x)dr and that for all x, the theorem holds for the inference

strategy S.M(x) and the unnormalized target distribution S.q(·, x). In this case:

• On line 5, IMPORTANCE generates x ∼ S.q and r ∼ S.q(r | x). In the call to HME, the unnormalized target
distribution is S.q(·, x), and so the normalizing constant is S.q(x) and the normalized target is S.q(r | x). By the
inductive hypothesis, the call to HME on line 6 returns an unbiased estimate of the normalizing constant’s reciprocal, i.e.
E[w | x] = 1

S.q(x) . Since IMPORTANCE returns Ẑ = wπ̃(x) on line 7, this implies that E[Ẑ | x] = π̃(x)
S.q(x) = Z π(x)

S.q(x) .
From this, the same standard importance sampling argument as above shows that the unconditional expectation
E[Ẑ(π̃,S)] = Z.

• On line 4, HME calls IMPORTANCE on the unnormalized target S.q(·, x), and so by the inductive hypothesis, E[w] =

S.q(x) (the normalizing constant). On line 5, the returned weight has expectation Ex∼π
[

w
π̃(x)

]
= 1

Z

∫
π(x)·S.q(x)

π(x) dx =
1
Z , where the last equality again follows because S.q is a normalized density, and S.q is absolutely continuous with
respect to π.

A.2 PROOF OF THEOREM 2

Lemma A.1. For an inference strategy S targeting p(x | y), if S.q(x) =
∫
S.q(r, x)dr has an intractable marginal density,

then:
L(p, y,S) = Ex∼S.q[log p(x, y)− U(S.q, x,S.M(x)]

and
U(p, y,S) = Ex∼p(·|y)[log p(x, y)− L(S.q, x,S.M(x))]

Proof. For the first conclusion,

L(p, y,S) = E[log Ẑ(p(· | y),S)] (1)

= E
[
log

p(x, y)

Ž(S.q(·, x),S.M(x))

]
(2)

= Ex∼S.q[E[log p(x, y)− log Ž(S.q(·, x),S.M(x)) | x]] (3)

= Ex∼S.q[log p(x, y)− E[log Ž(S.q(·, x),S.M(x)) | x]] (4)
= Ex∼S.q[log p(x, y)− U(S.q, x,S.M(x))] (5)

The same approach, but with E[log Ž], can be used to prove the other conclusion.

Theorem 2. Given a model pθ(x, y) and an inference strategy Sθ targeting pθ(x | y), Alg. 3 yields unbiased estimates of
L(p, y,S) and of ∇θL(p, y,S). Furthermore, when (x, y) ∼ pθ, Alg. 4 yields (i) Û such that E[Û | y] = U(p, y,S), (ii)
∇̂θ such that E[∇̂θ] = ∇θEy∼pθ [U(p, y,S)], and (iii) a value g such that for any function R that does not depend on θ,
E[g ·R(y)] = ∇θEy∼pθ [R(y)] if ∇θEy∼pθ [R(y)] is defined.

Proof. The proof is by induction on the level of nesting present in the inference strategy.

First consider inference strategies S with tractable proposals S.q(x). In this case ELBO∇ generates x ∼ S.q and returns
L̂ = log p(x, y)− logS.q(x) and ∇̂θ = ∇θ(log p(x, y)− logS.q(x))+(∇θ logS.q(x))(log p(x, y)− logS.q(x)). Clearly,
Ex∼S.q[L̂] = E[log Ẑ(p(·, y),S)] = L(p, y,S). And by the log-derivative trick, Ex∼S.q[∇̂θ] = E[∇θ(log p(x, y) −
logS.q(x))] = E[L(p, y,S)]. When we apply EUBO∇ to S with (x, y) ∼ p, it returns (1) Û = log p(x, y) − logS.q(x)

(for which E[Û | y] = U(p, y,S)), (2) ∇̂θ = ∇θ(log p(x, y)− logS.q(x)) +∇θ log p(x, y)(log p(x, y)− logS.q(x)) (for
which, by the log-derivative trick, E[∇̂θ] = ∇θEy∼p[U(p, y,S)]), and (3) g = ∇θ log p(x, y). This last return value satisfies
the spec for g because ifR does not depend on θ, then E(x,y)∼p[R(y)·∇θ log p(x, y)] =

∫ ∫
p(x, y)·∇θp(x,y)

p(x,y) ·R(y)dxdy =

∇θ
∫ ∫

p(x, y)R(y)dxdy = ∇θE[R(y)], as required.

Now consider the inductive step. Assume the theorem holds for the inference strategy S.M(x) and joint distribution
S.q(r, x).

We first consider ELBO∇. It generates (r, x) ∼ S.q before calling EUBO∇, which by induction returns (Û , ∇̂θ,g) such
that:

1. E[Û | x] = U(S.q, x,S.M(x))

2. E[∇̂θ] = ∇θEx∼S.q[U(S.q, x,S.M(x))]

3. E[g ·R(x)] = ∇θEx∼S.q[R(x)] for all valid R.

ELBO∇ computes its first return value, L̂, as log p(x, y)− Û , so

E[L̂] = E[log p(x, y)− Û]

= Ex∼S.q[E[log p(x, y)− Û | x]]

= Ex∼S.q[log p(x, y)− E[Û | x]]

= Ex∼S.q[log p(x, y)− U(S.q, x,S.M(x))]

= L(p, y,S),

where the fourth equality holds by the inductive hypothesis and the final one by Lemma 1. Its second return value is
computed as ∇̂θ

′
= ∇θ log p(x, y) + g log p(x, y)− ∇̂θ, and so

E[∇̂θ
′
] = E

[
∇θ log p(x, y) + g · log p(x, y)− ∇̂θ

]
= E [∇θ log p(x, y)] +∇θEx∼S.q[log p (x, y)]−∇θEx∼S.q[U(S.q, x,S.M(x))]

= ∇θE [log p(x, y)]−∇θEx∼S.q[U(S.q, x,S.M(x))]

= ∇θEx∼S.q[log p(x, y)− U(S.q, x,S.M(x))]

= ∇θL(p, y,S),

where p (x, y) denotes the distribution p(x, y) but without a dependence on θ, for the purposes of differentiation with

respect to θ. The second equality holds by the inductive hypothesis about g (with R(x) = log p (x, y)) and about ∇̂θ, and
the third uses the log-derivative trick. The final equation is due to Lemma 1.

We now turn to EUBO∇. By induction, the call to ELBO∇ satisfies the theorem, and so:

1. E[L̂] = L(S.q, x,S.M(x))

2. E[∇̂θ] = ∇θL(S.q, x,S.M(x))

We treat each of the return values, (Û , ∇̂θ,g), in sequence. We view them as random variables, accounting for stochasticity
in the algorithm as well as the inputs (x, y), which are assumed in the theorem’s statement to be jointly distributed according
to p.

First, Û is computed as log p(x, y)− L̂, and so

E[Û |y] = Ex∼p(·|y)[E[log p(x, y)− L̂|x, y]]

= Ex∼p(·|y)[log p(x, y)− L(S.q, x,S.M(x))]

= U(p, y,S).

Next, E[∇̂θ
′
]:

E[∇̂θ
′
] = Ex,y∼p

[
E
[
∇θ log p(x, y) + (∇θ log p(x, y)) · Û − ∇̂θ|x, y

]]
= Ex,y∼p

[
∇θ log p(x, y) + (∇θ log p(x, y)) · E

[
Û |x, y

]
− E

[
∇̂θ|x, y

]]
= Ex,y∼p

[
∇θ log p(x, y) + (∇θ log p(x, y)) · E

[
log p(x, y)− L̂ | x, y

]
−∇θL(S.q, x,S.M(x))

]
= Ex,y∼p [∇θ log p(x, y)−∇θL(S.q, x,S.M(x)) + (∇θ log p(x, y)) · (log p(x, y)− L(S.q, x,S.M(x))]

= ∇θEx,y∼p [log p(x, y)− L(S.q, x,S.M(x))]

= ∇θEy∼p[Ex∼p(·|y)[log p(x, y)− L(S.q, x,S.M(x))]]

= ∇θEy∼p[U(p, y,S)].

Finally, we consider Ey∼p[E[g ·R(y)|y]] (and recall that R(y) is not to be treated as a function of θ):

Ey∼p[E[g ·R(y)|y]] = Ey∼p [E[(∇θ log p(x, y)) ·R(y)|y]]

= Ex,y∼p [(∇θ log p(x, y)) ·R(y)]

= ∇θEx,y∼p [R(y)]

= ∇θEy∼p[R(y)].

A.3 PROOF OF THEOREM 3

Theorem 3. Consider an unnormalized target distribution π̃(x) = Zπ(x) and an inference strategy S targeting π(x). Then
the relative variances of the estimators Ẑ(π̃,S) and Ž(π̃,S) are given by the following recursive equations:

VarẐ(π,S) = χ2(π||S.q) +

Ex∼S.q
[(

π(x)2

S.q(x)2

)
· VarŽ(S.q(· | x),S.M(x))

]
VarŽ(π,S) = χ2(S.q||π)+

Ex∼π
[(
S.q(x)2

π(x)2

)
· VarẐ(S.q(· | x),S.M(x))

]
When S.q is tractable, the second term of each sum is 0.

Proof. The proof is by induction on the level of nesting present in the inference strategy S.

First suppose S.q has a tractable marginal density. Then:

• Ẑ(π,S) is the normalized importance weight π(x)
S.q(x) , with x ∼ S.q. So the relative variance is:

VarẐ(π,S) = Var
(
Ẑ(π,S)

)
= Ex∼S.q

[
π(x)2

S.q(x)2

]
− Ex∼S.q

[
π(x)

S.q(x)

]2

= Ex∼S.q
[
π(x)2

S.q(x)2
− 1

]
= χ2(π||S.q),

where the third equality holds because π is a normalized density and π is absolutely continuous with respect to S.q.

• Ž(π,S) is the weight π(x)
S.q(x) , with x ∼ π. Then the relative variance

VarŽ(π,S) = Var
(
Ž(π,S)−1

)
= Ex∼π

[
S.q(x)2

π(x)2

]
− Ex∼π

[
S.q(x)

π(x)

]2

= Ex∼π
[
S.q(x)2

π(x)2
− 1

]
= χ2(S.q||π),

where the third equality holds because S.q is a normalized density and is absolutely continuous with respect to π.

Now consider the inductive step. Assume that for all x, the theorem holds of the strategy S.M(x) targeting S.q(· | x).
VarẐ(S.q(· | x),S.M(x)), for all x. Then:

• The IMPORTANCE(π,S) algorithm generates x ∼ S.q. It then calls HME (with r ∼ S.q(· | x)) to obtain w =
Ž(S.q(·, x),S.M(x))−1, and returns Ẑ = wπ(x). The variance of Ẑ is then:

VarẐ(π,S) = Var
(

π(x)

Ž(S.q(·, x),S.M(x))

)
= E

[(
π(x)

Ž(S.q(·, x),S.M(x))

)2

− 1

]
(E[Ẑ(π,S)]2 = Z2 = 1)

= E

[(
π(x)

S.q(x)
· S.q(x)

Ž(S.q(·, x),S.M(x))

)2

− 1

]
(divide and multiply by S.q(x))

= E

[(
π(x)

S.q(x)
· 1

Ž(S.q(· | x),S.M(x))

)2

− 1

]
(S.q(x) is the normalizing constant of S.q(·, x))

= E

[(
π(x)

S.q(x)

)2 (
E
[
Ž(S.q(· | x),S.M(x))

−2∣∣x])− 1

]

= E

[(
π(x)

S.q(x)

)2

(VarŽ(S.q(· | x),S.M(x)) + 1)− 1

]
(definition of VarŽ(·, ·))

= E

[(
π(x)

S.q(x)

)2

(VarŽ(S.q(· | x),S.M(x))) +

(
π(x)

S.q(x)

)2

− 1

]
(distributing product over sum)

= E

[(
π(x)

S.q(x)

)2

(VarŽ(S.q(· | x),S.M(x)))

]
+ χ2(π||S.q).

• The argument for Ž is largely the same:

VarŽ(π,S) = Var

(
Ẑ(S.q(·, x),S.M(x))

π(x)

)

= E

[(
Ž(S.q(·, x),S.M(x))

π(x)

)2

− 1

]
(E[Ž(π,S)−1]2 = Z−2 = 1)

= E

(S.q(x)

π(x)
· Ẑ(S.q(·, x),S.M(x))

S.q(x)

)2

− 1

 (divide and multiply by S.q(x))

= E

[(
S.q(x)

π(x)
· Ẑ(S.q(· | x),S.M(x))

)2

− 1

]
(S.q(x) is the normalizing constant of S.q(·, x))

= E

[(
S.q(x)

π(x)

)2 (
E
[
Ẑ(S.q(· | x),S.M(x))

2∣∣x])− 1

]

= E

[(
S.q(x)

π(x)

)2 (
VarẐ(S.q(· | x),S.M(x)) + 1

)
− 1

]
(definition of VarẐ(·, ·))

= E

[(
S.q(x)

π(x)

)2 (
VarẐ(S.q(· | x),S.M(x))

)
+

(
S.q(x)

π(x)

)2

− 1

]
(distributing product over sum)

= E

[(
S.q(x)

π(x)

)2 (
VarẐ(S.q(· | x),S.M(x))

)]
+ χ2(S.q||π).

A.4 PROOF OF THEOREM 4.

Theorem 4. Consider a joint distribution p(x, y) and an inference strategy S targeting p(x | y). Then the following
equations give the bias of L̂ and Û as estimators of log p(y):

BiasL(p, y,S) = − KL(S.q||p(· | y))

− Ex∼S.q[BiasU (S.q, x,S.M(x))]

BiasU (p, y,S) = KL(p(· | y)||S.q)
− Ex∼p(·|y)[BiasL(S.q, x,S.M(x))]

where the second term in each equation is 0 when S.q has a tractable marginal density.

Proof.

In the base case, where S.q has a tractable marginal density, the theorem states that log p(y)− L(p, y,S) = KL(S.q||p(· |
y)), the familiar relationship between the standard ELBO and the KL divergence. The U case is similar:

BiasU (p, y,S) = Ex∼p(·|y)[log p(x, y)− logS.q(x)]− log p(y)

= log p(y) + Ex∼p(·|y)[log p(x | y)− logS.q(x)]− log p(y)

= KL(p(· | y)||S.q).

Now consider the inductive step, in which S.q does not have a tractable marginal density. We assume the theorem holds for
S.q and S.M(x). Then:

BiasL(p, y,S) = L(p, y,S)− log p(y)

= Ex∼S.q[log p(x, y)− U(S.q, x,S.M(x))]− log p(y)

= log p(y) + E∼S.q[log p(x | y)− U(S.q, x,S.M(x))]

= Ex∼S.q[log p(x | y)− U(S.q, x,S.M(x))]

= Ex∼S.q[log p(x | y)− logS.q(x) + logS.q(x)− U(S.q, x,S.M(x))]

= −KL(S.q||p(· | y)) + Ex∼S.q[logS.q(x)− U(S.q, x,S.M(x))]

= −KL(S.q||p(· | y))− Ex∼S.q[BiasU (S.q, x,S.M(x))].

Nearly the same proof applies for U , flipping the necessary signs:

BiasU (p, y,S) = U(p, y,S)− log p(y)

= Ex∼p(·|y)[log p(x, y)− L(S.q, x,S.M(x))]− log p(y)

= log p(y) + E∼p(·|y)[log p(x | y)− L(S.q, x,S.M(x))]

= Ex∼p(·|y)[log p(x | y)− L(S.q, x,S.M(x))]

= Ex∼p(·|y)[log p(x | y)− logS.q(x) + logS.q(x)− L(S.q, x,S.M(x))]

= KL(p(· | y)||S.q) + Ex∼p(x|y)[logS.q(x)− L(S.q, x,S.M(x))]

= KL(p(· | y)||S.q)− Ex∼p(·|y)[BiasL(S.q, x,S.M(x))].

A.5 STATIONARITY OF MCMC ALGORITHM

In Section 3, we mention that RAVI can be used to run Metropolis-Hastings kernels with proposals that have intractable
densities. Here, we present and justify the algorithm.

Let π̃(x) =
∫
π̃(r, x)dr = Z

∫
π(r, x)dr be a possibly unnormalized target density, and let q(x′;x) =

∫
q(s, x′;x)ds

be a proposal kernel mapping previous state x to new state x′. We note that (1) both π̃ and q have intractable marginal
densities, and (2) the target marginal π̃(x) itself may be unnormalized. As is typical in pseudomarginal MCMC, even this
unnormalized target density cannot be evaluated pointwise, due to the additional nuisance variables r.

Now suppose we have a family of inference strategies S(x) targeting π(r | x), and a family of inference strategiesM(x, x′)
targeting q(s | x′;x). Let x be a starting position for our Markov chain. We can run Algorithm 1 on S , targeting π(r | x), to
obtain an initial estimate Ẑx of the unnormalized marginal density π̃(x). Then Algorithm 5 defines a stationary MCMC
kernel for the target distribution π(x), starting at input point x:

Algorithm 5: RAVI Metropolis-Hastings
Input: model π̃(x) = Z

∫
π(r, x)dr

Input: proposal q(x′;x) =
∫
q(s, x′;x)ds

Input: family S(x) of inference strategies targeting π(r | x)
Input: familyM(x, x′) of inference strategies targeting

q(s | x′;x)
Input: initial position x and estimate Ẑx of π̃(x)
Output: next position x′ and estimate Ẑx′ of π̃(x′)

1 (s, x′) ∼ q(s, x′;x)
2 wx′ ← HME(q(·, x′;x), s,M(x, x′))
3 (_, wx)← IMPORTANCE(q(· | x;x′),M(x′, x))

4 (_, Ẑx′)← IMPORTANCE(π(· | x′),S(x′))
5 u ∼ Uniform(0, 1)

6 if u < min(1,
Ẑx′
Ẑx
wx′wx) then

7 return (x′, Ẑx′)

8 else
9 return (x, Ẑx)

When q’s marginal density is known exactly, the above
algorithm recovers variants of Particle-Marginal MH [1],
except instead of using SMC to marginalize r, any RAVI
algorithm can be applied. When q’s marginal density is
unavailable, however, the algorithm instead becomes a
pseudo-marginal ratio algorithm [2], because not just p
but also q is estimated unbiasedly. In general, it is not valid
to use arbitrary unbiased estimates of p and q, or even
of α = p(x′)q(x;x′)

p(x)q(x′;x) , within an MH algorithm. However,
the added structure of the RAVI strategy ensures that the
above procedure is sound.

To see why our MCMC kernel is stationary, we consider
an extended target distribution. First, some notation. For
an inference strategy S targeting π(x), write vS for the
complete set of auxiliary variables in the strategy: if S.q
has a tractable marginal density, then vS = ∅, and oth-
erwise, if S.q(x) =

∫
S.q(r, x)dr, then vS is defined

recursively as {r} ∪ vS.M. Calling IMPORTANCE on S
yields a joint distribution over these auxiliary variables

and x, which we denote as pSIMP(vS , x). Calling HME on S and a particular sample x yields a distribution over just vS , which
we denote pSHME(vS ;x). When x ∼ π and vS ∼ pSHME(vS ;x), the ratio pSIMP(vS ,x)

π̃(x)pSHME(vS ;x)
is the weight Ž(π̃,S)−1 returned by

HME, and similarly, when (vS , x) ∼ pSIMP, the ratio π̃(x)pSHME(vS ;x)

pSIMP(vS ,x)
is the weight Ẑ(π̃,S) returned by IMPORTANCE.

Using this notation, we can extend the target distribution π̃(x) to one over (x, s, x′, s′, vS(x), vM(x,x′), vM(x′,x)) that admits
π̃(x) as a marginal:

π̃(r, x, s, x′, s′, vS(x), vM(x,x′), vM(x′,x)) = π̃(r, x)·pS(x)
HME (vS(x); r)·q(s, x′;x)·pM(x,x′)

HME (vM(x,x′); s)·p
M(x′,x)
IMP (vM(x′,x), s

′)

Our algorithm can be understood as sequencing two stationary kernels for this extended target. The first (implemented by
lines 1-3) is a blocked Gibbs update on the variables (s, x′, s′, vM(x,x′), vM(x′,x)), conditioned on everything else. Lines
1-3 sample exactly from the conditional distribution of these variables. The second is a Metropolis-Hastings proposal that
simultaneously: (i) swaps x with x′ (the ‘main’ proposed update), (ii) swaps (s, vM(x,x′)) with (s′, vM(x′,x)), and (iii)

proposes an update to r and to vS(x) from p
S(x′)
IMP . The usual Metropolis-Hastings acceptance probability for this kernel,

computed on the extended state space, is precisely the formula in Line 6.

One consequence of this justification is that the same family S of inference strategies for π must be used at each iteration.
The familyM can be freely switched out (as can q), however, to develop a cycle of kernels that use different proposal
distributions.

B FURTHER EXAMPLES

This appendix lists examples of popular Monte Carlo and variational inference algorithms, and explains how they can be
viewed as inference strategies. In addition, some of these algorithms can be viewed as inference strategy combinators,
because they feature user-chosen proposal distributions or variational families that can themselves be instantiated with
inference strategies.1

1This ‘combinator’ viewpoint evokes earlier work by [13] and [14]. For example, [14] introduce combinators for creating properly
weighted samplers compositionally, with parameters that can be optimized using standard or nested variational objectives. Some
of their combinators have equivalents in this section, e.g. their propose combinator is similar to the construction we present for
Nested Importance Sampling in Section B.6. However: (1) the fundamental compositional operation in RAVI, of combining a posterior
approximation with a meta-posterior approximation, cannot be achieved using their combinators; (2) as such, some of the algorithms that
RAVI covers cannot be constructed using their combinators; and (3) their combinators produce properly weighted samplers, which contain
‘less information’ than inference strategies: an inference strategy can be used, e.g., as a proposal distribution in Metropolis-Hastings,
whereas properly weighted samplers cannot in general be used this way.

B.1 N -PARTICLE IMPORTANCE SAMPLING

RAVI Inference Strategy: N -particle Importance Sampling
Posterior Approx. sir(π̃, q,N).q()

Target of inference : latent variable x
Auxiliary variables :particles x1:N , chosen particle index j

1 for i ∈ 1, . . . , N do
2 xi ∼ q
3 wi ← π̃(xi)

q(xi)

4 j ∼ Discrete(w1:N)
5 return xj

Meta-Posterior Approx. sir(π̃, q,N).M(x).q()
Target of inference :particles x1:N , chosen particle index j
Auxiliary variables :None

1 j ∼ Uniform(1, N)
2 xj ← x
3 for i ∈ 1, . . . , j − 1, j + 1, . . . , N do
4 xi ∼ q
5 return (x1:N , j)

Consider the N -particle importance sampling estimator

Ẑ =
1

N

N∑
i=1

π̃(xi)

q(xi)
, for xi ∼ q.

The same estimator can be recovered as a one-particle
IMPORTANCE estimate, by applying Alg. 1 to the sir
inference strategy.

The proposal S.q generates N particles x1:N , and selects
an index j from a discrete distribution on 1, . . . , N , with
weights proportional to wi = π̃(xi)/q(xi). The meta-
proposal is responsible for inferring j and the complete
set of particles x1:M , given the chosen particle x. It uses
the conditional SIR algorithm [1] to do so, proposing j
uniformly in {1, . . . , N}, and generating values for the
un-chosen particles x−j from q.

RAVI Inference Strategy: N -particle IS with RAVI strategy S
Posterior Approx. ravi-sir(π̃,S, N).q()

Target of inference : latent variable x
Auxiliary variables :particles x1:N , aux. proposal variables

v1:NS , chosen particle index j
1 for i ∈ 1, . . . , N do
2 xi, wi ∼ IMPORTANCE(π̃,S) w. aux. vars viS
3 j ∼ Discrete(w1:N)
4 return xj

Meta-Posterior Approx. ravi-sir(π̃,S, N).M(x).q()
Target of inference :particles x1:N , aux. proposal variables

v1:NS , chosen particle index j
Auxiliary variables :None

1 j ∼ Uniform(1, N)
2 xj ← x

3 _ ∼ HME(π̃, xj ,S) w. aux. vars vjS
4 for i ∈ 1, . . . , j − 1, j + 1, . . . , N do
5 _, xi ∼ q w. aux. vars viS
6 return (v1:NS , x1:N , j)

This is a suboptimal choice of S.M(x).q; lower-variance
estimates Ẑ can be obtained by improving meta-inference,
either by incorporating problem-specific domain knowl-
edge or via learning. However, in many cases, improved
meta-inference may not be worth the computation re-
quired; it remains to be seen whether techniques such
as amortized learning can be applied to deliver accuracy
gains at low computational cost.

Instantiating the proposal q as its own inference strat-
egy. The above assumes that q has a tractable marginal
density. When it doesn’t, the inner importance sampling
loop can use a RAVI inference strategy S instead of a
tractable proposal q. This modification is presented in the
higher-order inference strategy ravi-sir. One way to
think about this construction is as a way to improve any
existing inference strategy S by ‘adding replicates.’ The
resulting estimator of Z is the mean of N independent Ẑ
estimates from the original inference strategy.

B.2 IMPORTANCE-WEIGHTED AUTOENCODERS

The importance-weighted auto-encoder arises by considering the same inference strategy as in Section B.1, but as a
variational inference procedure (Alg. 3) rather than a Monte Carlo procedure.

Because sir(π̃, q,N).q of this inference strategy corresponds to N -particle sampling importance-resampling (SIR), it has
been argued that IWAE is in fact ‘vanilla’ variational inference, but with a variational family that uses SIR to more closely
approximate the posterior [3]. However, [6] show that deriving the ELBO for that variational family gives rise to a different
objective, and that IWAE gives a looser lower bound on logZ than this idealized (but generally intractable) objective.

In the RAVI framework, these two objectives arise from different inference strategies, which share the same S.q (SIR in
both cases), but use different meta-inference S.M. IWAE uses the simple conditional SIR meta-inference introduced in
Section B.1, whereas [6]’s idealized objective can be derived by using the optimal choice of S.M(x).q(j, x1:N)—the exact
posterior of the SIR procedure. The looser bound obtained by IWAE can be seen as a result of its S.M performing poorer
meta-inference: inference about the auxiliary variables of the SIR inference algorithm used in S.q.

B.3 N -PARTICLE SEQUENTIAL MONTE CARLO

RAVI Inference Strategy: N -particle SMC w. RAVI strategies
Posterior Approx. smc(π̃1:T ,S,K2:T , L2:T , N).q()

Target of inference : latent variable x targeting π̃T
Auxiliary variables :particles x1:T1:N , aux. proposal variables v1:NS , aux.

K vars v1:NK2:T
, aux. L vars v1:NL2:T

, ancestor
variables a1:T−1

1:N , final chosen particle index j
1 for i ∈ 1, . . . , N do
2 x1i , w

1
i ∼ IMPORTANCE(π̃1,S) w. aux. vars viS

3 for t ∈ 2, . . . , T do
4 for i ∈ 1, . . . , N do
5 at−1

i ∼ Discrete(wt−1
1:N)

6 xti, ŵ ∼ IMPORTANCE(π̃t,Kt(x
t−1

at−1
i

)) w. aux. vars viKt
7 w̌ ∼ HME(π̃t−1, x

t−1

at−1
i

, Lt(x
t
i)) w. aux. vars viLt

8 wti ← ŵ · w̌
9 j ∼ Discrete(wT1:N)

10 return xTj
Meta-Posterior Approx. smc(π̃1:T ,S,K2:T , L2:T , N).M(x).q()

Target of inference :particles x1:T1:N , aux. proposal variables v1:NS , aux.
K vars v1:NK2:T

, aux. L vars v1:NL2:T
, ancestor

variables a1:T−1
1:N , final chosen particle index j

Auxiliary variables :None
1 j ∼ Uniform(1, N)

2 xTj , bT ← x, j
3 for t ∈ T, . . . , 2 do
4 at−1

bt
∼ Uniform(1, N)

5 bt−1 ← at−1
bt

6 xt−1
bt−1

, w̌ ∼ IMPORTANCE(π̃t−1, Lt(x
t
bt)) w. aux. vars vbtLt

7 ŵ ∼ HME(π̃t, x
t
bt ,Kt(x

t−1
bt−1

)) w. aux. vars vbtKt
8 wtbt ← (ŵ · w̌)−1

w1
b1
∼ HME(π̃1, x

1
b1
,S) w. aux. vars vb1S

9 for i ∈ 1, . . . , b1 − 1, b1 + 1, . . . , N do
10 x1i , w

1
i ∼ IMPORTANCE(π̃1,S) w. aux. vars viS

11 for t ∈ 2, . . . , T do
12 for i ∈ 1, . . . , bt − 1, bt + 1, . . . , N do
13 at−1

i ∼ Discrete(wt−1
1:N)

14 xti, ŵ ∼ IMPORTANCE(π̃t,Kt(x
t−1

at−1
i

)) w. aux. vars viKt
15 w̌ ∼ HME(π̃t−1, x

t−1

at−1
i

, Lt(x
t
i)) w. aux. vars viLt

16 wti ← ŵ · w̌
17 return (x1:T1:N , v

1:N
S , v1:NK2:T

, v1:NL2:T
, a1:T−1

1:N , j)

The sequential Monte Carlo family of algo-
rithms [4, 8] evolve a population of weighted
particles to approximate a sequence of target
distributions. SMC can be viewed as stan-
dard importance sampling, with an inference
strategy in which S.q is the sampling distribu-
tion for SMC, and S.M(x) is the conditional
SMC algorithm [1].

Standard SMC is parameterized by:

1. A sequence π̃1:T of intermediate target
distributions, with π̃T = π̃ the ultimate
target;

2. An initial proposal q(x1);

3. A sequenceKt(xt−1 → xt) of proposal
kernels for t = 2, . . . , T ; and

4. A sequence Lt(xt → xt−1) of back-
ward kernels for t = 2, . . . , T .

Here, we show a version of SMC (the infer-
ence strategy smc) that behaves as a ‘higher-
order inference strategy,’ or ‘inference strat-
egy combinator’: it allows for an initial pro-
posal, proposal kernels, and backward ker-
nels that do not have tractable marginal den-
sities. Our version is parameterized by:

1. A sequence π̃1:T of intermediate target
distributions, with π̃T = π̃ the ultimate
target;

2. An initial proposal S (a RAVI strategy);

3. A sequence of inference strategy fam-
ilies Kt(xt−1) parameterized by xt−1,
for t = 2, . . . , T , targeting π̃t; and

4. A sequence of inference strategy fami-
lies Lt(xt) of backward kernels, param-
eterized by xt, for t = 2, . . . , T .

The posterior approximation S.q runs a ver-
sion of SMC that uses HME and IMPORTANCE to compute weights. The meta-posterior approximation S.M(x).q runs a
similarly modified version of conditional SMC [1]. When IMPORTANCE is run on the smc inference strategy, the final
weight Ẑ is the SMC marginal likelihood esitmate, the product of the averages of the weights from each time step.

It is possible to adapt this strategy to use adaptive resampling and rejuvenation. (Rejuvenation moves do not actually require
modification: can be incorporated by including them as explicit (K,L) pairs, where L is the time-reversal of an MCMC
kernel K.) However, we are not aware of a way to justify the adaptive choice of rejuvenation kernel.

B.4 VARIATIONAL SEQUENTIAL MONTE CARLO

The Variational Sequential Monte Carlo [11] objective corresponds to Alg. 3, with the same RAVI inference strategy as in
Appendix B.3. However, the default gradient estimator from Alg. 3 will have high variance. Naesseth et al. [11] recommend
using a biased estimator of the gradient, that uses reparameterization where possible and discards the score function terms
arising from resampling steps.

B.5 ANNEALED IMPORTANCE SAMPLING

RAVI Inference Strategy: Annealed Importance Sampling
Posterior Approx. ais(π̃1:T ,S,K2:T).q()

Target of inference : latent variable x targeting π̃T
Auxiliary variables :x1:T , aux. vars vS of initial proposal

1 x1, _ ∼ IMPORTANCE(π̃1,S) w. aux. vars vS
2 for t ∈ 2, . . . , T do
3 xt ∼ Kt(xt−1 → ·)
4 return xT

Meta-Posterior Approx. ais(π̃1:T ,S,K2:T).M(x).q()
Target of inference :x1:T , aux. vars vS of initial proposal
Auxiliary variables :None

1 xT ← x
2 for t ∈ T, . . . , 2 do
3 xt−1 ∼ K̃t(xt → ·) // K̃t is time reversal

of Kt

4 _ ∼ HME(π̃1, x1,S) w. aux. vars vS
5 return (x1:T , vS)

In annealed importance sampling, the practitioner chooses
a sequence of unnormalized target distributions π̃1:T ,
where πT is the posterior distribution of interest. Typ-
ically π1 is chosen to be a distribution that is easy to
approximate with a proposal q, and each πi is slightly
closer to the true target πT than the last. The user also
chooses a sequence of kernels Kt(xt−1 → xt), where
Kt is stationary for πt−1. The algorithm begins by sam-
pling an initial point x1 ∼ q, transforming it through the
sequence of kernels to obtain x2, . . . , xT , and returning
xT as the inferred value of x. The associated weight is

Ẑ =
π̃1(x1) · · · · · π̃T (xT)

q(x1) · π̃1(x2) · · · · · π̃T−1(xT)
.

This procedure corresponds to running Alg. 1 on the ais
inference strategy. The inference process runs the kernels

Kt forward, whereas the meta-inference process runs their time reversals backward: K̃t(xt → xt−1) ∝ πt(xt−1) ·
Kt(xt−1 → xt).

Note that if K is a stationary kernel for πi, so is Km for any natural number m. With sufficient computation (increasing m),
we can ensure that the AIS top-level proposal ais(. . .).q is arbitrarily close to the target posterior πT . However, doing so
will not necessarily lead to lower-variance weights: RAVI makes clear that it is also necessary to consider the quality of
meta-inference.

Consider the job of K̃T , which in the context of the meta-posterior approximation ais.M(x) is supposed to infer xT−1

from xT . K̃T is the exact meta-posterior of xT−1 given xT assuming that, in the forward direction, xT−1 was distributed
according to πT−1. However, in the forward direction, if each Kt is run sufficiently many times to ensure mixing at each
step, xT−1 will in fact be distributed according to πT−2. This gap—between the optimal meta-inference kernels and the
actual K̃ kernels—is partly responsible for the variance of the AIS estimator, and can be mitigated by using a finer annealing
schedule that brings successive target distributions closer together. It could also be mitigated by learning a better reverse
annealing chain.

B.6 NESTED SEQUENTIAL MONTE CARLO

We first consider Nested Importance Sampling. As in RAVI, Nested Importance Sampling is concerned with importance
sampling when the proposal distribution q cannot be tractably evaluated. But RAVI and NIS take different approaches:

1. RAVI assumes q can be simulated, but that the (normalized) density cannot be evaluated. RAVI generates proposals
exactly distributed according to the user’s desired proposal S.q, and generates approximations to the ideal importance
weights.

2. NIS does not assume q can be simulated, but does assume that its unnormalized density q̃ is available. As such,
proposals are not simulated from q, but rather from a Sampling/Importance-Resampling (SIR) approximation to q.

The NIS procedure with an intractable proposal q corresponds exactly to a special case of the RAVI algorithm, with the
RAVI proposal S.q set not to q but rather to an SIR sampling distribution targeting q using some tractable proposal h.
Compare:

• Ordinary SIR targeting π̃ with proposal h: recovered by running IMPORTANCE(π̃,sir(π̃, h,N)) (see Section B.1 for
sir inference strategy).

• Nested IS targeting π̃ with unnormalized proposal density q̃, approximated using SIR with h as a proposal: recovered
by running IMPORTANCE(π̃,sir(q̃, h,N)).

That is, under the RAVI perspective, the only difference between ordinary SIR using h and nested IS is that the ideal proposal

density q̃ (rather than the target density π̃) is used to make the resampling decision about the particles generated by h (the
index j in the listing for sir).

More generally, Naesseth et al. [10] consider procedures other than SIR for approximating q, arguing that any properly
weighted sampler for the intractable proposal q will do. If we letH be a RAVI inference strategy representing the properly
weighted sampler for the intractable proposal q (with unnormalized density q̃), then the Nested IS procedure that uses
this properly weighted proposal to perform inference in π̃ is IMPORTANCE(π̃,ravi-sir(q̃,H, 1)) (see ravi-sir in
Section B.1).

Nested SMC is similar, performing Nested IS at each iteration of SMC. To recover this algorithm using RAVI, we use
the smc inference strategy, but for the proposals Kt(xt−1) (which, as described in Section B.3, can be instantiated with
inference strategies), we use ravi-sir targeting the desired but intractable proposal.

B.7 SMC2

RAVI Inference Strategy: SMC2

Posterior Approx. smc2(p, q1, q,M,N).q()
Target of inference :parameters θ, sequence x1:T
Auxiliary variables : inner SMC vars vTsmc of chosen SMC2 particle,

other SMC2 vars v
1 // the targets π̃t depend on M, p, q1, and q

2 (θ, x1:T , v
T
smc), _ ∼ IMPORTANCE(π̃T ,smc(π̃1:T ,K

2
2:T , L

2
2:T , N)) w.

aux. vars v
3 return θ, x1:T

Meta-Posterior Approx. smc2(p, q1, q,M,N).M(θ, x1:T).q()
Target of inference : inner SMC vars vTsmc of chosen SMC2 particle,

other SMC2 vars v
Auxiliary variables :None

1 _ ∼ HME(pθT , x1:T ,smc(pθ1:T , q1,K2:T , L2:T ,M)) w. aux. vars vTsmc
2 _ ∼ HME(π̃T , (θ, x1:T , v

T
smc),smc(π̃1:T ,K

2
2:T , L

2
2:T , N)) w. aux. vars v

3 return (vTsmc, v)

Suppose we are working with a state-space
model p(θ)

∏T
i=1 p(xi | x1:i, θ)p(yi | xi, θ).

For a fixed θ, an SMC algorithm could
be used to target the successive poste-
riors pθt (x1:t) = p(x1:t | y1:t, θ), with
proposal kernels Kt(x

t−1
1:t−1 → xt1:t) =

δxt−1
1:t−1

(xt1:t−1)q(xtt;x
t
1:t−1, y1:t, θ) (for

some choice of q) and deterministic
backward kernels Lt(x

t
1:t → xt−1

1:t−1) =

δxt1:t−1
(xt−1

1:t−1). The RAVI strategy im-
plementing that SMC algorithm is
smc(p1:T , q1,K2:T , L2:T , N), where
q1(x1; θ) is a proposal for an initial x1 and
N is the number of particles.

If we also wish to infer θ, we can instead use
the SMC2 algorithm [5]. We define extended targets

πt(θ, x1:t, v
t
smc) = p(θ | y1:t)p(x1:t | y1:t, θ)p

smc(pθ1:t,q1,K2:t,L2:t,N)
HME (vtsmc;x1:t),

which are defined over not only θ and x1:t but also all the auxiliary variables vtsmc used during steps 1 through t of SMC.
The variables vsmc and the pHME distribution over them are as defined in Appendix A.5. We write π̃t for the unnormalized
versions of these targets, with normalizing constant p(y1:t).

The SMC2 algorithm targets this sequence of extended posteriors. We write K2
t for the forward kernels used by this outer

SMC algorithm. The kernel K2
t extends the SMC state variables vt−1

SMC to new state variables vtSMC by running the particle
filter forward one step, resampling the chosen trajectory index j based on the new weights for time step t, and updating x1:t

to match the jth trajectory. The corresponding backward kernel L2
t deletes the tth step of the particle deterministically, then

reproposes j based on the step t− 1 weights, setting x1:t−1 to match the jth trajectory.

The SMC2 algorithm corresponds to the RAVI strategy smc2. Running the other SMC yields an approximate sample from
π̃T , which includes auxiliary variables vTsmc. Meta-inference runs two rounds of conditional SMC: first, to recover the inner
layer of SMC’s variables vTsmc for the chosen outer-layer particle, and second, to recover the outer layer of SMC’s auxiliary
variables v. As discussed by Chopin et al. [5], particle MCMC rejuvenation moves can also be included; to justify using
RAVI, we would insert these kernels as additional proposals within the sequence K2

2:T .

B.8 AMORTIZED REJECTION SAMPLING

Consider a generative model p(K,x1:K+1, y) where the latent variables x1:K+1 to be marginalized or inferred represent the
trace of a rejection sampling loop, with sampling distribution h(x) and predicate A(x) determining acceptance:

p(K,x1:K+1, y) =

K∏
i=1

[h(xi)(1−A(xi))]h(xK+1)A(xK+1)p(y | xK+1)

RAVI Inference Strategy: Amortized Rejection Sampling
Posterior Approx. amrej(h, q,A, N,M).q()

Target of inference :number K of rejected samples, rejected samples x1:K , accepted
sample xK+1

Auxiliary variables :rejection loops (K′, x′1:K′) and (K′′i , x
′′i
1:K′′i

)i=1:M , index j

1 K′ ← 0
2 x′1 ∼ q
3 while A(x′K′+1) 6= 1 do
4 K′ ← K′ + 1
5 x′K′+1 ∼ q
6 xK+1 ← x′K′+1

7 for i ∈ 1, . . . ,M do
8 K′′i ← 0

9 x′′i1 ∼ h
10 while A(x′′iK′′i +1) 6= 1 do
11 K′′i ← K′′i + 1

12 x′′iK′′i +1 ∼ h
13 j ∼ Discrete(K′′1:M)
14 K ∼ Uniform(0,K′′j)

15 x1:K ← x′′j1:K
16 return (K,x1:K , xK+1)

Meta-Posterior Approx. amrej(h, q,A, N,M).M(K,x1:K).q()
Target of inference :rejection loops (K′, x′1:K′) and (K′′i , x

′′i
1:K′′i

)i=1:M , index j
Auxiliary variables :superfluous accepted sample zK′+1

1 j ∼ Uniform(1,M)
2 for i ∈ 1, . . . , j − 1, j + 1, . . . ,M do
3 K′′i ← 0

4 x′′i1 ∼ h
5 while A(x′′iK′′i +1) 6= 1 do
6 K′′i ← K′′i + 1

7 x′′iK′′i +1 ∼ h
8 K′′j ← K

9 x′′jK+1 ∼ h
10 while A(x′′j

K+K′′j +1
) 6= 1 do

11 K′′j ← K′′j + 1

12 x′′j
K+K′′j +1

∼ h
13 K′ ← 0
14 z1 ∼ q
15 while A(zK′+1) 6= 1 do
16 x′K′+1 ← zK′+1

17 K′ ← K′ + 1
18 zK′+1 ∼ q
19 return (K′, x′1:K′ , (K

′′
i , x

′′i
1:K′′i

)i=1:M , j)

Meta-Meta-Posterior Approx.
amrej(h, q,A, N,M).M(K,x1:K).M(K

′, x′1:K′ , (K
′′
i , x

′′i
1:K′′i

)i=1:M , j).q()
Target of inference :superfluous accepted sample zK′+1

Auxiliary variables : index l, unchosen particles z−l
1 for i ∈ 1, . . . , N do
2 zi ∼ q
3 l ∼ Uniform({i | A(zi)})
4 return zl

Meta-Meta-Meta-Posterior Approx.
amrej(h, q,A, N,M).M(K,x1:K).M(K

′, x′1:K′ , (K
′′
i , x

′′i
1:K′′i

)i=1:M , j).M(zK′+1).q()
Target of inference : index l, unchosen particles z−l
Auxiliary variables :None

1 l ∼ Uniform(1, N)
2 for i ∈ 1, . . . , l − 1, l + 1, . . . , N do
3 zi ∼ q
4 return (z1, . . . , zl−1, zl+1, . . . , zN)

Here, the xi are drawn indepen-
dently from a distribution h, un-
til some predicate A holds of
the most recent particle, at which
point the loop stops. The obser-
vation y depends on the final
sample xK+1, but not the ear-
lier, rejected samples x1:K or the
number of rejected samples K.
Naderiparizi et al. [9] proposed
a technique called Amortized Re-
jection Sampling for performing
inference in this model. The tech-
nique corresponds to the rather
involved RAVI strategy amrej,
which has parameters N and M
that can be used to trade accu-
racy for computational cost.

The idea behind the top-level,
intractable posterior approxima-
tion amrej(h, q,A, N,M).q is
to:

• use the observation y to
intelligently guess the ac-
cepted particle xK+1, using
a learned proposal q. (For
example, q may be parame-
terized by a neural network
that accepts y as input.) To
satisfy the constraint that
xK+1 satisfies A, however,
it is necessary to run q
within a rejection sampling
loop, generating auxiliary
variables x′1:K′ , where K ′

is the number of rejected q-
samples. (We could try di-
rectly using x′1:K′ as our
proposal for x1:K , the re-
jected samples from the
model. But q’s goal is to
propose xK+1 in a data-
driven way, influenced by
the observation y, and the
rejected samples x1:K from
the model have no connec-
tion to the data—so, using
samples from q as propos-
als for the rejected model
samples would result in a
poor approximation.)

• use rejection sampling from
the prior h to infer the re-
jected samples x1:K . We

run M independent rejection sampling loops, randomly choose one with probability proportional to its length, and then
randomly choose a prefix of the chosen loop as our proposal for x1:K .

The meta-posterior approximation must solve two new challenges: recovering the rejected q samples x′1:K′ from the posterior
approximation, and recovering the many unused rejection loops (and the suffix of the chosen rejection loop) from the second
step of the posterior approximation (the x′′ variables). The latter of these tasks is simple enough: we can generate M − 1
rejection loops from scratch for the un-chosen loops, and a further rejection loop from scratch to use as the suffix of the
chosen loop. The first task is more complex: we run a new rejection loop using q as a proposal, and discard the final accepted
sample. Meta-meta-inference must infer this discarded accepted sample, for which it uses SIR with N particles. The final
layer, the Meta-Meta-Meta-Posterior Approximation, uses conditional SIR.

The meta-meta-posterior is not absolutely continuous with respect to its approximation (it is possible that the approximation
generates N z-values that all fail to satisfy the predicate, in which case zl is not in the support of the meta-meta-posterior).
As such, this is an example of a wide inference strategy (Appendix C).

B.9 HAMILTONIAN VARIATIONAL INFERENCE

RAVI Inference Strategy: Hamiltonian Variational Inference
Posterior Approx. hamvi(q0, qv, rv,LF).q()

Target of inference : latent variable x
Auxiliary variables : initial position x0, momentum v

1 x0 ∼ q0
2 v ∼ qv
3 (x, v′)← LF(x0, v)
4 return x

Meta-Posterior Approx. hamvi(q0, qv, rv,LF).M(x).q()
Target of inference : initial position x0, momentum v
Auxiliary variables :negated final momentum v′−

1 v′− ∼ rv(·;x)
2 (x0, v−)← LF(x, v′−)
3 return (x0,−v−)

Meta-Posterior Approx.
hamvi(q0, qv, rv,LF).M(x).M(x0, v).q()

Target of inference :negated final momentum v′−
Auxiliary variables :None

1 (_, v′)← LF(x0, v)
2 return −v′

Hamiltonian Variational Inference [12] is a hybrid of
Hamiltonian Monte Carlo and variational inference. It is
a special case of Markov Chain Variational Inference (see
Section 2 and Section 5 for detailed discussion, and mcvi
for the RAVI implementation). The algorithm specializes
the Markov Chain Variational Inference procedure for use
with a Hamiltonian Monte Carlo kernel.

We present the specialized strategy as hamvi. It accepts
as input:

1. a distribution q0 from which to propose an initial
point;

2. a momentum distribution qv from which momenta
v are proposed at each iteration;

3. a proposal distribution rv(·;x) over momenta; and

4. a leapfrog integrator LF that runs Hamiltonian dy-
namics on an initial position and momentum (we
think of both the number of leapfrog steps L and the

Hamiltonian H being targeted as part of the LF object provided to hamvi).

Given these inputs, the top-level posterior approximation runs an iteration of HMC from a randomly initialized location
x0. The meta-posterior approximation randomly proposes a (negated) final momentum from the proposal rv, and runs the
leapfrog integrator to find a plausible initial location x0. Finally, the (deterministic) meta-meta-posterior finds the initial
momentum that could have taken x0 to x.

B.10 ANTITHETIC SAMPLING

Consider a target π̃(x) and a proposal q(x) that approximates π. Suppose q is invariant under some bijective transformation
T :

∀x, q(x) = q(T (x)).

For example, a univariate Gaussian proposal with mean µ is invariant under T (x) = 2µ− x. Antithetic sampling generates
a sample x from q, but instead of using the estimator Ẑ = π̃(x)/q(x), it uses

Ẑ =
π̃(x) + π̃(T (x))

2q(x)
.

RAVI Inference Strategy: Antithetic Sampling
Posterior Approx. antithetic(π̃, q, T).q()

Target of inference : latent variable x
Auxiliary variables :sampled x0, choice b

1 x0 ∼ q
2 w0 ← π̃(x0)/q(x0)
3 w1 ← π̃(T (x0))/q(x0)
4 b ∼ Bernoulli(w1

w0+w1
)

5 return bT (x0) + (1− b)x0
Meta-Posterior Approx. antithetic(π̃, q, T).M(x).q()

Target of inference :sampled x0, choice b
Auxiliary variables :None

1 b ∼ Bernoulli(0.5)
2 x0 ← bT (x) + (1− b)x
3 return (x0, b)

This can be justified as Algorithm 1
(IMPORTANCE) applied to the strat-
egy antithetic. The posterior ap-
proximation generates an initial sample
x0 ∼ q, evaluates both x0 and T (x0) as
possible proposals, and selects one. The
meta-posterior approximation must recover
whether x or its transformed version was
the sampled one; it does so by flipping a fair
coin, which is optimal when T = T−1, i.e.,
when T is an involution. In the general case
a lower-variance estimator could be derived
by settingM(x).q to the exact posterior of
the proposal process. Antithetic sampling

can also be generalized to the case where a finite family of bijective transformations Ti are available.

Note that although the final expression for Ẑ falls out of this inference strategy only when q(x) = q(T (x)) for all x, nothing
in the inference strategy itself exploits this assumption, and the same inference strategy could be applied to T without this
property, to derive other estimators that—intuitively—simultaneously consider a proposal x and a deterministic function of
it T (x) as possible locations.

C ABSOLUTE CONTINUITY

When we defined inference strategies S targeting π, we required that S.q and π be mutually absolutely continuous, a stronger
requirement than in importance sampling. We now consider relaxing this requirement, by requiring only one-sided absolute
continuity. We define two kinds of inference strategy, depending on which direction of absolute continuity holds:

1. An inference strategy S targeting π is wide if π is absolutely continuous with respect to S.q, and either S.q has a
tractable marginal density or S.M(x) is a narrow inference strategy targeting S.q(· | x) for all x.

2. An inference strategy S targeting π is narrow if S.q is absolutely continuous with respect to π, and either S.q has a
tractable marginal density or S.M(x) is a wide inference strategy targeting S.q(· | x) for all x.

Then an inference strategy as defined in the main paper is one that is both wide and narrow.

Narrow inference strategies can serve as variational families within variational inference algorithms. Wide inference
strategies can be used as importance sampling and SMC proposals, as well as variational families for amortized variational
inference. Inference strategies used as MCMC proposals must be both wide and narrow.

D OTHER APPLICATIONS OF RAVI INFERENCE STRATEGIES

D.1 REJECTION SAMPLING WITH RAVI

As in any properly weighted sampler, if the weights produced by Alg. 1 can be bounded above by a constant M , a RAVI
inference strategy can be used for exact inference via rejection sampling: a sample (x, Ẑ) is drawn using Alg. 1, and then
accepted with probability Ẑ

M . The weight Ẑ for an inference strategy can be viewed as a product of the normalizing constant
Z with normalized importance weights wS = π(x)

S.q(x) , wS.M(x) = S.q(r|x)
S.M(x).q(r) , and so on. As such, if upper bounds MZ and

MS , MS.M(x), etc. can be found for these quantities, the product of these bounds is a bound on Ẑ. Thus, as in properly
weighted sampling and in variational inference with RAVI, it is possible to reason about the RAVI inference strategy
compositionally, in terms of bounds at each layer of nesting.

D.2 ESTIMATING KL DIVERGENCES BETWEEN MODELS WITH RAVI INFERENCE STRATEGIES
EQUIPPED

Suppose p(y) =
∫
p(x, y)dx and q(y) =

∫
q(z, y)dz are mutually absolutely continuous distributions over some space Y .

Suppose also that we have two families of inference strategies, Sp(y) and Sq(y), targeting p(x | y) and q(z | y) respectively.
Then the AIDE algortihm [7] can be adapted to give a stochastic upper bound on the symmetric KL divergence between
p(y) and q(y).

First, we generate (x, yp) ∼ p, (z, yq) ∼ q, and run HME on each pair to obtain weights wpp and wqq respectively. Then, we
run IMPORTANCE on p with data yq , and on q with data yp, to obtain weights wpq and wqp respectively. Finally, we sum the
logs of the foru weights, to give an estimate D̂ whose expectation is:

E[D̂] = Ey∼p[U(p, y,Sp(y))− L(q, y,Sq(y))] + Ey∼q[U(q, y,Sq(y))− Lp(p, y,Sp(y))] ≥ KL(p||q) +KL(q||p).

As the marginal likelihood bounds U and L become tighter, this expectation approaches the true symmetric KL between p
and q, i.e., D = KL(p||q) +KL(q||p). Theorem 4 allows us to characterize the tightness of these bounds, and thus of the
stochastic upper bound D̂ on the symmetric KL, in terms of KL divergences between successive layers of each inference
strategy. Improving inference at any layer of the inference strategy tightens the bound D̂, yielding less biased estimates of
D.

E REPARAMETERIZATION TRICK GRADIENT ESTIMATORS

In this section, we present versions of Algorithms 3 and 4 that utilize reparameterization gradients, rather than score function
gradients. Using these algorithms requires that an inference strategy be reparameterizable.

Definition: A reparameterizable inference strategy S with arguments θ specifies:

• A reparameterizable posterior approximation S.q, which is one of:

– a tractable proposal: a tuple (S.q(x; θ),S.q.g(ε),S.q.f(ε, θ), such that q is the pushforward of g by f ; or
– an intractable proposal: a tuple (S.q(r, x; θ),S.q.g(εr, εx),S.q.fr(εr, θ),S.q.fx(εx, θ)), such that q is the push-

forward of g by λ(εr, εx).(fr(εr, θ), fx(εx, θ)).

• If the latter, a reparameterizable meta-inference strategy S.M, with arguments (x, θ), that given argument (x, θ),
targets S.q(r | x; θ).

Now, reparameterized estimators can be derived by applying standard automatic differentiation to the following algorithm,
which only samples from distributions that do not depend on parameters:

Algorithm 6: RAVI ELBO estimator (ELBO)
Input: unnormalized model p̃(x)
Input: inference strategy S with arguments
Input: arguments θ
Output: unbiased estimates of L (differentiable w.r.t. θ)

1 if S.q has a tractable marginal density then
2 εx ∼ S.q.g
3 x← S.q.f(εx, θ)

4 Û ← logS.q(x; θ)

5 else if S.q(x; θ) =
∫
S.q(r, x; θ)dr then

6 (εr, εx) ∼ S.q.g
7 (x, r)← (S.q.fx(εx, θ),S.q.fr(εr, θ))
8 Û ← EUBO(S.q(·, x; θ), r,S.M, (x, θ))

9 return log p̃(x)− Û

Algorithm 7: RAVI EUBO estimator (EUBO)
Input: unnormalized model p̃(x)
Input: exact sample x ∼ p(x)
Input: inference strategy S with arguments
Input: arguments θ
Output: unbiased estimate of U (differentiable w.r.t. θ)

1 if S.q has a tractable marginal density then
2 L̂← logS.q(x; θ)

3 else if S.q(x; θ) =
∫
S.q(r, x; θ)dr then

4 L̂← ELBO(S.q(·, x; θ),S.M, (x, θ))

5 return log p̃(x)− L̂

Note that in fact only every other posterior approximation in the unrolled strategy requires a reparameterized version:
Algorithm 7 never samples from its S.q, only evaluates the densities.

It would be interesting to develop variants of these algorithms that allow users to combine score-function and reparameteri-
zation estimation at different layers of nesting, or exploit other variance reduction tactics compositionally.

References

[1] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain Monte Carlo methods. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

[2] Christophe Andrieu, Arnaud Doucet, Sinan Yıldırım, and Nicolas Chopin. On the utility of Metropolis-Hastings with
asymmetric acceptance ratio. arXiv preprint arXiv:1803.09527, 2018.

[3] Philip Bachman and Doina Precup. Training deep generative models: Variations on a theme. In NIPS Approximate
Inference Workshop, 2015.

[4] Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to sequential Monte Carlo. Springer, 2020.

[5] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. SMC2: an efficient algorithm for sequential analysis of
state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3):397–426, 2013.

[6] Chris Cremer, Quaid Morris, and David Duvenaud. Reinterpreting importance-weighted autoencoders. arXiv preprint
arXiv:1704.02916, 2017.

[7] Marco Cusumano-Towner and Vikash K Mansinghka. AIDE: An algorithm for measuring the accuracy of probabilistic
inference algorithms. Advances in Neural Information Processing Systems, 30, 2017.

[8] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 68(3):411–436, 2006.

[9] Saeid Naderiparizi, Adam Ścibior, Andreas Munk, Mehrdad Ghadiri, Atılım Güneş Baydin, Bradley Gram-Hansen,
Christian Schroeder de Witt, Robert Zinkov, Philip H. S. Torr, Tom Rainforth, Yee Whye Teh, and Frank Wood.
Amortized rejection sampling in universal probabilistic programming, 2019.

[10] Christian Naesseth, Fredrik Lindsten, and Thomas Schon. Nested sequential Monte Carlo methods. In International
Conference on Machine Learning, pages 1292–1301. PMLR, 2015.

[11] Christian Naesseth, Scott Linderman, Rajesh Ranganath, and David Blei. Variational sequential Monte Carlo. In
International Conference on Artificial Intelligence and Statistics, pages 968–977. PMLR, 2018.

[12] Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational inference: Bridging
the gap. In International Conference on Machine Learning, pages 1218–1226. PMLR, 2015.

[13] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K Moss,
Chris Heunen, and Zoubin Ghahramani. Denotational validation of higher-order Bayesian inference. Proceedings of
the ACM on Programming Languages, 2018.

[14] Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, et al. Learning proposals for probabilistic programs with
inference combinators. arXiv preprint arXiv:2103.00668, 2021.

	Omitted Proofs.
	Proof of Theorem 1.
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4.
	Stationarity of MCMC algorithm

	Further Examples
	N-particle Importance Sampling
	Importance-Weighted Autoencoders
	N-particle Sequential Monte Carlo
	Variational Sequential Monte Carlo
	Annealed Importance Sampling
	Nested Sequential Monte Carlo
	SMC2
	Amortized Rejection Sampling
	Hamiltonian Variational Inference
	Antithetic Sampling

	Absolute continuity
	Other applications of RAVI inference strategies
	Rejection sampling with RAVI
	Estimating KL divergences between models with RAVI inference strategies equipped

	Reparameterization Trick Gradient Estimators

