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In this part, we mainly give the supplementary material
for the original paper. First, we show the proofs of several
features of the unit dual quaternion distribution on SE(3).
Then we give the supplementary analysis of the proposed
model on different noisy scenes in the Cambridge Landmark
dataset to demonstrate the robustness of our method.

1 PROOF

Theorem 1. Consider the antipodally symmetric distribu-
tion f(v), the sub-block matrix F1 ∈ R4×4 is real sym-
metric, F3 ∈ R4×4 is real symmetric and negative definite.

f(v) =
1

N(F)
exp (qT

r (F1 − F2F
−1
3 FT

2 )qr︸ ︷︷ ︸
Bingham−like

+

(qd + F−1
3 FT

2 qr)
TF3(qd + F−1

3 FT
2 qr))︸ ︷︷ ︸

Gaussian−like

.
(1)

Proof. We expand the original unit dual quaternion proba-
bility density function as follows,
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We denote the exponential part as A, and then we expand it,
and have
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Clearly, the sub-matrices F1 and F3 have to be real sym-
metric since they are critical for keeping the antipodally
symmetric feature of the target probability density function.

Then we apply a tiny trick to Equation (3), and we have
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Next, we take an integration of exp(A) over the unit dual
quaternion manifold DH1 ⊂ R8,
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We find that the inner integration corresponds to the un-
normalized Gaussian density function, and then we have
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Hence, the matrix− 1
2F

−1
3 can be regarded as the covariance

matrix of the Gaussian distribution, in which F3 is negative
definite while F2 is arbitrary.

Theorem 2. The parameter matrix F ∈ R8×8 is able to be
decomposed into an orthogonal matrix M ∈ R4×4 and a
diagonal matrix Z ∈ R4×4 via the eigendecomposition of
F1 − F2F
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Proof. As shown in Equation (5), the marginal distribution
of qd is the unnormalized Gaussian distribution. Here we
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take an integration to it.
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To this point, Equation (7) is a Bingham-like distribution, in
which qr ∈ S3 is the unit quaternion, and we have
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As a result, the orthogonal matrix M and the diagonal matrix
Z can be obtained via the eigendecomposition of F1 −
F2F
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2 .

2 EXPERIMENT

Noisy Scenes We train our model on the original Cambridge
Landmark dataset for 200 epochs. We use the Adam opti-
mizer and begin with a learning rate of 10−4, and gradually
decrease the learning rate exponentially with the multiplica-
tive factor being 0.9, where the learning curve is shown in
Figure 1. The batch size 16 and all input images are resized
to 224× 224.

Figure 1: The learning curve for the Cambridge Landmark
dataset.

Then we apply the trained model to the three different noisy
scenes. We select the Kings College, Hospital, ShopFacade
and St.Mary Church as our evaluation scenes, which is
shown in Figure 2(a). First, we manually add the Gaussian
blur kernel to all frames in above four different scenes,
where the radius of the Gaussian blur kernel is 3.8 shown in
Figure 2(b). Then we randomly change the brightness, the
contrast and the saturation on the second noisy scene which
can be found in Figure 2(c), we set the maximum brightness
factor is 0.6, the maximum contrast factor is 0.6 and the
maximum saturation factor is 0.5 in this case. Finally, we
add above two noise, i.e. blur kernel and random brightness,

contrast and saturation, to the third noisy scene which can
be found in Figure 2(d).

Next we feed the different noisy frames into the trained
model and the uncertainties of our model in all scenes are
shown in Figure 3, where the red points are pose errors
under the uncertainty of the original scene, the purple points
are pose errors in the blur scene, the blur points refer to
pose errors in the brightness change scene and the orange
points are pose errors in the blur and brightness change
environment.



Figure 2: Visualization of four different scenes under different noise conditions. The letter (a) refers to the original scenes.
The letters (b),(c),(d) correspond to the different noises added to the original scene. And the four different scenes, Kings
College, Hospital, ShopFacade, and St.Mary Church, can be found from the first row to the last row.



Figure 3: Uncertainty evaluation on the Cambridge Landmark dataset. The letters (a), (b),(c),(d) correspond to the different
scenes of the Cambridge Landmark dataset. The pose errors under different uncertainty metrics of the model in each scene
are shown in the corresponding row, where the odd rows show the rotation uncertainty of the corresponding noisy scene and
the even rows show the translation uncertainty of the corresponding noisy scene.
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