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A APPENDIX

The Appendix contains following parts:

A.1 Detail on comparison of results.

A.2 Proof in Section 2, i.e., upper bounds in Theorem 1, Corollary 2, Proposition 3 and 4.

A.3 Proof in Section 3, i.e., lower bounds in Theorem 5.

A.4 Additional experiments.

A.5 Other supporting results, including the proof for Lemma 6.

A.6 Special cases of comparison graphs, details related to Section 2.1.

A.7 Upper bound for unregularized/vanilla MLE.

A.1 COMPARISON OF RESULTS

This section is a complement to Section 2.1. We will summarize all existing works on the estimation error of Bradley-Terry
model in two tables, and then compare our results with the results in Negahban et al. (2017); Agarwal et al. (2018); Hendrickx
et al. (2020) in detail.

For simplicity, in Table 1 and Table 2 we use κ to replace B for results in Hajek et al. (2014); Shah et al. (2016) as κ ≍ B
when 1⊤θ∗ = 0, and in Table 2 we omit the lower bound as they are usually in fairly complex forms.

In Negahban et al. (2017), they establish an ℓ2 upper bound for ∥π̂ − π̃∥2/∥π̃∥2 in the order of e2.5κ

λ2(Lrw)

√
nmax logn

L where
π̃(i) := wi/

∑
j wj with wi = exp(θi), π̂ is the rank centrality estimamtor of π̃, λ2 refers to the second smallest eigenvalue,

Lrw = D−1A (which has the same spectrum as D−1/2LAD
−1/2), and LA = D −A. Recall that our ℓ2 upper bound is for

∥θ̂ − θ∥2 and the order is eκE

λ2(LA)

√
nmaxn

L . We can now see that it’s hard to give a general comparison between the two
results because 1. for a general graph, there is no precise relationship between λ2(Lrw) and λ2(LA); 2. more importantly,
for a general model parameter θ, there is no tight two-sided bound between ∥θ̂ − θ∥2 and ∥π − π̃∥2/∥π̃∥2. Although, it
would be a very interesting future work to give a tight description of these two relevant pairs of quantities and make a
meaningful comparison.

Agarwal et al. (2018) establish an ℓ1-norm upper bound for the score parameter π̃i := wi/
∑

j wj with wi = exp(θi). Their

bound is of the order ηeκnavg

λ2(D−1A)nmin

√
logn
L , where navg =

∑
i∈[n] π̃ini, D = diag(n1, · · · , nn), and η := log

(
navg

nminπmin

)
with πmin = mini∈[n] π̃i.

In Hendrickx et al. (2020), they propose a novel weighted least square method to estimate vector w, with wi = exp(θi),
and provide delicate theoretical analysis of their method. Their estimator shows a sharp upper bound for E[sin2(ŵ, w)]
and equivalently for E∥ŵ/∥ŵ∥2 − w/∥w∥2∥22, in the sense that the upper bound for E[sin2(ŵ, w)] matches a instance-wise
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Norm Reference Upper Bound

Simons and Yao (1999) p = 1, ≲ eκ
√

logn
nL

Yan et al. (2012) ≲ e2κ 1
p

√
logn
npL

∥ · ∥∞ Han et al. (2020) ≲ e2κ
√

logn
np · logn

log(np)

Chen et al. (2019), Chen et al. (2020) ≲ e2κ
√

logn
npL

Our work ≲ e2κE

√
logn
np2L

Hajek et al. (2014) ≲ e8κ logn
pL

∥ · ∥22 Shah et al. (2016) ≲ e8κ logn
pL , ≳ e−2κ 1

pL

Negahban et al. (2017) ≲ e4κ logn
pL , ≳ e−κ 1

pL

Chen et al. (2019), Chen et al. (2020) ≲ e2κ 1
pL

sin2(·, ·) (ŵ) Hendrickx et al. (2020) ≲ e2κ 1
pL∥w∥2

2

∥ · ∥1 (ŵ) Agarwal et al. (2018) ≲ eκ
√

logn
L

Table 1: Comparison of results under ER(n, p) in literature.

Norm Reference Upper Bound

∥ · ∥∞ Yan et al. (2012) eκ

mini,j nij

√
nmax logn

L

Our work e2κE

λ2(LA)
nmax

nmin

√
n
L + eκE

λ2(LA)

√
nmax logn

L

Hajek et al. (2014) ≲ e8κ |E| logn
λ2(LA)2L

∥ · ∥22 Shah et al. (2016) ≲ e8κ n logn
λ2(LA)L

Our work e2κE

λ2(LA)2
nmaxn

L

sin2(·, ·) (ŵ) Hendrickx et al. (2020) ≲ e2κ
Tr(L†

A)

L∥w∥2
2

∥ · ∥1 (ŵ) Agarwal et al. (2018) ≲ ηeκnavg

λ2(D−1A)nmin

√
logn
L

Table 2: Comparison of results for a fixed general comparison graph in literature.

lower bound up to constant factors. Such a universal sharp/optimal bound for general comparison graph (although the lower
bound is not in the form of minimax rate) is unique in literature. For convenience of comparison, here we assume wi’s are

O(1) (otherwise we can put a factor e2B in the bound Tr(L†
A)

L ). Then their upper bound is of the order Tr(L†
A)

L∥w∥2
2

, where L†
A

refers to the Moore-Penrose pseudo inverse of the graph Laplacian of the comparison graph. To correct for their different

choice of metric, we need to multiply ∥w∥22 to their bound, and it becomes Tr(L†
A)

L . On the other hand, the upper bound
for expected ℓ2 loss in Shah et al. (2016) is n

Lλ2(LA) . Since λ2(LA) is the smallest positive eigenvalue of LA, it holds that

Tr(L†
A) < n/λ2(LA), and hence the upper bound for expected error in Hendrickx et al. (2020) is tighter than the one in

Shah et al. (2016). Although, it should be noted that the loss function in Hendrickx et al. (2020) is not directly comparable
to a plain ℓ2 loss, and we are just doing an approximate comparison.

In our paper, however, we provide a high probability bound for ∥θ̂ − θ∥22 in the order of nmaxn
Lλ2

2(LA)
. It’s usually hard to make

a fair comparison between a high probability bound and a bound for expected metrics, but in Hajek et al. (2014); Shah
et al. (2016), they also provide a high probability bound in equation (8b) of Theorem 2. As we discussed in Section 2.2 and
Section 5, the ℓ2 bound is not the primary focus of our paper, and although our theoretical analysis is not optimized for ℓ2
error, our bound is still tighter than the bound in Hajek et al. (2014); Shah et al. (2016) for moderately dense and regular
graphs, and is only worse for fairly sparse and irregular graphs.



A.2 PROOF IN SECTION 2

Proof of Theorem 1. We will use a gradient descent sequence defined recursively by θ(0) = θ∗ and, for t = 1, 2, . . .,

θ(t+1) = θ(t) − η[∇ℓρ(θ(t)) + ρθ(t)].

Our proof builds heavily on the ideas and techniques developed by Chen et al. (2019) and further extended by Chen
et al. (2020), and contains two key steps. In the first step, we control ∥θ(T ) − θ̂ρ∥ for T large enough, by leveraging the
convergence property of gradient descent for strong convex functions. In the second step, we control ∥θ(T ) − θ∗∥ through a
leave-one-out argument. The proof can be sketched as follows:

1. Bound ∥θ(T ) − θ̂ρ∥∞, for large T using the linear convergence property of gradient descent for strongly-convex and
smooth functions.

2. Bound ∥θ(T ) − θ∗∥∞ for large T using the leave-one-out argument.

3. Finally, ∥θ̂ρ − θ∗∥∞ is controlled by triangle inequality.

Step 1. Bound ∥θ(T ) − θ̂ρ∥∞, for large T .

1. Linear convergence, orthogonality to 1n. We say that a function ℓ is α-strongly convex if ∇2ℓ(x) ⪰ αIn and
β-smooth if ∥∇ℓ(x)−∇ℓ(y)∥2 ≤ β∥x− y∥2 for all x, y ∈ dom(ℓ). By Lemma 2, we know that ℓρ(·) is ρ-strongly
convex and (ρ+ nmax)-smooth. By Theorem 3.10 in Bubeck (2015), we have

∥θ(t) − θ̂ρ∥2 ≤ (1− ρ

ρ+ nmax
)t∥θ(0) − θ̂ρ∥2. (1)

Besides, as we start with θ∗ that satisfies 1⊤n θ
∗ = 0, it holds that 1⊤n θ

(t) = 0 for all t ≥ 0. To see this, just notice that

∇ℓρ(θ) = ρθ +
∑

(i,j)∈E

[−ȳij + ψ(θi − θj)](ei − ej)

and 1⊤n (ei − ej) for any i, j. Then by 1⊤n θ
(t) = 0,∀t and (1), we have 1⊤n θ̂ρ = 0.

2. Control ∥θ∗ − θ̂ρ∥2. By a Taylor expansion, we have that

ℓρ(θ̂ρ; y) = ℓρ(θ
∗; y) + (θ̂ρ − θ∗)⊤∇ℓρ(θ∗; y)

+
1

2
(θ̂ρ − θ∗)⊤∇2ℓρ(ξ; y)(θ̂ρ − θ∗),

where ξ is a convex combination of θ∗ and θ̂ρ. By Cauchy-Schwartz inequality,

|(θ̂ρ − θ∗)⊤∇ℓρ(θ∗; y)| ≤ ∥∇ℓρ(θ∗; y)∥2∥θ∗ − θ̂ρ∥2.

The two inequalities above and the fact that ℓρ(θ∗; y) ≥ ℓρ(θ̂ρ; y) yield that

∥θ∗ − θ̂ρ∥2 ≤ 2∥∇ℓρ(θ∗; y)∥2
ρmin(∇2ℓρ(ξ; y))

.

By Lemma 1, ∥∇ℓρ(θ∗; y)∥2 ≲
√

nmax(n+r)
L . This fact, together with ρmin(∇2ℓρ(ξ; y)) ≥ ρ and ρ ≍ 1

κ

√
nmax

L ,

gives that ∥θ∗ − θ̂ρ∥2 ≤ cκ
√
n+ r , for some c > 0.

3. Bound ∥θ(T ) − θ̂ρ∥2. Take T = ⌊κ2e3κEn6⌋ and remember that L ≤ κ2e4κEn8. The previous two steps imply that

∥θ(T ) − θ̂ρ∥2 ≤ c(1− ρ

ρ+ nmax
)Tκ

√
n+ r ≤ c exp

(
− Tρ

ρ+ nmax

)
κ
√
n+ r .

Let f̃d = e2κE

λ2(LA)
nmax

nmin

√
n+r
L + eκE

λ2(LA)

√
nmax(logn+r)

L and consider inequality e−gκ
√
n+ r ≤ f̃d. The solution

is given by g ≥ log κ + 1
2 log(n + r) − log f̃d and the inequality holds as long as g ≥ κ + 6 log n + 3 log κ since

L ≤ max{1, κ}e3κEn8. Take g = κ+ 5 log n+ log κ, then as long as

Tρ ≥ 2nmaxng,



it holds that Tρ > 1
2g(ρ+ nmax), then ∥θ(T ) − θ̂ρ∥2 ≤ c exp(−g)κ

√
n+ r is smaller than C̃df̃d for some constant

C̃d. Since T = ⌊κ2e3κEn6⌋ and ρ ≥ cρ
κ

√
nmax

κ2e4κEn8 , we have

Tρ ≥ cρκe
κEn2

√
nmax ≥ 2nmaxng.

In conclusion, we have
∥θ(T ) − θ̂ρ∥∞ ≤ ∥θ(T ) − θ̂ρ∥2 ≤ C̃df̃d.

The arguments above also hold with f̃a = eκE

λ2(LA)

√
nmax(n+r)

L , i.e., we have ∥θ(T ) − θ̂ρ∥2 ≤ C̃af̃a for some constant

C̃a.

Step 2. Bound ∥θ(T ) − θ∗∥∞ by a leave-one-out argument.

Denote ψ(x) = 1
1+e−x and r = log κ+ κE , and define the leave-one-out negative log-likelihood as

ℓ(m)
n (θ) =

∑
1≤i<j≤n:i,j ̸=m

Aij

[
ȳij log

1

ψ (θi − θj)
+ (1− ȳij) log

1

1− ψ (θi − θj)

]

+
∑

j∈[n]\{m}

Amj

[
ψ
(
θ∗m − θ∗j

)
log

1

ψ (θm − θj)
+ ψ

(
θ∗j − θ∗m

)
log

1

ψ (θj − θm)

]
,

(2)

so the leave-one-out gradient descent sequence is, for t = 0, 1, . . .,

θ(t+1,m) = θ(t,m) − η
(
∇ℓ(m)

n

(
θ(t,m)

)
+ ρθ(t,m)

)
.

We initialize both sequences by θ(0) = θ(0,m) = θ∗ and use step size η = 1
ρ+nmax

. By assumption 2, λ2(LA) > 0, so we can

let fa = Ca
eκE

λ2(LA)

[√
nmax(n+r)

L + ρκ(θ∗)
√
n

]
, fb = 10eκE

√
nmax

nmin
fa, fc = Cc

eκE

λ2(LA)

√
nmax(logn+r)

L , fd = fb + fc

with sufficiently large constant Cc > 0 and Ca ≫ Cc. By assumption 1, we have fc + fd ≤ 0.1. We will show in Lemma 4,
5, 6, 7 that for all 0 ≤ t ≤ T = ⌊κ2e3κEn6⌋

∥θ(t) − θ∗∥2 ≤ fa,

max
m∈[n]

|θ(t,m)
m − θ∗m| ≤ fb,

max
m∈[n]

∥θ(t,m) − θ(t)∥2 ≤ fc,

∥θ(t) − θ∗∥∞ ≤ fd.

(3)

When t = 0, (3) holds since θ(0) = θ(0,m) = θ∗. By Lemma 4, 5, 6, 7, and a union bound, we know that (3) holds for all
0 ≤ t ≤ T = ⌊κ2e3κEn6⌋ with probability at least 1−O(n−4). Therefore, using the result in step 1, we have

∥θ̂ρ − θ∗∥∞ ≤ ∥θ̂ρ − θ(T )∥∞ + ∥θ(T ) − θ∗∥∞ ≤ 2fd.

As a byproduct, we have
∥θ̂ρ − θ∗∥2 ≤ ∥θ̂ρ − θ(T )∥2 + ∥θ(T ) − θ∗∥2 ≤ 2fa

Lemma 1. With probability at least 1−O(κ−2e−3κEn−10) the gradient of the regularized log-likelihood satisfies

∥∇ℓρ(θ∗)∥22 ≲
nmax(n+ r)

L
+ ρκ(θ∗)

√
n .

In particular, for ρ ≍ 1
κ(θ∗)

√
nmax

L , we have ∥∇ℓρ(θ∗)∥22 ≲ nmax(n+r)
L .

Proof. Triangle inequality gives
∥∇ℓρ(θ∗)∥2 ≤ ∥∇ℓ0(θ∗)∥2 + ρ∥θ∗∥2.



By definition of κ(θ∗), we have ∥θ∗∥2 ≤
√
n κ(θ∗). For the first term, by Lemma 8 we have

∥∇ℓ0(θ∗)∥22 =

n∑
i=1

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

≤ C1
nmax(n+ r)

L
.

Lemma 2. Let κE(x) = max(i,j)∈E |xi − xj |, then ∀θ ∈ Rn,

λmax(∇2ℓρ(θ; y)) ≤ ρ+
1

2
nmax,

λ2(∇2ℓρ(θ; y)) ≥ ρ+
1

4eκE(θ)
λ2(LA).

(4)

In particular, we have

λ2(∇2ℓρ(θ; y)) ≥ ρ+
1

4eκE(θ∗)e2∥θ−θ∗∥∞
λ2(LA).

Proof. Use the fact that

∇2ℓ0(θ; y) =
∑

(i,j)∈E

eθieθj

(eθi + eθj )2
(ei − ej)(ei − ej)

⊤,

and ∀(i, j) ∈ E, 1
4 exp(κE(θ)) ≤

eθieθj

(eθi+eθj )2
≤ 1

4 , κE(x1) ≤ κE(x2) + 2∥x1 − x2∥∞. In addition, the largest eigenvalue of
graph Laplacian satisfies (Corollary 3.9.2 in Brouwer and Haemers (2012))

λmax(LA) ≤ max
(i,j)∈E

(ni + nj) ≤ 2nmax. (5)

Lemma 3. Provided that (3) holds, then

max
m∈[n]

∥θ(t+1,m) − θ∗∥∞ ≤ fc + fd,

max
m∈[n]

∥θ(t+1,m) − θ∗∥2 ≤ fc + fa.
(6)

Proof. By triangle inequality, we have

max
m∈[n]

∥θ(t,m) − θ∗∥∞ ≤ max
m∈[n]

∥θ(t,m) − θ(t)∥∞ + ∥θ(t) − θ∗∥∞ ≤ fc + fd

max
m∈[n]

∥θ(t,m) − θ∗∥2 ≤ max
m∈[n]

∥θ(t,m) − θ(t)∥2 + ∥θ(t) − θ∗∥2 ≤ fc + fa.

Lemma 4. Suppose (3) holds, and the step size satisfies 0 < η ≤ 1
ρ+nmax

. If

fd ≤ 0.1 and fa ≥ Ca
eκE(θ∗)

λ2(LA)

[√
nmax(n+ r)

L
+ ρκ(θ∗)

√
n

]
,

for some large constant Ca, then with probability at least 1−O(κ−2e−3κEn−10) we have

∥θ(t+1) − θ∗∥2 ≤ fa.



Proof. By the form of the gradient descent, we have that

θ(t+1) − θ∗ = θ(t) − η∇ℓρ(θ(t))− θ∗

= θ(t) − η∇ℓρ(θ(t))− [θ∗ − η∇ℓρ(θ∗)]− η∇ℓρ(θ∗)

=

[
In − η

∫ 1

0

∇2ℓρ(θ(τ))dτ

]
(θ(t) − θ∗)− η∇ℓρ(θ∗),

where θ(τ) = θ∗ + τ(θ(t) − θ∗). Letting H =
∫ 1

0
∇2ℓρ(θ(τ))dτ , by the triangle inequality,

∥θ(t+1) − θ∗∥2 ≤ ∥(In − ηH)(θ(t) − θ∗)∥2 + η∥∇ℓρ(θ∗)∥2. (7)

Setting κE(x) = max(i,j)∈E |xi − xj |, then, for sufficiently small ϵ, we have that

κE(θ(τ)) ≤ κE(θ
∗) + 2∥θ(t) − θ∗∥∞ ≤ κE(θ

∗) + ϵ. (8)

as long as
2fd ≤ ϵ. (9)

Then, by Lemma 2 and setting ϵ = 0.2, for any τ ∈ [0, 1],

ρ+
λ2(LA)

10eκE(θ∗)
≤ ρ+

λ2(LA)

8eκE(θ∗)eϵ
≤ λ2(∇2ℓρ(θ(τ))) ≤ λmax(∇2ℓρ(θ(τ))) ≤ ρ+

1

2
nmax. (10)

Since 1⊤n (θ
(t) − θ∗) = 0, we obtain that

∥(In − ηH)(θ(t) − θ∗)∥2 ≤ max{|1− ηλ2(H)|, |1− ηλmax(H)|}∥θ(t) − θ∗∥2. (11)

By (10) and the fact that η ≤ 1
ρ+nmax

, we get

∥(In − ηH)(θ(t) − θ∗)∥2 ≤ (1− ηλ2(LA)

10eκE(θ∗)
)∥θ(t) − θ∗∥2. (12)

By Lemma 1 and the induction hypothesis, we have

∥θ(t+1) − θ∗∥2 ≤ (1− ηλ2(LA)

10eκE(θ∗)
)fa + Cη

[√
nmax(n+ r)

L
+ ρκ(θ∗)

√
n

]
≤ fa (13)

as long as

fa ≥ Ca
eκE(θ∗)

λ2(LA)

[√
nmax(n+ r)

L
+ ρκ(θ∗)

√
n

]
(14)

for some large constant Ca.

Lemma 5. Suppose (3) holds and assume that

1. fa = Ca
eκE(θ∗)

λ2(LA)

[√
nmax(n+r)

L + ρκ(θ∗)
√
n

]
, fc = Cc

eκE(θ∗)

λ2(LA)

√
nmax(logn+r)

L with Ca ≫ Cc.

2. nmin

10eκE(θ∗) fb ≥
3
√
nmax

4 fa.

3. fc + fd ≤ 0.1.

then as long as the step size satisfies 0 < η ≤ 1
ρ+nmax

, with probability at least 1−O(κ−2e−3κEn−10) we have

max
m∈[n]

∣∣∣θ(t+1,m)
m − θ∗m

∣∣∣ ≤ fb.



Proof. Recall that the gradient descent step for leave-one-out estimator θ(m) is defined as

θ(t+1,m) = θ(t,m) − η
(
∇ℓ(m)

n

(
θ(t,m)

)
+ ρθ(t,m)

)
,

where

ℓ(m)
n (θ) =

∑
1≤i<j≤n:i,j ̸=m

Aij

[
ȳij log

1

ψ (θi − θj)
+ (1− ȳij) log

1

1− ψ (θi − θj)

]

+
∑

j∈[n]\{m}

Amj

[
ψ
(
θ∗m − θ∗j

)
log

1

ψ (θm − θj)
+ ψ

(
θ∗j − θ∗m

)
log

1

ψ (θj − θm)

]
.

Direct calculations give

[∇ℓ(m)
n (θ)]m =

∑
j∈[n]\{m}

Amj

[
ψ(θ∗m − θ∗j )(ψ(θ

∗
m − θ∗j )− 1) + (1− ψ(θ∗m − θ∗j ))ψ(θm − θj)

]
=

∑
j∈[n]\{m}

Amj

[
−ψ(θ∗m − θ∗j ) + ψ(θm − θj)

]
.

Thus, we have

θ(t+1,m)
m − θ∗m =

1− ηρ− η
∑

j∈[n]\{m}

Amjψ
′(ξj)

 (θ(t,m)
m − θ∗m)− ρηθ∗m + η

∑
j∈[n]\{m}

Amjψ
′(ξj)(θ

(t,m)
j − θ∗j ),

where ξj is a scalar between θ∗m − θ∗j and θ(t,m)
m − θ

(t,m)
j . Notice that ψ′(x) = ex

(1+ex)2 ≤ 1
4 for any c ∈ R, thus by

Cauchy-Schwartz inequality we have

|
∑

j∈[n]\{m}

Amjψ
′(ξj)(θ

(t,m)
j − θ∗j )| ≤

1

4

√
nmax ∥θ(t,m) − θ∗∥2. (15)

Also, since η ≤ 1
ρ+nmax

,

1− ηρ− η
∑

j∈[n]\{m}

Amjψ
′(ξj) ≥ 1− ηρ− η

nmax

4
≥ 0.

Therefore,
0 ≤ 1− ηρ− η

∑
j∈[n]\{m}

Amjψ
′(ξj) ≤ 1− ηnmin min

j∈N (m)
ψ′(ξj).

Since ξj is a scalar between θ∗m − θ∗j and θ(t,m)
m − θ

(t,m)
j , we have

max
j∈N (m)

|ξj | ≤ max
j∈N (m)

|θ∗m − θ∗j |+ max
j∈N (m)

|θ∗m − θ∗j − (θ(t,m)
m − θ

(t,m)
j )|

≤ κE(θ
∗) + 2∥θ(t,m) − θ∗∥∞ ≤ κE(θ

∗) + ϵ

as long as
∥θ(t,m) − θ∗∥∞ ≤ fc + fd ≤ ϵ/2. (16)

Let ϵ = 0.2, then eϵ ≤ 5/4 and

ψ′(ξj) =
eξj

(1 + eξj )2
=

e−|ξj |

(1 + e−|ξj |)2
≥ e−|ξj |

4
≥ 1

4eϵ+κE(θ∗)
≥ 1

5eκE(θ∗)
.

By triangle inequality we get

|θ(t+1,m)
m − θ∗m| ≤

(
1− ηnmin

10eκE(θ∗)

)
|θ(t,m)

m − θ∗m|+ ρη∥θ∗∥∞ +
η
√
nmax

4
∥θ(t,m) − θ∗∥2

≤ fb −
ηnmin

10eκE(θ∗)
fb + ηρκ(θ∗) + η

√
nmax

4
(fa + fc) ≤ fb

(17)



as long as
nmin

10eκE(θ∗)
fb ≥ ρκ(θ∗) +

√
nmax

4
(fa + fc).

By assumption, fa = Ca
eκE(θ∗)

λ2(LA)

[√
nmax(n+r)

L + ρκ(θ∗)
√
n

]
, fc = Cc

eκE(θ∗)

λ2(LA)

√
nmax(logn+r)

L with Ca ≫ max{Cc, 1},

so

fa ≫ fc, and
√
nmax

4
fa ≫ nmax

λ2(LA)

[√
n+ r

L
+

√
n

nmax
ρκ(θ∗)

]
≥ ρκ(θ∗).

Therefore, a sufficient condition for |θ(t+1,m)
m − θ∗m| ≤ fb is

nmin

10eκE(θ∗)
fb ≥

3
√
nmax

4
fa,

which is satisfied by our assumption.

Lemma 6. Suppose (3) holds with fc = Cc
eκE(θ∗)

λ2(LA)

√
nmax(logn+r)

L for some sufficiently large constant Cc, fd = fb + fc,
then as long as the step size satisfies 0 < η ≤ 1

ρ+nmax
, with probability at least 1−O(κ−2e−3κEn−10) we have

max
m∈[n]

∥θ(t+1,m) − θ(t)∥2 ≤ fc.

Proof. By the update rules, we have

θ(t+1) − θ(t+1,m) =θ(t) − η∇ℓρ(θ(t))−
[
θ(t,m) − η∇ℓ(m)

ρ (θ(t,m))
]

=θ(t) − η∇ℓρ(θ(t))−
[
θ(t,m) − η∇ℓρ(θ(t,m))

]
− η

[
∇ℓρ(θ(t,m))−∇ℓ(m)

ρ (θ(t,m))
]

=v1 − v2,

where

v1 =

[
In − η

∫ 1

0

∇2ℓρ(θ(τ))dτ

]
(θ(t) − θ(t,m)), v2 = η

[
∇ℓρ(θ(t,m))−∇ℓ(m)

ρ (θ(t,m))
]

Now following the same arguments towards (12), as long as η ≤ 1
ρ+nmax

, we can get

∥v1∥2 ≤ (1− ηλ2(LA)

10eκE(θ∗)
)∥θ(t) − θ(t,m)∥2.

For v2, we know that

1

η
v2 =

∑
i∈[n]\{m}

{
Ami

[
ψ(θ

(t,m)
i − θ(t,m)

m )− ȳim

]
−Ami

[
ψ(θ

(t,m)
i − θ(t,m)

m )− ψ(θ∗i − θ∗m)
]}

(ei − em)

=
∑

i∈[n]\{m}

Ami [ψ(θ
∗
i − θ∗m)− ȳim] (ei − em).

By the form of the derivatives and Lemma 8, we know that with probability at least 1−O(nκ
−2e−3κEn−10

),

∥1
η
v2∥22 =

 ∑
i∈[n]\{m}

Aim (ȳim − ψ (θ∗i − θ∗m))

2

+
∑

i∈[n]\{m}

Aim (ȳim − ψ (θ∗i − θ∗m))
2

≲
nmax(log n+ r)

L
+

log n+ nmax + r

L
≲
nmax(log n+ r)

L
.

(18)



Therefore, we have

∥θ(t+1) − θ(t+1,m)∥2 ≤ ∥v1∥2 + ∥v2∥2

≤ (1− ηλ2(LA)

10eκE(θ∗)
)∥θ(t) − θ(t,m)∥2 + Cη

√
nmax(log n+ r)

L

≤ (1− ηλ2(LA)

10eκE(θ∗)
)fc + Cη

√
nmax(log n+ r)

L
≤ fc,

(19)

where the last inequality is due to the fact that Cc is a sufficiently large constant by our assumption and

ηλ2(LA)

30eκE(θ∗)
fc ≥ Cη

√
nmax(log n+ r)

L
⇐ fc = Cc

eκE(θ∗)

λ2(LA)

√
nmax(log n+ r)

L
. (20)

Lemma 7. Suppose (3) holds and fd ≥ fb + fc, then with probability at least 1−O(κ−2e−3κEn−10) we have

∥θ(t+1) − θ∗∥∞ ≤ fd.

Proof. By Lemma 5 and Lemma 6 we have

|θ(t+1)
m − θ∗m| ≤ |θ(t+1)

m − θ(t+1,m)
m |+ |θ(t+1,m)

m − θ∗m|
≤ ∥θ(t+1) − θ(t+1,m)∥2+ | θ(t+1,m)

m − θ∗m| ≤ fc + fb ≤ fd,

since fd ≥ fb + fc by our assumption.

Lemma 8. With probability at least 1−O(κ−2e−3κEn−10) it holds that

max
i∈[n]

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

≤ C
(log n+ r) · nmax

L
,

n∑
i=1

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

≤ C
(n+ r) · nmax

L
.

max
i∈[n]

∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]
2 ≤ C

log n+ nmax + r

L
,

(21)

where r = log κ+ κE .

Proof. To prove the first inequality, notice that by Hoeffding’s inequality we have

P

∑
j<i

Aij [ȳij − ψ(θ∗i − θ∗j )] ≥
√

8nmax(log n+ r)

L

 ≤ 2 exp(− 2L

nmax
· 8nmax(log n+ r)

L
) = 2κ−2e−3κEn−12,

where r = log κ+ κE . By union bound we know that on an event B with probability at least 1− κ−2e−3κEn−10 we have

∀i ∈ [n],
[∑

j<iAij [ȳij − ψ(θ∗i − θ∗j )]
]2
< 8nmax(logn+r)

L .

Next we prove the second inequality. Consider the unit ball S = {v ∈ Rn :
∑

i∈[n] v
2
i = 1} in Rn. By Lemma 5.2 of

Vershynin (2011), we can pick a subset U ⊂ S so that log |U| ≤ cn and for any v ∈ S , there exists a vector u ∈ U such that
∥u− v∥2 ≤ 1

2 . For a given v ∈ S, pick u ∈ U such that ∥u− v∥2 ≤ 1
2 and we have

n∑
i=1

vi

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

 =

n∑
i=1

ui

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

+

n∑
i=1

(vi − ui)

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]



≤
n∑

i=1

ui

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

+
1

2

√√√√√ n∑
i=1

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

.



Taking maximum over v and the left hand side can achieve

√∑n
i=1

[∑
j∈N (i)[ȳij − ψ(θ∗i − θ∗j )]

]2
, thus we have

√√√√√ n∑
i=1

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

≤ 2max
u∈U

n∑
i=1

ui

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]


= 2max

u∈U

∑
i<j

Aij(ui − uj)
[
ȳij − ψ(θ∗i − θ∗j )

]
.

To apply Hoeffding’s inequality and union bound, we should account for |U| ≤ ecn, so we can get that with probability at
least 1− κ−2e−3κEn−10 it holds that

n∑
i=1

 ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]

2

≤ C1
1

L

(log n+ n+ r)
∑
i<j

Aij(ui − uj)
2


≤ C1

(log n+ n+ r)λmax(LA)

L
,

where r = log κ+ κE . Since λmax(LA) ≤ 2nmax, the second inequality is proved.

Next we prove the third inequality. For each i ∈ [n], let Vi := {v ∈ Rn−1 :
∑

j ̸=iAijv
2
j ≤ 1}. By Lemma 5.2 of Vershynin

(2011), we can pick a subset Ui ⊂ Vi so that log |Ui| ≤ 2
∑

j ̸=iAij and for any v ∈ Vi, there exists a vector u ∈ Ui such
that ∥u− v∥2 ≤ 1

2 . For a given v ∈ Vi, pick u ∈ Ui such that ∥u− v∥2 ≤ 1
2 and we have∑

j∈N (i)

vij [ȳij − ψ(θ∗i − θ∗j )] =
∑

j∈N (i)

uij [ȳij − ψ(θ∗i − θ∗j )] +
∑

j∈N (i)

(vij − uij)[ȳij − ψ(θ∗i − θ∗j )]

≤
∑

j∈N (i)

uij [ȳij − ψ(θ∗i − θ∗j )] +
1

2

√ ∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]
2

Taking maximum over v and the left hand side can achieve
√∑

j∈N (i)[ȳij − ψ(θ∗i − θ∗j )]
2 , thus we have√ ∑

j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]
2 ≤ 2max

u∈Ui

∑
j∈N (i)

uij [ȳij − ψ(θ∗i − θ∗j )].

Therefore, √
max
i∈[n]

∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]
2 ≤ 2max

i∈[n]
max
u∈Ui

∑
j∈N (i)

uij [ȳij − ψ(θ∗i − θ∗j )].

Now a straightforward application of Hoeffding’s inequality and union bound gives

max
i∈[n]

∑
j∈N (i)

[ȳij − ψ(θ∗i − θ∗j )]
2 ≤ C

1

L
[log n+ nmax + κE + log κ]

with probability at least 1−O(κ−2e−3κEn−10).

Corollary 2 (Erdös-Rényi graph). Suppose that the comparison graph comes from an Erdös-Rényi graph ER(n, p). Assume
that 1⊤

n θ
∗ = 0, κ ≤ n, κE ≤ log n, L ≤ n8e4κE max{1, κ}, np > C1 log n, and L ≥ C2 max{1, κ}e4κEn/ log2 n for

some sufficiently large constants C1, C2 > 0. Set ρ = cρ/κ
√
nmax/L . Then 1⊤

n θ̂ρ = 0, and with probability at least
1−O(n−4), it holds that

∥θ̂ρ − θ∗∥∞ ≲e2κE

√
1

np2L
+ eκE

√
log n

npL
,

∥θ̂ρ − θ∗∥2 ≲eκE

√
1

pL
.

(22)



Proof of Corollary 2. For an ER(n, p) graph G with p ≥ c logn
n for some larege c > 0, it holds with probability at least

1−O(n−10) that G is connected, and
1

2
np ≤ nmin ≤ nmax ≤ 2np,

and

λ2 (LA) = min
u̸=0:1⊤

n u=0

u⊤LAu

∥u∥2
≥ np

2
.

The proof can be seen in either Chen et al. (2019) or Chen et al. (2020). Thus, by a union bound, we can replace the
corresponding quantities in upper bounds in Theorem 1 and get the high probability bounds in Corollary 2.

Proposition 3 (Path graph). Suppose the comparison graph is a path graph ([n], E) with E = {(i, i+ 1)}i∈[n−1] and for
each i, item i and item i+1 are compared Li,i+1 times such that mini Li,i+1 > ce2κEn log n for some universal constant c,
then with probability at least 1− n−4, the vanilla MLE θ̂0 satisfies

∥θ̂0 − θ∗∥∞ ≲

√√√√n−1∑
i=1

exp(2|θ∗i − θ∗i+1|) log n
Li,i+1

. (23)

In particular, when Li,i+1 = L for all i ∈ [n− 1], we have

∥θ̂0 − θ∗∥∞ ≲ eκE

√
n log n

L
, ∥θ̂0 − θ∗∥2 ≲ eκEn

√
log n

L
(24)

Proof of Proposition 3. Consider a path graph with edge set E = {(i, i+ 1) : i ∈ [n− 1]}. Let Mij be the number of wins
of item i against item j. For the ease of notations, in this proof we use θ̂ to denote the vanilla MLE θ̂0. We know that

∇ℓ (θ)i =
∑

j∈N (i)

(
Mij

Mij +Mji
− exp(θi − θj)

1 + exp(θi − θj)

)
.

Thus the vanilla MLE solving ∇ℓ(θ) = 0 is given by

θ̂i+1 − θ̂i = logMi+1,i − logMi,i+1 := logRi+1,i,

where Mij := #{i beats j} and Rij :=
Mij

Mji
.

Let θ̂1 = 0 and we can get

θ̂1 = 0, θ̂i+1 =

i∑
j=1

(logRj+1,j − log rj+1,j), i = 1, · · · , n− 1,

where logRj+1,j := logMj+1,j − logMj,j+1, log rj+1,j = θ∗j+1 − θ∗j . Shifting θ∗ to make θ∗1 = 0 and we have

|θ̂i+1 − θ∗i+1| =

∣∣∣∣∣∣
i∑

j=1

(logRj+1,j − log rj+1,j)

∣∣∣∣∣∣ (25)

Let Fij :=
Mij

Lij
with Lij =Mij +Mji and we have

logRij − log rij = log
1− Fji

Fji
− log

1− pji
pji

.

Now using the Talyor expansion of f(x) = log( 1x − 1) at pji, we can get

logRij − log rij = −vij(Fij − pij) +
1

2

1− 2zji
z2ji(1− zji)2

(Fij − pij)
2,



where vij := [pij(1 − pij)]
−1 = 2 + rij + rji = vji ≤ 4 exp(|θ∗i − θ∗j |), and zji is a number between pji and Fji. We

know that vij(Fij − pij) is a subgaussian-
v2
ij

4Lij
variable. In particular, for the path graph, by a standard sub-Gaussian tail

bound on the first term, we can show that with probability at least 1− n−9, it holds for i = 1, · · · , n− 1 simultaneously
and some constant C > 0 that

|
i∑

j=1

vj,j+1(Fj,j+1 − pj,j+1)| ≤ C

√√√√∑
j

v2j,j+1 log n

Lj,j+1
.

Using Chernoff’s method we can show a slightly sharper bound that if minj Lij > 25e2κE log n then with probability at
least 1− n−9,

max
j

|Fij − pij | ≤ C

√
log n

Lijvij
.

Since eκE = max(i,j)∈E
pji

pij
≥ 1

1
pijpji

p2
ij

= 1
vijp2

ij
, the last inequality and the condition on Lij imply that |Fij − pij | ≤

min{pij , pji}/5 simultaneously, and consequently zji ∈ [0.8pji, 1.2pji]. Therefore, the second term can be bounded as

1

2

1− 2zji
z2ji(1− zji)2

(Fij − pij)
2 ≤ c

1

p2ijp
2
ji

(Fij − pij)
2 ≤ c

vij log n

Lij
.

In particular, for the path graph, the summation of the second term is controlled by
∑

j
vj,j+1 logn

Lj,j+1
. Thus, when

min
j
Lj,j+1 > ceκEn log n,

for some sufficiently large constant c, the summation of the second term is negligible compared to the bound on the

summation of the first term

√∑
j

v2
j,j+1 logn

Lj,j+1
. Therefore, the error (25) can be bounded as

|θ̂i+1 − θ∗i+1| ≤ C

√√√√ i∑
j=1

exp(2|θ∗j − θ∗j+1|) log n
Lj,j+1

,

which implies that ∥θ̂ − θ∗∥∞ ≤ C
√∑n−1

i=1

exp(2|θ∗
i −θ∗

i+1|) logn

Li,i+1
.

In the special case Li,i+1 = L for all i, we have ∥θ̂− θ∗∥∞ ≤ C
√

exp(2κE)n logn
L and ∥θ̂− θ∗∥2 ≤ n

√
exp(2κE) logn

L .

In Shah (2016) they prove the lower bound e−κ n√
L

for ℓ2 error under path graph, while in our paper we prove the lower
bound e−κ

√
n
L for ℓ∞ error under path graph. Thus the upper bound above on the closed-form MLE achieves the minimax

lower bound up to a
√
log n and exp(2κE) factor.

Proposition 4 (General tree graph). Suppose the graph is a tree graph ([n], E) where item i and j are compared Lij times
such that mini,j Lij > ce2κEn log n for some universal constant c. Then with probability at least 1− n−4, the vanilla MLE
θ̂0 satisfies

∥θ̂0 − θ∗∥∞ ≲

√√√√max
i1,i2

∑
(i,j)∈path(i1,i2)

exp(2|θ∗i − θ∗j |) log n
Lij

. (26)

In particular, when Li,j = L, we have

∥θ̂0 − θ∗∥∞ ≲ eκE

√
D log n

L
, ∥θ̂0 − θ∗∥2 ≲ eκE

√
Dn log n

L
(27)

Proof of Proposition 4. Suppose G = ([n], E) is a tree graph and let D be the diameter of the graph, i.e., D =
maxi,j∈[n] |path(i, j)| where path(i, j) := {(i, i1), (i2, i3), · · · , (im, j)} ⊆ E is the shortest path from i to j. For in-
stance, for complete graph and star graph, D = 1; for path graph, D = n − 1; for a complete binary tree with depth or
height h, D = 2h.



The key property of a tree graph is that it has three equivalent definitions: 1. it is a maximal loop-free graph; 2. it is a minimal
connected graph; 3. it is a simple graph with |E| = |V | − 1. By the first definition, it can be seen that for any two nodes i
and j, there is exactly one path from i to j, otherwise there will be a loop. Using this property, for a fixed item i0, the MLE
equation

∇ℓ (θ)i =
∑

j∈N (i)

(
Mij

Mij +Mji
− exp(θi − θj)

1 + exp(θi − θj)

)
= 0, ∀i ∈ [n]

can be solved by
θ̂i0 = 0, θ̂l =

∑
(i,j)∈path(i0,l)

(logRji − log rji), l ̸= i0.

Note that, the choice of i0 is not crucial for the ℓ∞ bound, as such shifting would at most lead to an inflation on the ℓ∞ error
by 2. In fact, if we let ϵ̂ with ϵ̂i0 = 0 be the entry-wise error when we choose θ̂i0 = θi0 = 0, then after shifting θ̂ to get θ̃
with θ̃i1 = θi1 = 0 for some i1 ̸= i0 we will get ∥ϵ̃∥∞ ≤ ∥ϵ̂∥∞ + ∥ϵ̂i11n∥∞ ≤ 2∥ϵ̂∥∞.

Following the same argument in the proof of Proposition 3, we can show that when min(i,j)∈E Li,j > e2κEn log n, we have

∥θ̂ − θ∗∥∞ ≲

√√√√max
i1,i2

∑
(i,j)∈path(i1,i2)

exp(2|θ∗i − θ∗j |) log n
Lij

.

Again, the overall ℓ∞ error is determined by the extreme values of |θ∗i − θ∗j | and 1/Lij .

To simplify the bound, we can consider the uniform sampling scheme under which Lij = L for all (i, j) ∈ E. By the
definition D = maxi,j∈[n] |path(i, j)|, we have

∥θ̂ − θ∗∥∞ ≲

√
exp(2κE)D log n

L
, (28)

and as a corollary,

∥θ̂ − θ∗∥2 ≲

√
exp(2κE)Dn log n

L
. (29)

In particular, for a path graph, D = n− 1 and the two bounds become the same bounds in Proposition 3.

For a star graph, D = 1 and the bounds become

∥θ̂ − θ∗∥∞ ≲

√
exp(2κE) log n

L
, ∥θ̂ − θ∗∥2 ≲

√
exp(2κE)n log n

L
,

which are both sharp up to a log n factor according to the lower bounds in Shah et al. (2016) and our work. In addition, for the
star graph, one can actually show with much simpler arguments that the condition on L can be relaxed to L > ce2κE log n,
because in a star graph essentially we are just comparing n− 1 pairs separately.



A.3 PROOF IN SECTION 3

Let F (t) = 1
1+e−t , then the Bradley-Terry model can be written as pij = F [(w∗

i − w∗
j )/σ] with σ = 1. We have

maxt∈[0,2κ/σ] F
′(t) = F ′(0) = 1/4, so ζ in Lemma 13 satisfies

ζ = ce
2κ
σ .

Moreover, we denote W := {θ∗ | ∥θ∗∥∞ ≤ B}. Since 1⊤
n θ

∗ = 0, we have B ≍ κ := maxi,j |θ∗i − θ∗j | (in general, there
is no more information, but for some special cases, e.g., when entries of θ∗ are equal-spaced, we have κ = 2B). In what
follows in this section, we still use quantity σ for generality, but keep in mind that in our setting σ = 1. We still use B to
differ it from κ.

A.3.1 Background and Required Results

Before writing our proof of Theorem 5 we note down specific results from (Shah et al., 2016) and other sources that we will
use repeatedly.

Definition 9 (Pairwise (δ, β)−packing set from (Shah et al., 2016)). Let θ ∈ Rn be a parameter to be estimated, as indexed
over a class of probability distributions P := {Pθ | θ ∈ W}, and let ρ : Rn ×Rn → R≥0 be a pseudo-metric. Suppose there
exist a finite set of M vectors

{
θ1, . . . , θM

}
such that the following conditions hold:

min
j,k∈[M ],j ̸=k

ρ
(
θj , θk

)
≥ δ and

1(
M
2

) ∑
j,k∈[M ],j ̸=k

DKL (Pθj∥Pθk) ≤ β

Then we refer to
{
θ1, . . . , θM

}
as (δ, β)−packing set.

Lemma 10 (Fano minimax lower bound). Suppose that we can construct a (δ, β)−packing set with cardinality M , then the
minimax risk is lower bounded as:

inf
θ̂

sup
θ∗∈W

E
[
ρ
(
θ̂, θ∗

)]
≥ δ

2

(
1− β + log 2

logM

)
Proof. See (Yu, 1997, Lemma 3) for details.

Lemma 11 (Equivalence of ∥·∥∞ and ∥·∥2 norms). Given any vector θ ∈ Rn, with n ∈ N fixed, the following inequalities
holds:

1√
n

∥θ∥2 ≤ ∥θ∥∞ ≤ ∥θ∥2

Proof. The result is standard e.g. see (Wendland, 2018, Proposition 2.10) for a more general version and proof. For the sake
of completeness we provide a direct proof of the equivalent statement ∥θ∥∞ ≤ ∥θ∥2 ≤

√
n ∥θ∥∞ as follows:

∥θ∥∞ = max
i∈[n]

|θi| =
√
max
i∈[n]

|θi|2 ≤

√√√√ n∑
i

θi
2 ≤ ∥θ∥2

∥θ∥2 =

√√√√ n∑
i

θi
2 ≤

√√√√ n∑
i

max
i∈[n]

|θi|2 =
√
nmax

i∈[n]
|θi|2 =

√
n ∥θ∥∞

This proves the lower and upper inequalities respectively, as required.

Remark 1. We note that the above inequalities are tight i.e. have optimal constants. In the case of the upper bound consider
θ = 1n = (1, . . . , 1)

⊤ ∈ Rn. So ∥θ∥∞ = 1 and ∥θ∥2 =
√
n =

√
n ∥θ∥∞ showing the tightness of the upper bound.

In the case of the lower bound, consider θ = e1 i.e. WLOG the first standard basis vector in Rn. We then have that
∥θ∥∞ = ∥θ∥2 = 1, which shows tightness in the lower bound.



Lemma 12 (Lemma 7 in (Shah et al., 2016)). For any α ∈
(
0, 14

)
, there exists a set of M(α) binary vectors{

z1, . . . , zM(α)
}
⊂ {0, 1}n such that

αn ≤
∥∥zj − zk

∥∥2
2
≤ n for all j ̸= k ∈ [M(α)], and (30)

⟨e1, zj⟩ = 0 for all j ∈ [M(α)] (31)

Lemma 13 (Lemma 8 in (Shah et al., 2016)). For any pair of quality score vectors θj and θk, and for

ζ :=
maxx∈[0,2B/σ] F

′(x)

F (2B/σ)(1− F (2B/σ))

we have

DKL (Pθj∥Pθk) ≤
Ncompζ

σ2

(
θj − θk

)⊤
L
(
θj − θk

)
=:

Ncompζ

σ2

∥∥θj − θk
∥∥2
L

Lemma 14 (Lemma 14 in (Shah et al., 2016)). The Laplacian matrix L̃A satisfies the trace constraints:

tr (L̃A) = 2 (32)

tr (L̃†
A) ≥ n2

4
(33)

Proof. See (Shah et al., 2016, Lemma 14) for details.

The challenge - constructing a suitable pairwise packing set that meets Definition 9. The main tool to use here is the
Varshamov-Gilbert Lemma

A.3.2 Sketch of Lower Bound Proof

In brief, we seek a minimax lower bound proof of the same form as (Shah et al., 2016, Theorem 2(a)), except in our case
we choose our packing set norm to the ℓ∞ norm, rather than the ℓ22 in (Shah et al., 2016, Theorem 2(a)). We leverage
their construction directly in two main ways. First, we use the slightly modified version of Fano’s Lemma that enables the
(δ, β)-packing set to be constructed for the ℓ∞ norm, not the ℓ2∞ norm, consistent with our high probability upper bound per
Lemma 10. Second, we can switch out their use of the (δ, β)-packing set in the ℓ2 norm to the (δ′, β′)-packing set in the ℓ∞
norm. This is done by using the topological equivalence of norms in finite dimensions per Lemma 11, which is shown to be
tight in the dimension per Remark 1. For the sake of clarity, we use much of the same wording as the proof from (Shah et al.,
2016, Appendix B), for the convenience of the reader.

A.3.3 Lower Bound Proof - Part I

Our proof follows directly the approach taken from (Shah et al., 2016, Section B.1). The normalized Laplacian L̃A of the
comparison graph is symmetric and positive-semidefinite. We can thus decompose this via diagonalization as L = U

T

ΛU
where U ∈ Rn×n is an orthonormal matrix, and Λ is a diagonal matrix of nonnegative eigenvalues Λjj = λj(L) for each
j ∈ [n]. Similar to (Shah et al., 2016, Section B.1) we first prove that the minimax risk is lower bounded by cσ2 n2

Ncomp
.

Fix scalars α ∈ (0, 14 ) and δ > 0, with values to be specified later. Obtain set of vectors on the Boolean Hypercube {0, 1}n

i.e.
{
z1, . . . , zM(α)

}
given by Lemma 12, where M(α) is set to be

M(α) :=
⌊
exp

{n
2
(log 2 + 2α log 2α+ (1− 2α) log(1− 2α))

}⌋
. (34)

Define another set of vectors of the same cardinality
{
θj

∣∣ j ∈ [M(α)]
}

via θj := δ√
n
U⊤Pzj , where P is a permutation

matrix. The permutation matrix P has the constraint that it keeps the first coordinate constant i.e. P11 = 1. By construction
for each j ̸= k we have that



∥∥θj − θk
∥∥
∞

(i)

≥ 1√
n

∥∥θj − θk
∥∥
2

(ii)
=

1√
n

(
δ√
n

∥∥zj − zk
∥∥
2

)
(iii)

≥ δ

√
α

n
(35)

Here (i) follows from Lemma 11. Additionally (ii) follows since θj := δ√
n
U⊤Pzj . In the case of the final inequality

(iii), we have δ2

n2

∥∥zj − zk
∥∥2
2
≥ αnδ2

n2 = αδ2

n . Since the set
{
z1, . . . , zM(α)

}
are binary vectors with a minimum Hamming

distance at least αn using Equation (30). Consider, any distinct j, k ∈ [M(α)], then for some subset {i1, . . . , ir} ⊆
{2, . . . , n} with αn ≤ r ≤ n it must follow that

∥∥θj − θk
∥∥2
L̃A

=
δ2

n

∥∥U⊤Pzj − U⊤Pzk
∥∥2
L̃A

=
δ2

n

∥∥zj − zk
∥∥2
Λ
=
δ2

n

r∑
m=1

λim(L̃A)

The last part follows since Λ is a diagonal matrix of non-negative eigenvalues with Λii = λj(L). Now for given {a2, . . . , an}
such that αn ≤

∑n
i=2 ai ≤ n we have that

1(
M(α)

2

) ∑
j ̸=k

∥∥θj − θk
∥∥2
L̃A

=
δ2

n

n∑
i=2

aiλi(L̃A)

The permutation matrix P is chosen such that the last n− 1 coordinates are permuted to have a1 ≥ . . . ≥ an and keep the
nth coordinate fixed. By this particular choice, and using the fact that tr (L̃A) = 2 we have that:

1(
M(α)

2

) ∑
j ̸=k

∥∥θj − θk
∥∥2
L̃A

=
δ2

n

n

n− 1
tr (L̃A) ≤ 2δ2

n
tr (L̃A) =

4δ2

n

Now by the choice of P above, we have that for every choice of j ∈ [M(α)]

⟨L̃A, θ
j⟩ = δ√

n
e⊤1 Pz

j = e⊤1 z
j = 0

where the last equality follows from Equation (31). Now the basic condition needs to be verified i.e. did the θj we
chose satisfy the boundedness constraint, to ensure that θj ∈ WB? Setting δ2 = 0.01 σ2n2

4Ncompζ
, it indeed follows that∥∥θj∥∥∞ ≤ δ√

n

∥∥zj∥∥
2

(i)

≤ δ
(ii)

≤ B. Here (i) follows since zj ∈ {0, 1}n. Furthermore (ii) follows from our choice of δ and

our assumption that Ncomp ≥ cσ2 tr(L̃†
A)

ζB2 with c = 0.002, where Lemma 14 guarantees that Ncomp ≥ cσ2n2

4ζB2 . We have thus
verified that each vector θj also satisfies the boundedness constraint

∥∥θj∥∥∞ ≤ B, which is required for membership in WB .
Finally by Lemma 13 we have that:

DKL (Pθj∥Pθk) ≤
Ncompζ

σ2

4δ2

n
= 0.01n (36)

To summarize, we have now constructed a (δ′, β′)-packing set with respect to the norm ρ
(
θj , θk

)
:=

∥∥θj − θk
∥∥
∞, where

δ′ = δ
√

α
n from Equation (35), and β′ = 0.01d from Equation (36).

Finally we have by substituting (δ′, β′) into the pairwise Fano’s lower bound (Lemma 10) that:

sup
θ∗∈WB

E
[∥∥∥θ̃ − θ∗

∥∥∥
∞

]
≥ δ

√
α

n

(
1− 0.01n+ log 2

logM(α)

)
= cσ

√
n

ζNcomp

(
1− 0.01n+ log 2

logM(α)

)
which yields the claim, after appropriate substitution of δ and setting α = 0.01.

For the case of n ≤ 9, consider the set of the three n-length vectors z1 = (0, . . . ,−1), z2 = (0, . . . , 0) and z3 = (0, . . . , 0).
Construct the packing set

(
θ1, θ2, θ3

)
from these three vectors

(
z1, z2, z3

)
as done above for the case of n > 9. From the

calculations made for the general case above, we have for all pairs minj ̸=k

∥∥θj − θk
∥∥2
∞ ≥ 1

9 minj ̸=k

∥∥θj − θk
∥∥2
2
≥ δ2

81 and

maxj,k
∥∥θj − θk

∥∥2
L̃A

≤ 4δ2, and as a result maxj,kDKL (Pθj∥Pθk) ≤ 4Ncompζδ
2

σ2 . Choosing δ2 = σ2 log 2
8Ncompζ

and applying the
pairwise Fano’s lower bound (Lemma 10) yields the claim.

For the other case, the lower bound in terms of λi(L̃A), the argument is similar, and we end up with an extra factor of 1
n′ .



A.3.4 Lower Bound Proof - Part II

Given an integer n′ ∈ {2, . . . , n}, and constants α ∈ (0, 14 ), δ > 0, define the integer:

M ′(α) :=

⌊
exp

{
n′

2
(log 2 + 2α log 2α+ (1− 2α) log(1− 2α))

}⌋
(37)

Applying Lemma 12 using n′ as the dimension results in a subset
{
z1, . . . , zM

′(α)
}

of the Boolean hypercube {0, 1}n
′
,

with specified properties. We then define a finite set of size M ′(α), of n-length vectors
{
θ̃1, . . . , θ̃M

′(α)
}

using:

θ̃j =
[
0
(
zj
)⊤

0 · · · 0
]⊤

for each j ∈ [M(α)]

For each j ∈ [M(α)], let us define θj := δ√
n′ U

⊤
√
Λ† θ̃j . For the first standard basis vector e1 ∈ Rn, we then have that

⟨1n, θ
j⟩ = δ√

n′ L̃⊤
AU

⊤
√
Λ† θ̃j = 0. Here the main fact used is L̃A1n = 0. Additionally we have that for any j ̸= k, we

have that:

∥∥θj − θk
∥∥2
∞ ≥ 1

n

∥∥θj − θk
∥∥2
2
=

1

n

δ2

n′

(
θ̃j − θ̃k

)⊤
Λ†

(
θ̃j − θ̃k

)
≥ 1

n

δ2

n′

n′∑
i=⌈(1−α)n′⌉

1

λi
(38)

Now, setting δ2 = 0.01 σ2n′

Ncompζ
results in:

∥∥θj∥∥∞ ≤ δ√
n′

∥∥∥√Λ† θ̃j
∥∥∥
2

(i)

≤ δ√
n′

√
tr (Λ†)

(ii)
=

δ√
n′

√
tr (L†)

(iii)

≤ B (39)

where inequality (i) follows from the fact that zj has entries in {0, 1}; step (ii) follows because the matrices
√
Λ† and√

L̃†
A have the same eigenvalues; and inequality (iii) follows from our choice of δ and our assumption Ncomp ≥ cσ2 tr(L̃†

A)
ζB2

on the sample size with c = 0.01. We have thus verified that each vector θj also satisfies the boundedness constraint∥∥θj∥∥∞ ≤ B, as required for membership in WB . Furthermore, for any pair of distinct vectors in this set, we have:

∥∥θj − θk
∥∥2
L̃A

=
δ2

n′
∥∥zj − zk

∥∥2
2
≤ δ2

By Lemma 13 we have that:

DKL (Pθj∥Pθk) ≤
Ncompζ

σ2

∥∥θj − θk
∥∥2
L̃A

= 0.01n′ (40)

Finally we have by substituting (δ′, β′) into the pairwise Fano’s lower bound (Lemma 10) that:

sup
θ∗∈WB

E
[∥∥∥θ̃ − θ∗

∥∥∥
∞

]
≥

δ√
n′d

√∑n′

i=⌈(1−α)n′⌉
1
λi

2

(
1− 0.01n′ + log 2

logM ′(α)

)
Substituting our choice of δ and setting α = 0.01 proves the claim for n′ > 9.

For the case of n′ ≤ 9. Consider the packing set of the three n′-length vectors θ1 = δU
√
Λ† (0, 1, . . . , 0), θ2 =

−θ1 and θ3 = (0, . . . , 0). Then we have for all pairs minj ̸=k

∥∥θj − θk
∥∥2
∞ ≥ 1

9 minj ̸=k

∥∥θj − θk
∥∥2
2

≥ δ2

9λ2(L) and

maxj,k
∥∥θj − θk

∥∥2
L̃A

≤ 4δ2, and as a result maxj,kDKL (Pθj∥Pθk) ≤ 4Ncompζδ
2

σ2 . Choosing δ2 = σ2 log 2
8Ncompζ

and applying the
pairwise Fano’s lower bound (Lemma 10) yields the claim.



A.4 ADDITIONAL EXPERIMENTS

In this section, we show some additional results of experiments. The section has three parts:

1. Experiments related to Section 4.

2. Extra comparisons as a supplement to Section 5.

3. Experiments to illustrate that in some cases κE is still loose and point out a potential future direction.

A.4.1 Subadditivity

In this section, we show some simulation results illustrating the advantage of using subadditivity property in the estimation
of the BTL model, as we discuss in Section 4.

Island graph. In this setting, we consider the Island graph with n nodes described in Example 7 and denote the node set of
the k-th island as Vk. Suppose we get the estimator θ̂(k) ∈ R|Vk| (k > 1) based on k-th Island Vk with the augmented version
θ̃(k) ∈ Rn such that the subvector θ̃(k)(Vk) = θ̂(k). We can define the ensemble estimator add-MLE in the following way:
first shift θ̃(k) and get

θ̌(k) = θ̂(k) + sk, sk = sk−1 + θ̃(k−1)(nisland)− θ̃(k)(noverlap), s0 = 0.

Then construct θ̃add ∈ Rn such that for all k, θ̃add(Vk) = θ̌(k). At last, we centerize θ̌(k) and get

θ̂add = θ̃add − 1n · 1
n
1⊤
n θ̃

add.

For the ease of implementation and precise description of the performance, we construct the true parameter θ∗ by first set
θ∗(i) = θ∗(1) + (i − 1)δ such that avg(θ∗) = 0, and then shift θ∗

(k)
:= θ∗(Vk) by sk := −(k − 1)s and call s ∈ R the

shifting coefficient. Figure 1 shows that add-MLE outperforms the joint-MLE, where “shift” in the right panel is the shifting
coefficient s. Notice that to save space and for the ease of understanding, we transform “shift” to “diff” in the Section 5 so
that “diff” shows the difference in the average: avg(θ∗

(k−1))− avg(θ∗
(k)). We set L = 10 for all pairs.
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Figure 1: Estimation errors given by joint-MLE and add-MLE on Island graphs. The y-axis is ∥θ̂ − θ∗∥∞. In the left panel,
the x-axis is the size of islands nisland while noverlap = 5, k = 3, L = 10 in all cases. In the right panel, the x-axis is s, the
shifting coefficient while nisland = 50, noverlap = 5, k = 5, L = 10. The lines show the average of 100 trials with the
standard deviation shown as the shaded area.

Barbell graph. In this setting, a barbell graph Gbarbell([n], E) of two equal-sized complete subgraphs G1,G2 linked by a
set of bridge edges Ebridge = {(i, j) : i ∈ G1, j ∈ G2, (i, j) ∈ E} are generated as is discussed in Example 8. Note that the
vertex sets V1, V2 of G1,G2 are disjoint and V1 ∪ V2 = [n]. We set L = 10 for all pairs. Again, two methods of estimation
are compared:

• Joint-MLE. A single regularized MLE θ̂joint is fitted on Gbarbell.



• Add-MLE. Two regularized MLE’s θ̂(1) and θ̂(2) are fitted separately on G1 and G2. Then for each e = (i, j) ∈ Ebridge,
we calculate

d̂e := log(
p̂e

1− p̂e
),

where p̂e = clip(
winij

winij+lossij
, pup, plb) for e = (i, j) with two constants 0 < plb < pup < 1 for regularity. We take

plb = 0.1, pup = 0.9. Then for e = (i, j) ∈ Ebridge, the shifting constant ŝe is defined as

ŝe := d̂e − (θ̃
(1)
i − θ̃

(2)
j ),

where θ̃(i) is the augmented version of θ̂(1) satisfying θ̃(i)(Vi) = θ̂(1). Then the average ŝE is calculated via
ŝE := 1

|E|
∑

e∈E ŝe and the add-MLE θ̂add is constructed via

θ̃addi :=

{
θ̃
(1)
i , i ∈ G1,

θ̃
(2)
i − ŝE , i ∈ G2,

and θ̂add = θ̃add − 1n · 1
n1

⊤
n θ̃

add.

Notice that we slightly change the way of constructing the add-MLE in Section 4 to exploit multiple random bridge edges in
this setting.

Similar to the Island graph case, we let G1 be the complete graph of node {1, . . . , n2 } and G2 the complete graph of nodes
{n
2 + 1, . . . , n}. To set the true parameter, we let

θ∗i =

{
θ∗1 + (i− 1)δ, i ≤ n

2 ,

−s+ θ∗1 + (i− 1)δ, i > n
2 ,

where s ∈ R is the shifting coefficient.

As we can see from Figure 2, the performance of the add-MLE is more stable than that of the joint-MLE, while ensuring
better or similar ℓ∞ estimation error.
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Figure 2: Estimation errors given by joint-MLE and add-MLE on Barbell graphs with 100 nodes(left) and 200 nodes (right).
Two equal-sized complete subgraphs are linked by 10 (left) and 20 (right) randomly sampled bridge edges. The y-axis is
∥θ̂ − θ∗∥∞ and the x-axis is s, the shifting coefficient. L = 100 for bridge edges and L = 10 for non-bridge edges. The
lines show the average of 100 trials with the standard deviation shown as the shaded area.

A.4.2 Extra comparisons

A one-sentence summary of this section is, we demonstrate our discussions in Section 5 by real cases that κE can give much
tighter upper bounds than κ.



We consider a k-banded graph where comparisons are made only for pairs with difference in indices smaller or equal to
k. That is, the edge set of the comparison graph is Ek := {(i, j) : |i − j| ≤ k}. We consider two settings, k =

√
n and

k = n/ log n, and in each setting, we set κ = log(n), L = 10 and θ∗i = θ∗1 + (i− 1)δ for i > 1 with δ = κ/(n− 1).

We compare the real ℓ2-error of the regularized MLE and three upper bounds: the upper bound for the ℓ2-error provided
by our paper using κ and κE , and the one provided by Shah et al. (2016). As is shown in Figure 3, κE gives tighter upper
bounds than κ in the setting of banded comparison graph. It should be noted that all curves are going up because for a
banded graph, L needs to be sufficiently large to guarantee o(1) ℓ∞ error, and we set L = 10 simply for illustration of the
effectiveness of κE versus κ here.
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Figure 3: Comparison under the k-banded graph with k =
√
n (left) and k = n/ log(n) (right). Each point on lines is an

average of 20 trials. The two curves of upper bounds kappa and Shah are manually shifted downwards so that they started at
the same level with the curve for kappa_E, to remove the affect of the choice of constant (though all leading constants are
set to be 1 here) and make it easier to compare the increasing rate of the bound.

A.4.3 Cases where κE is loose

Consider a path graph of n nodes and edge set {(i, i + 1) : i ∈ [n − 1]}. Assume θ∗i = θ∗1 + (i − 1)δ, then κE = δ and
κ = (n− 1)δ. In this case, a factor of eκE gives tighter control than eκ. However, if we add one edge (1, n) into the graph,
κE becomes (n− 1)δ and our upper bound will increase a lot, which is counter-intuitive because the newly-added 1 out of n
edges should not affect the estimation accuracy too much. In other words, the bound gets looser after the new edge is added.
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Figure 4: Experiment on the path graph. Left: the ℓ∞ error of the regularized MLE when adding new edges with big
performance gaps to the path graph. Right: the ℓ∞ error of the regularized MLE when switch some pairs of the performance
parameter {θ∗i } so that there are more big-gap edges while keeping the algebraic connectivity. The results show that when
the proportion of big-gap edges is small, the estimation error would not be affected a lot. Both experiments are under
κ ≈ 6.9, equal-gap θ∗, n = 200 and L = 5000 and based on 40 trials for each hyperparameter, with 0.05 and 0.95 quantiles
shown by the shaded area.



The reason is that κE itself is not enough to provide tight control across all comparison graphs. For instance, to avoid such
loose cases, one also needs to take into account the proportion of edges with big performance gaps compared to edges with
small performance gaps.
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Figure 5: Experiment on the path graph, under κ ≈ 6.9, equal-gap θ∗, n = 200 and based on 40 trials for each hyperparam-
eter L, with 0.05 and 0.95 quantiles shown by the shaded area.

Figure 4 shows some numerical results on the impact of big-gap edges. In the left panel, we add edges to the top-right and
bottom-left corner of the adjacency matrix so that their performance gaps are big. In the right panel, we switch some pairs of
parameters {θ∗i } so that there are more big-gap edges while keeping the algebraic connectivity. The first switch will switch
θ∗1 , θ

∗
[n/2]+1. The i-th switch will switch the pair θ∗2i−1, θ

∗
[n/2]+2i−1. As an example, taking n = 8, θ∗1 = 0, and δ = 1, 2

switches will make parameters change as

(1, 2, 3, 4, 5, 6, 7, 8) −→ (5, 2, 7, 4, 1, 6, 3, 8). (41)

In the left panel, as new big-gap edges come in, the algebraic connectivity of the graph gets larger as well, keeping estimation
errors in the same level. In the right panel, as we keep the algebraic connectivity constant, the impact of the proportion of
big-gap edges is shown more clearly.

Another thing we need to point out is that for cases like path graphs, even if we ignore the factor of κ, bounding estimation
error itself is hard due to the poor connectivity of the graph, as is argued in Shah et al. (2016) (their upper bound for both
path and cycle graphs is not optimal). As we have shown in Section 2.2, even for d-regular graphs with relatively small d,
the algebraic connectivity is not big enough and our upper bound cannot match the lower bound. But as the comparison
graph gets denser and more regular, κE will get closer to κ, making the difference between eκE and eκ not as dramatic,
although in finite sample phase the difference can still be big because it is an exponential factor.

The last thing we want is that the estimation itself (without providing a theoretical tight upper bound for the estimation
error) under the path graph is hard: one need a huge L to make accurate estimation when n is big, as is shown in Figure 5.



A.5 OTHER SUPPORTING RESULTS

Proposition 6. (Subadditivity) Let I1, I2, I3 be three subsets of [n] such that ∪3
j=1Ij = [n] and, for each j ̸= k, Ij ̸⊆ Ik

and for i = 1, 2, Ii ∩ I3 ̸= ∅. Assume that the sub-graphs induced by the Ij’s are connected. Let θ∗ be the vector of
preference scores in the BTL model over n items and θ̂(j) be the MLE of θ∗

(j) for the BTL model involving only items in

Ij , j = 1, 2, 3, with augmented versions θ̃(j) ∈ Rn such that θ̃(j)(Ij) = θ̂(j). Take two nodes t1 ∈ I1 ∩ I3, t2 ∈ I2 ∩ I3,
and let δ3 = θ̃(1)(t1)− θ̃(3)(t1), δ2 = θ̃(3)(t2)− θ̃(2)(t2). An ensemble MLE θ̂ ∈ Rn is a vector such that θ̂(I1) = θ̂(1),
θ̂(S2) = θ̂(2)(S2) + δ3 + δ2, and θ̂(S3) = θ̃(3)(S3) + δ3, where S2 = I2 \ I1 and S3 = I3 \ (I1 ∪ I2). It holds for any
ensemble MLE θ̂ that

1

4
d∞(θ̂,θ∗) ≤ d∞(θ̂(1),θ

∗
(1)) + d∞(θ̂(2),θ

∗
(2)) + d∞(θ̂(3),θ

∗
(3)), (42)

where d∞(v1,v2) := ∥(v1 − 1⊤avg(v1))− (v2 − 1⊤avg(v2))∥∞, where avg(x) := 1
n1⊤

nx.

Proof of Proposition 6. First, for each i = 1, 2, 3, we may shift θ̂(i) and θ∗
(i) separately by constant vectors to ensure that so

that
avg(θ̂(i)) =

1

|Ii|
1⊤
|Ii|θ̂(i) = 0 and avg(θ∗

(i)) = 0,

so that
d∞(θ̂(i),θ

∗
(i)) = ∥θ̂(i) − θ∗

(i)∥∞. (43)

Next, for each i = 1, 2, 3, let θ̃(i) ∈ Rn be the augmented version of θ̂(i) ∈ R|Ii|, given by

θ̃(i)(Ii) = θ̂(i), θ̃(i)(j) = 0, j /∈ Ii,

where v(j) refers to the j-th entry of vector v. Similarly, we define

θ̃∗
(i)(Ii) = θ∗

(i), θ̃∗
(i)(j) = 0, j /∈ Ii,

Step 1. We now define the ensemble MLE θ̂ and show the subadditivity property. The idea is to first fix θ̃(1), and then shift
the entries of θ̃(2) and θ̃(3) with coordinates in I2 and I3 respectively to comply with the differences in the common entries
of I1, I3 and I2, I3.

Let S1 = I1, S2 = I2 \ I1 (note that we don’t put any constraint on I1 ∩ I2), S3 = I3 \ (I1 ∪ I2). We allow S3 to be ∅, but
by the assumption that Ij ̸⊆ Ik, we have S2 ̸= ∅. Since ∪3

j=1Ij = [n] and Ii ∩ I3 ̸= ∅ for i = 1, 2, we have ∪3
j=1Sj = [n]

and Si ∩ Sk = ∅ for any i ̸= k. Pick an arbitrary t1 ∈ I1 ∩ I3, t2 ∈ I2 ∩ I3, and let

δ3 = θ̃(1)(t1)− θ̃(3)(t1), δ2 = θ̃(3)(t2)− θ̃(2)(t2).

Notice that since there is no constraint on I1 ∩ I2, t1 can be equal to t2. Moreover, define θ̌(3) and θ̌(2) by

θ̌(3)(j) =

{
θ̃(3)(j) + δ3, j ∈ S3,

0, j /∈ S3,
and θ̌(2)(j) =

{
θ̃(2)(j) + δ3 + δ2, j ∈ S2,

0, j /∈ S2,

respectively. Letting
θ̂ = θ̃(1) + θ̌(2) + θ̌(3), (44)

it can be seen that

θ̂(j) =


θ̃(1)(j), j ∈ S1,

θ̃(2)(j) + δ3 + δ2, j ∈ S2,

θ̃(3)(j) + δ3, j ∈ S3.

Step 2. Let δ∗3 = θ̃∗
(1)(t1)− θ̃∗

(3)(t1), δ
∗
2 = θ̃∗

(3)(t2)− θ̃∗
(2)(t2). Define a new true parameter θ̌∗ by shifting θ∗ via

θ̌∗(j) =


θ̃∗
(1)(j), j ∈ S1,

θ̃∗
(2)(j) + δ∗3 + δ∗2 , j ∈ S2,

θ̃∗
(3)(j) + δ∗3 , j ∈ S3.



It can be verified that θ̌∗ = θ∗ + (θ̃∗(t1)− θ∗(t1))1n, i.e., θ̌∗ is a shift of θ∗. To show this, it suffices to show that for all
j ∈ [n],

θ̌∗(j)− θ∗(j) = θ̃∗(t1)− θ∗(t1). (45)

In fact, for j ∈ S1, since θ̃∗
(1)(I1) is a shift of θ∗(I1), Equation (45) holds immediately by the definition of θ̌∗. For j ∈ S3,

we have
θ̌∗(j)− θ∗(j) = θ̃∗

(3)(j) + θ̃∗
(1)(t1)− θ̃∗

(3)(t1)− θ∗(j).

Since t1 ∈ I3 and θ̃∗
(1)(I3) is a shift of θ∗(I3), it holds that θ̃∗

(3)(j)− θ∗(j) = θ̃∗
(3)(t1)− θ∗(t1) and Equation (45) follows.

For j ∈ S2, we have

θ̌∗(j)− θ∗(j) = θ̃∗
(2)(j) + θ̃∗

(1)(t1)− θ̃∗
(3)(t1) + θ̃∗

(3)(t2)− θ̃∗
(2)(t2)− θ∗(j)

= θ̃∗
(2)(j)− θ∗(j) + θ̃∗

(3)(t2)− θ̃∗
(2)(t2) + θ̃∗

(1)(t1)− θ̃∗
(3)(t1).

Since t2 ∈ I2 and θ̃∗
(2)(I2) is a shift of θ∗(I2), it holds that θ̃∗

(2)(j)− θ∗(j) = θ̃∗
(2)(t2)− θ∗(t2) and thus

θ̌∗(j)− θ∗(j) = θ̃∗
(3)(t2)− θ∗(t2) + θ̃∗

(1)(t1)− θ̃∗
(3)(t1)

Again, since t1, t2 ∈ I3, we have θ̃∗
(3)(t2)− θ∗(t2) = θ̃∗

(3)(t1)− θ∗(t1) and Equation (45) follows.

Step 3. Now we are ready to show the conclusion of the proposition. To analyze the error, we first notice that for any
v,u ∈ Rn and a ∈ R,

d∞(u,v) = d∞(u,v + a1n) ≤ ∥u− (v + a1n)∥∞ +
1

n

n∑
i=1

|ui − (vi + a)| ≤ 2∥u− (v + a1n)∥∞.

Since θ̌∗ is a shift of θ∗, we have
d∞(θ̂,θ∗) ≤ 2∥θ̂ − θ̌∗∥∞.

For j ∈ S1,
|θ̂(j)− θ̌∗(j)| = |θ̃(1)(j)− θ̃∗

(1)(j)| ≤ ∥θ̂(1) − θ∗
(1)∥∞.

For j ∈ S3,

|θ̂(j)− θ̌∗(j)| = |θ̃(3)(j)− θ̃∗
(3)(j)|+ |δ3 − δ∗3 | ≤ 2∥θ̂(1) − θ∗

(1)∥∞ + ∥θ̂(3) − θ∗
(3)∥∞.

For j ∈ S2.

|θ̂(j)− θ̌∗(j)| = |θ̃(2)(j)− θ̃∗
(2)(j)|+ |δ3 − δ∗3 |+ |δ2 − δ∗2 |

≤ ∥θ̂(1) − θ∗
(1)∥∞ + 2∥θ̂(2) − θ∗

(2)∥∞ + 2∥θ̂(3) − θ∗
(3)∥∞.

Therefore by definition of ∥ · ∥∞ and Equation (43),

∥θ̂ − θ̌∗∥∞ ≤ 2(∥θ̂(1) − θ∗
(1)∥∞ + ∥θ̂(2) − θ∗

(2)∥∞ + ∥θ̂(3) − θ∗
(3)∥∞)

= 2(d∞(θ̂(1),θ
∗
(1)) + d∞(θ̂(2),θ

∗
(2)) + d∞(θ̂(3),θ

∗
(3))),

and we have
1

4
d∞(θ̂,θ∗) ≤ d∞(θ̂(1),θ

∗
(1)) + d∞(θ̂(2),θ

∗
(2)) + d∞(θ̂(3),θ

∗
(3)).

Lemma 15. Given a d-Cayley graph, where (i, j) ∈ E if and only if i− j ≡ k(mod n) with −d ≤ k ≤ d, k ̸= 0. It satisfies
λ2(LA) ≍ d3/n2.

Proof. By definition, a d-Cayley graph is a 2d-regular graph, and it’s well known that (see, e.g. Brouwer and Haemers,
2012) the spectra of its adjacency matrix A is given by

λj(A) =

d∑
k=1

(ζkj + ζk−j), ζj := cos
2πj

n
+

√
−1 sin

2πj

n
,



for j = 1, · · · , n. Thus, λ2(LA) = 2d − 2
∑d

k=1 cos(
2πk
n ). Since cos( 2πkn ) = 1 − 2 sin2 π

nk and for k ≤ d < 0.5n,
sin π

nk ∈ (0.5π
nk,

π
nk), we have

λ2(LA) = c′4π2/n2
d∑

k=1

k2 = cd3/n2,

for some factor c ∈ (2π2/3, 4π2/3).



A.6 SPECIAL CASES OF COMPARISON GRAPHS

By Theorem 1, for the estimator θ̂ρ to be consistent, L needs to be sufficiently large. We can check some common types
of comparison graph topologies and see in what order the necessary sample complexity Ncomp = |E|L needs to be, to
achieve consistency. To simplify results, we assume e2κE ≲ log n. Spectral properties of graphs listed here can be found in
well-known textbooks (Brouwer and Haemers, 2012). Shah et al. (2016) provide analogous comparisons. Per Section 2.2 we
include results for the d-Caley graphs, and expander graphs here. For reader convenience other results from Section 2.2 are
also noted below.

Complete graph: In this case, λ2(LA) = nmax = nmin = n− 1. Thus, we need e2κE log n/n = o(L). Hence L = Ω(1)
and Ncomp = Ω(n2).

Expander graph: If the comparison graph is a d-regular expander graph with edge expansion (or Cheeger number)
coefficient ϕ, then λ2(LA) ≥ ϕ2/(2d) (Alon et al., 2008), nmax = nmin = d. Here ϕ is defined by ϕ := min|S| e(S, T )/|S|
where {S, T} is a partition of the vertex set and |S| ≤ |T |. We need d2e2κE/ϕ4 · (e2κEn ∨ d log n) = o(L), so Ncomp =
Ω(nd3e2κE/ϕ4 · (e2κEn ∨ d log n)).

Complete bipartite graph: If the comparison graph has two partitioned sets of size m1 and m2 such that m1 ≤ m2, then
λ2(LA) = m1, nmax = m2, nmin = m1. We need e2κEm2/m

2
1 · [(e2κEnm2/m

2
1) ∨ log n] = o(L). When m1 = Ω(n),

we have Ncomp = Ω(n2).

d-Cayley graph: (i, j) ∈ E if and only if i − j ≡ k(mod n) with −d ≤ k ≤ d, k ̸= 0. It is a 2d-regular graph, and
λ2(LA) ≍ d3/n2 (see Appendix A.5), nmax = nmin = 2d. Thus, we need e2κEn4/d6 · (e2κEn ∨ 2d log n) = o(L), so
Ncomp = Ω(e2κEn5/d5 · (e2κEn ∨ 2d log n)) for d = o(n) and Ncomp = Ω(n2) for d = Ω(n).

Path or Cycle graph: When comparisons occur based on a path or cycle comparison graph, then by Proposition 3,

∥θ̂0 − θ∗∥∞ ≲ eκE

√
n logn

L . Thus, we need e2κEn log n = o(L) and Ncomp = Ω(e2κEn2 log n).

Star graph: A star graph on n node is a tree graph with diameter D = 1. By Proposition 4, we have ∥θ̂0 − θ∗∥∞ ≲

eκE

√
logn
L . Thus, we need e2κE log n = o(L) and Ncomp = Ω(e2κEn log n).

Barbell graph: It contains two size-n/2 complete sub-graphs connected by 1 edge, so λ2(LA) ≍ 1/n, nmax = n/2,
nmin = n/2− 1. We need e2κEn3 log n = o(L), and Ncomp = e2κEn5 log n.



A.7 UPPER BOUND FOR UNREGULARIZED/VANILLA MLE

A.7.1 Main theorem

The unregularized or vanilla MLE is defined as

θ̂ := argmin
θ∈Rn : 1⊤

n θ=0

ℓ(θ;y), (46)

where ℓ(θ;y) is the negative log-likelihood, given by

ℓ(θ;y) := −
∑

1≤i<j≤n

Aij {ȳij logψ(θi − θj) + (1− ȳij) log[1− ψ(θi − θj)]} , (47)

and t ∈ R 7→ ψ(t) = 1/[1 + e−t] the sigmoid function. To make the expressions of results simpler, we consider the
parameter range κ ≤ n and κE ≤ log n as discussed in the comments after Theorem 1.

Theorem 16 (Vanilla MLE). Assume the BTL model with parameter θ∗ = (θ∗1 , . . . , θ
∗
n)

⊤ such that 1⊤
n θ

∗ = 0 and a
comparison graph G = G([n], E) with adjacency matrix A, algebraic connectivity λ2(LA) and maximum and minimum
degrees nmax and nmin, respectively. Suppose that each pair of items (i, j) ∈ E are compared L times. Let κ = maxi,j |θ∗i −
θ∗j | and κE = max(i,j)∈E |θ∗i − θ∗j |. Assume that G is connected, or equivalently, λ2(LA) > 0. In addition, assume that 1.

λ2(LA)
2L > Ce2κE max{nmax log n, e

2κEn
n2
max

n2
min

} for some large constant C > 0, and 2. λ2(LA) ≥ 2e2κEnmax/nmin.

Then, with probability at least 1−O(n−5), the unregularized MLE θ̂ from (46) satisfies

∥θ̂ − θ∗∥∞ ≲ eκE

√
nmax log n

Ln2min

+ s

√
nmax

L

[
1 +

eκE
√
log n

nmin
+ s

√
n

nmax

]
, (48)

where s := e2κEnmax

λ2nmin
, and

∥θ̂ − θ∗∥2 ≲
eκE

λ2(LA)

√
nmaxn

L
, (49)

provided that L ≲ n5, κ < n, κE ≤ log n, and the right hand side of Equation (48) is smaller than a sufficiently small
constant C > 0.

Remark 2. The expression of the ℓ∞ bound looks messy, but in the ER(n, p) case it reduces to the same form as the
upper bound of the regularized MLE in Corollary 2. Moreover, for vanilla MLE we require an additional pure topological
assumption λ2(LA) ≥ 2e2κEnmax/nmin, which is stringent in some sense as it exclude many graphs with small nmin. But
for such graphs with high degree heterogeneity nmax/nmin, it’s reasonable that we need some regularity in our objective
function. We believe that this condition can be weakened, and the ℓ∞ upper bound can be improved or tightened by
improving the proof techniques, which can be a good future direction for researchers.

To prove Theorem 16, we need two lemmas, Lemma 17 anbd 18.

Lemma 17. Under the setting of Theorem 16, it holds with probability at least 1−O(n−5) that

∥θ̂ − θ∗∥∞ ≤ 5. (50)

Following Chen et al. (2020), we decompose the full negative loglikelihood function as

ℓn(θ) = ℓ(−m)
n (θ−m) + ℓ(m)

n (θ−m) , (51)

where θm ∈ R is the m-th entry of θ and θ−m ∈ Rn−1 is the subvector containing the rest of entries, and the two functions
are given by

ℓ(−m)
n (θ−m) =

∑
1≤i<j≤n:i,j ̸=m

Aij

[
ȳij log

1

ψ (θi − θj)
+ (1− ȳij) log

1

1− ψ (θi − θj)

]
,

ℓ(m)
n (θm|θ−m) =

∑
j∈[n]\{m}

Amj

[
ȳmj log

1

ψ (θm − θj)
+ (1− ȳmj) log

1

1− ψ (θm − θj)

]
.



Let H(−m) := ∇2ℓ
(−m)
n (ℓ−m), and

θ
(m)
−m = argmin

θ−m:∥θ−m−θ∗
−m∥∞≤5

ℓ(−m)
n (θ−m) .

Lemma 18. Under the setting of Theorem 16, it holds with probability at least 1−O(n−9) that

max
m∈[n]

∥θ(m)
−m − θ∗−m − am1n−1∥22 ≤ C

e2κEnmaxn

Lλ2(LA)2
(52)

for some constant C > 0, where am = avg
(
θ
(m)
−m − θ∗

−m

)
:= 1

n−11
⊤
n−1

(
θ
(m)
−m − θ∗

−m

)
.

Proof of Theorem 16. Again we define the leave-one-out negative log-likelihood as

ℓ(m)
n (θ) =

∑
1≤i<j≤n:i,j ̸=m

Aij

[
ȳij log

1

ψ (θi − θj)
+ (1− ȳij) log

1

1− ψ (θi − θj)

]

+
∑

i∈[n]\{m}

Amj

[
ψ (θ∗i − θ∗m) log

1

ψ (θi − θm)
+ ψ (θ∗m − θ∗i ) log

1

ψ (θm − θi)

]
,

(53)

For the ℓ2 bound, notice that by Taylor expansion

ℓn(θ̂) = ℓn(θ
∗) + (θ̂ − θ∗)T∇ℓn(θ∗) +

1

2
(θ̂ − θ∗)TH(ξ)(θ̂ − θ∗),

where ξ is a convex combination of θ̂ and θ∗. By Lemma 17, we have ∥θ̂ − θ∗∥∞ ≤ 5 and hence ∥ξ − θ∗∥∞ ≤ 5. By
Lemma 2, we have 1

2 (θ̂−θ
∗)TH(ξ)(θ̂−θ∗) ≥ ce−κEλ2∥θ̂−θ∗∥22 for some constant c > 0. By the fact that ℓn(θ∗) ≥ ℓn(θ̂),

Cauchy-Schwartz inequality, and Lemma 1, we have

∥θ̂ − θ∗∥2 ≲
eκE

λ2
∥∇ℓ(θ∗)∥2 ≤ eκE

λ2

√
nmaxn

L
.

For the ℓ∞ bound, the proof can be sketched as following steps.

0. By Lemma 17, ∥θ̂ − θ∗∥∞ ≤ 5 with probability at least 1−O(n−5).

1. By Lemma 18, it holds with probability exceeding 1−O(n−9) that,

max
m∈[n]

∥θ(m)
−m − θ∗−m − am1n−1∥22 ≤ C

e2κEnmaxn

Lλ2(LA)2

where am = avg
(
θ
(m)
−m − θ∗

−m

)
:= 1

n−11
⊤
n−1

(
θ
(m)
−m − θ∗

−m

)
.

2. Show that on the same event,

max
m∈[n]

∥θ(m)
−m − θ̂−m − am1n−1∥22 ≤C1

maxm∈[n]

∑
i∈N (m) (ȳmi − ψ (θ∗m − θ∗i ))

2

λ2(LA)2e−2κE

+ C1
e2κEnmax

λ2(LA)2
∥θ̂ − θ∗∥2∞.

(54)

Following the same arguments towards Equation (66), we can get

∥θ(m)
−m − θ̂−m − ām1n−1∥22 ≤ e2κE

c2λ2(LA)2
∥∇ℓ(−m)

n (θ̂−m)∥22.

By Equation (51), for each i ∈ [n] \ {m}, we have

∂

∂θi
ℓ(−m)
n (θ−m) =

∂

∂θi
ℓn(θ)−

∂

∂θi
ℓ(m)
n (θm | θ−m) ,



Using the fact that ∇ℓn(θ̂) = 0, we get

∂

∂θi
ℓ(−m)
n (θ−m)|θ=θ̂ = − ∂

∂θi
ℓ(m)
n (θm | θ−m) |θ=θ̂= −Ami

[
ȳmi − ψ(θ̂m − θ̂i)

]
.

Therefore, we have

∥∇ℓ(−m)
n (θ̂−m)∥22 =

∑
i∈[n]\{m}

Ami

[
ȳmi − ψ(θ̂m − θ̂i)

]2
≤2

∑
i∈[n]\{m}

Ami (ȳmi − ψ (θ∗m − θ∗i ))
2

+ 2
∑

i∈[n]\{m}

Ami

[
ψ (θ∗m − θ∗i )− ψ(θ̂m − θ̂i)

]2
≤2

∑
i∈[n]\{m}

Ami (ȳmi − ψ (θ∗m − θ∗i ))
2
+ 2∥θ̂ − θ∗∥2∞

∑
i∈[n]\{m}

Ami

≤2
∑

i∈[n]\{m}

Ami (ȳmi − ψ (θ∗m − θ∗i ))
2
+ 4nmax∥θ̂ − θ∗∥2∞.

Now use the fact that 1⊤
n θ

∗ = 1⊤
n θ̂ = 0, we have

∥am1n−1 − ām1n−1∥22 = (n− 1)[avg(θ̂−m − θ∗
−m)]2 =

(θ̂m − θ∗m)2

n− 1
≤ ∥θ̂ − θ∗∥2∞

n− 1
.

These results, together with the fact that λ2(LA) ≤ 2nmax ≤ 2n, give Equation (54).

3. Show that on the same event,

∥θ̂ − θ∗∥∞ · C4e
−κEnmin ≤ max

m∈[n]
|

∑
i∈N (m)

(ȳmi − ψ (θ∗m − θ∗i )) |

+
√
nmax max

m∈[n]
∥θ(m)

−m − θ∗−m − am1n−1∥2

+
√
nmax max

m∈[n]
∥θ(m)

−m − θ̂−m − am1n−1∥2.

(55)

First, define two univariate functions as some proxy of gradient and hessian:

g(m) (θm | θ−m) =
∂

∂θm
ℓ(m)
n (θm | θ−m) = −

∑
i∈[n]\{m}

Ami (ȳmi − ψ (θm − θi))

h(m) (θm | θ−m) =
∂2

∂θ2m
ℓ(m)
n (θm | θ−m) =

∑
i∈[n]\{m}

Amiψ (θm − θi)ψ (θi − θm) .

By the definition of θ̂ and the shift invariance of ℓn, we have ℓn(θ̂) ≤ ℓn(θ) for any θ ∈ Rn, thus

ℓ(m)
n (θ∗m | θ̂−m) + ℓ(−m)

n (θ̂−m) ≥ ℓn(θ̂).

This implies

ℓ(m)
n (θ∗m | θ̂−m) ≥ ℓ(m)

n (θ̂m | θ̂−m)

= ℓ(m)
n (θ∗m | θ̂−m) + (θ̂m − θ∗m)g(m)(θ∗m | θ̂−m) +

1

2
(θ̂m − θ∗m)2h(m)(ξ | θ̂−m),

where ξ is a convex combination of θ∗m and θ̂m. By Lemma 17, we have |ξ − θ∗m| ≤ |θ̂m − θ∗m| ≤ 5. Thus for
any i ̸= m it holds that |ξ − θ̂i| ≤ |ξ − θ∗m| + |θ∗m − θ∗i | +

∣∣∣θ̂i − θ∗i

∣∣∣ ≤ 10 + κ. By definition of h(m), we have
1
2h

(m)(ξ|θ̂−m) ≥ c2e
−κEnmin for some constant c2 > 0. Therefore, we get

(θ̂m − θ∗m)2 ≤ e2κE

(c2nmin)2
|g(m)(θ∗m | θ̂−m)|2. (56)



To bound |g(m)(θ∗m | θ̂−m)|, we decompose it as

|g(m)(θ∗m | θ̂−m)| =

∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ȳmi − ψ(θ∗m − θ̂i))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ȳmi − ψ(θ∗m − θ∗i ))

∣∣∣∣∣∣ (57)

+

∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ψ(θ
∗
m − θ∗i )− ψ(θ∗m − θ

(m)
i + am))

∣∣∣∣∣∣ (58)

+

∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ψ(θ
∗
m − θ

(m)
i + am)− ψ(θ∗m − θ̂i))

∣∣∣∣∣∣ . (59)

By Cauchy-Schwartz inequality, we can bound (58) and (59) by∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ψ(θ
∗
m − θ∗i )− ψ(θ∗m − θ

(m)
i + am))

∣∣∣∣∣∣
2

≤ nmax∥θ(m)
−m − θ∗

−m − am1n−1∥22,

∣∣∣∣∣∣
∑

i∈[n]\{m}

Ami(ψ(θ
∗
m − θ

(m)
i + am)− ψ(θ∗m − θ̂i))

∣∣∣∣∣∣
2

≤ nmax∥θ(m)
−m − θ̂−m − am1n−1∥22.

Plugging these bounds into Equation (56) and taking maximum over m ∈ [n] give the desired bound (55).

4. Plug (55) back into (54) and get

max
m∈[n]

∥θ(m)
−m − θ̂−m − am1n−1∥22 ≲

e2κE

λ2(LA)2
max
m

∑
i∈N (m)

(ȳmi − ψ∗
mi)

2

+
e4κE

λ2(LA)2
nmax

n2min

max
m∈[n]

|
∑

i∈N (m)

(ȳmi − ψ∗
mi)|2

+
e4κE

λ2(LA)2
n2max

n2min

max
m∈[n]

∥θ(m)
−m − θ∗−m − am1n−1∥22

+
e4κE

λ2(LA)2
n2max

n2min

max
m∈[n]

∥θ(m)
−m − θ̂−m − am1n−1∥22.

as we assume e2κE

λ2(LA)
nmax

nmin
≤ 1

2 , we have

max
m∈[n]

∥θ(m)
−m − θ̂−m − am1n−1∥22 ≲

e2κE (log n+ nmax)

λ2(LA)2L
+

e4κE

λ2(LA)2
n2max

n2min

log n

L
+

e4κE

λ2(LA)2
n2max

n2min

e2κEnmaxn

λ2(LA)2L
.

(60)

5. Plug (60) back into (55) and we can get

∥θ̂ − θ∗∥2∞ ≲
e2κE

n2min

nmax log n

L
+
e2κEn2max

n2minn

e2κEnmaxn

λ2(LA)2L

+
e2κEnmax

n2minλ2(LA)2L

[
e2κE (log n+ nmax) +

e4κEn2max log n

n2min

+
e6κEn3maxn

λ2(LA)2n2min

] (61)

One term can be reduced and the inequality becomes

∥θ̂ − θ∗∥∞ ≲ eκE

√
nmax log n

Ln2min

+ e2κE

√
n3max

Lλ2(LA)2n2min

[
1 + eκE

√
log n

n2min

+ e2κE

√
nmaxn

λ2(LA)2n2min

]
. (62)



A.7.2 Proof of Lemmas

Proof of Lemma 17. We will use a gradient descent sequence defined by

θ(t+1) = θ(t) − η[∇ℓn(θ(t)) + ρθ(t)].

The leave-one-out negative log-likelihood is defined as

ℓ(m)
n (θ) =

∑
1≤i<j≤n:i,j ̸=m

Aij

[
ȳij log

1

ψ (θi − θj)
+ (1− ȳij) log

1

1− ψ (θi − θj)

]

+
∑

i∈[n]\{m}

Ami

[
ψ (θ∗i − θ∗m) log

1

ψ (θi − θm)
+ ψ (θ∗m − θ∗i ) log

1

ψ (θm − θi)

]
,

so the leave-one-out gradient descent sequence is defined as

θ(t+1,m) = θ(t,m) − η[∇ℓ(m)
n (θ(t,m)) + ρθ(t,m)].

We initialize both sequences by θ(0) = θ(0,m) = θ∗ and set ρ = 1
κ

√
nmax

L and step size η = 1
λ+nmax

. We will show that
under the assumption λ2(LA)

2L > Ce2κE max{nmax log n, e
2κEnn2

max/n
2
min} for some large constant C > 0, we have

max
m∈[n]

∥θ(t,m) − θ(t)∥2 ≤f1 := C1
eκE

λ2

√
nmax log n

L
≤ 1

∥θ(t) − θ∗∥2 ≤f2 := C2
eκE

λ2

√
nmaxn

L
≤

√
n

log n

max
m∈[n]

|θ(t,m)
m − θ∗m| ≤f3 := C3

e2κE

λ2

nmax

nmin

√
n

L
≤ 1.

(63)

A useful fact given that (63) holds is that
∥θ(t,m) − θ∗∥∞ ≤ f1 + f2. (64)

We again have the Taylor expansion

θ(t+1) − θ(t+1,m) = [(1− ηρ)In − ηH(ξ)](θ(t) − θ(t,m))− η[∇ℓn(θ(t,m))−∇ℓ(m)
n (θ(t,m))].

Now by the fact that λmin,⊥(H(ξ)) ≥ c0e
−κλ2, we have

∥ ((1− ηρ)In − ηH(ξ)) (θ(t) − θ(t,m))∥2 ≤ (1− ηρ− c1ηλ2)∥θ(t) − θ(t,m)∥2

for some constant c1 > 0 and the other term can be bounded as

∥∇ℓn(θ(t,m))−∇ℓ(m)
n (θ(t,m))∥22

=

 ∑
j∈[n]\{m}

Ajm

(
ȳjm − ψ

(
θ∗j − θ∗m

))2

+
∑

j∈[n]\{m}

Ajm

(
ȳjm − ψ

(
θ∗j − θ∗m

))2
≤C1

1

L
nmax log n+ C1

1

L
(log n+ nmax).

Therefore, for

∥θ(t+1) − θ(t+1,m)∥2 ≤ (1− c1ηλ2)f1 + η

√
2C1

1

L
nmax log n ≤ f1

to hold, we need f1 > C eκE

λ2

√
nmax logn

L for some sufficiently large positive constant C > 0.

Next, we bound ∥θ(t+1) − θ∗∥. By Tarlor expansion,

θ(t+1) − θ∗ = ((1− ηλ)In − ηH(ξ)) (θ(t) − θ∗)− ηλθ∗ − η∇ℓn (θ∗) .



Equation (41) becomes

((1− ηλ)In − ηH(ξ)) (θ(t) − θ∗) ≤ (1− ηλ− c2ηλ2) ∥θ(t) − θ∗∥2,

and equation (42) becomes

∥∇ℓn (θ∗)∥22 =

n∑
i=1

 ∑
j∈[n]\{i}

Aij

(
ȳij − ψ

(
θ∗i − θ∗j

))2

≤ C2
nnmax

L
,

for some constants c2, C2 > 0. Therefore,

∥θ(t+1) − θ∗∥2 ≤ (1− c2ηλ2)f2 + η

√
C2
nnmax

L
+ ηλ∥θ∗∥2.

For ∥θ(t+1) − θ∗∥ ≤ f2 to hold, we need λ2

eκE
f2 > C

√
nmaxn

L for some sufficiently large constant C, which is guaranteed
by the definition of f2.

Next, we bound |θ(t+1,m)
m − θ∗m|. Note that by the definition of the gradient descent

θ(t+1,m)
m − θ∗m =

1− ηλ− η
∑

j∈[n]\{m}

Amjψ
′(ξj)

 (θ(t,m)
m − θ∗m)− ληθ∗m + η

∑
j∈[n]\{m}

Amjψ
′(ξj)(θ

(t,m)
j − θ∗j )

where ξj is a scalar between θ∗m − θ∗j and θ
(t,m)
m − θ

(t,m)
j . Since ∥θ(t,m) − θ∗∥∞ ≤ 3, we have |ξj − θ∗m + θ∗j | ≤

|θ∗m − θ∗j − θ
(t,m)
m + θ

(t,m)
j | ≤ 6 and ∥ξ∥∞ is bounded. Therefore,∑

j∈[n]\{m}

Amjψ
′(ξj) ≥ c3 min

i∈[n]
ni

and

|
∑

j∈N (m)

Amjψ
′(ξj)(θ

(t,m)
j − θ∗j )| ≤

√ ∑
j∈N (m)

[Amjψ′(ξj)]2
√ ∑

j∈N (m)

(θ
(t,m)
j − θ∗j )

2

≤ c4
√
nmax (f1 + f2).

for some constant c3, c4 > 0. Thus we have

|θ(t+1,m)
m − θ∗m| ≤ (1− c3ηnmin) + η

√
nmax (f1 + f2) + λη|θ∗m|.

For |θ(t+1,m)
m − θ∗m| ≤ f3 to hold, we need nmin

eκE
f3 > C

√
nmax f2 for some sufficiently large constant C > 0, which is

ensured by the definition of f2, f3.

As the last step, we again use the fact that ℓρ(·) is ρ-strongly convex and (ρ+ nmax)-smooth (see definition in the paragraph
before Equation (1)), so by Theorem 3.10 in Bubeck (2015), we have

∥θ(t) − θ̂ρ∥2 ≤ (1− ρ

ρ+ nmax
)t∥θ∗ − θ̂ρ∥2. (65)

By a union bound, Equation (63) holds for all t ≤ T with probability at leaast 1−O(Tn−10). Triangle inequality implies
that

∥θ̂ρ − θ∗∥∞ ≤ ∥θ(T ) − θ̂ρ∥2 + ∥θ(T ) − θ∗∥∞ ≤ (1− ρ

ρ+ nmax
)T

√
n ∥θ̂ρ − θ∗∥∞ + 2

Take T = n5 and remember that L ≲ n5. If ρ > nmax, then (1− ρ
ρ+nmax

)T
√
n ≤ 2−n5√

n ≤ 1/2. Otherwise, since

(1− ρ

ρ+ nmax
)T

√
n ≤ exp

(
− Tρ

ρ+ nmax

)√
n ,

using the fact that κ < n, we have

(1− ρ

ρ+ nmax
)T

√
n ≤ exp

(
− T

cκ

√
1

nmaxL

)
κ
√
n ≤ ce−nn3/2 ≤ 1

2
.

In conclusion, we have ∥θ̂ρ − θ∗∥∞ ≤ 1
2∥θ̂ρ − θ∗∥∞ + 2, thus ∥θ̂ρ − θ∗∥∞ ≤ 4, with probability at least 1−O(n−5).



Proof of Lemma 18. By definition, θ(m)
−m is a constrained MLE on a subset of the data, thus by Taylor expansion, for ξ given

by a convex combination of θ∗
−m and θ

(m)
−m , we have

ℓ(−m)
n

(
θ∗
−m

)
≥ℓ(−m)

n (θ
(m)
−m)

=ℓ(−m)
n

(
θ∗
−m

)
+ (θ

(m)
−m − θ∗

−m − am1n−1)
T∇ℓ(−m)

n

(
θ∗
−m

)
+

1

2
(θ

(m)
−m − θ∗

−m − am1n−1)
TH(−m)(ξ)(θ

(m)
−m − θ∗

−m − am1n−1),

where we use the invariant property of ℓ(−m)
n (θ−m), i.e., ℓ(−m)

n (θ−m) = ℓ
(−m)
n (θ−m + c1n−1). By the fact that ∥ξ −

θ∗
−m∥∞ ≤ ∥θ(m)

−m − θ∗
−m∥∞ ≤ 5 and Lemma 2, we have

(θ
(m)
−m − θ∗

−m − am1n−1)
TH(−m)(ξ)(θ

(m)
−m − θ∗

−m − am1n−1) ≥ ce−κEλ2(LA−m
)∥θ(m)

−m − θ∗
−m − am1n−1∥22.

Applying Cauchy-Schwartz inequality to the expansion and we can get

∥θ(m)
−m − θ∗

−m − am1n−1∥22 ≤ e2κE

c2λ2(LA−m)2
∥∇ℓ(−m)

n (θ∗
m)∥22.

Where A−m is the adjacency matrix of the comparison graph with node m excluded. By the interlacing property of the
eigenvalue sequences of Laplacians of graph and its induced subgraph (see, e.g. Brouwer and Haemers, 2012, Proposition
3.2.1), we have λ2(LA−m

) ≥ λ2(LA), thus

∥θ(m)
−m − θ∗

−m − am1n−1∥22 ≤ e2κE

c2λ2(LA)2
∥∇ℓ(−m)

n (θ∗
m)∥22. (66)

Now by Lemma 1, it holds with probability at least 1−O(n−10) that

∥θ(m)
−m − θ∗

−m − am1n−1∥22 ≤ C
e2κEnmaxn

Lλ2(LA)2
,

and the conclusion is guaranteed by a union bound.
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