
ADACAT: Adaptive Categorical Discretization for Autoregressive Models
(Supplementary material)

Qiyang Li1 Ajay Jain1 Pieter Abbeel1

1University of California Berkeley, Berkeley, CA, USA

A WHY IS TRAINING WITH THE NON-SMOOTHED LOSS UNSTABLE?

We hypothesize that the training instability comes from the biased gradients from the non-smoothed loss. We demonstrate
where this bias could come from in a simple 1-D example below by analyzing the gradient of the negative log-likelihood
(NLL) and the gradient of the Monte-Carlo approximation of the NLL:

∇θLll = −∇θ

∫
x

pdata(x) log pθ(x)dx

∇θL̂ll = − 1

n

n∑
d=1

∇θ log pθ(xd)

The first gradient ∇θLll is the correct gradient that we hope to approximate with ∇θL̂ll during training. However, due to
the non-differentiability of pθ(xd) with respect to θ at the boundary of each uniform mixture component, the following
statement is not generally true:

∇θLll = E
x1,··· ,xn

i.i.d.∼ pdata

[
∇θL̂ll

]

We provide a simple example where the gradient approximation is biased. Let pdata be a uniform distribution in [0., 1.)
and pθ be parameterized by the AdaCat distribution with w1 = w2 = 0.5, h1 = h2 = 0.5 (2 components). Recall that
θ = [ψ1, ψ2, ϕ1, ϕ2], which produces w1, w2, h1, h2 through softmax. The correct gradient and the expectation of the
approximated gradient can be computed analytically as follows:

∇θLll = −∇θ

[∫
x

pdata(x) log pθ(x)dx

]
= −∇θ

[
w1 log

(
h1
w1

)
+ w2 log

(
h2
w2

)]
= −

[
log

(
h1
w1

)
∇θw1 + log

(
h2
w2

)
∇θw2+

w1∇θ log

(
h1
w1

)
+ w2∇θ log

(
h2
w2

)]

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<qcli@berkeley.edu>
mailto:<ajayj@berkeley.edu>
mailto:<pabbeel@berkeley.edu>

Ex1:n

[
∇θL̂ll

]
= −Ex [∇θ log pθ(x)]

= −Ex

[
I {x < 0.5}∇θ log

(
h1
w1

)
+

I {x ≥ 0.5}∇θ log

(
h2
w2

)]

= −Ex

[
I {x < 0.5}

]
∇θ log

(
h1
w1

)
+

Ex

[
I {x ≥ 0.5}

]
∇θ log

(
h2
w2

)
= −w1∇θ log

(
h1
w1

)
− w2∇θ log

(
h2
w2

)

The correct gradient (first equation) contains two more terms (that involves ∇θw1 and ∇θw2) than the expectation of the
sample gradient (second equation).

B INTERPRETATION OF THE SMOOTHED OBJECTIVE

The gradient of our smoothed objective is an unbiased gradient estimator of the negative log-likelihood of the smoothed data
distribution under the model. We state the connection in more precise terms (with m = 1 for readability):

Claim B.1.

E
x1,··· ,xn

i.i.d.∼ pdata

[
∇θL̂s

]
= ∇θEx̃∼p̃data

[log pθ(x̃)]

where the smoothed data distribution is defined as

p̃data(x̃) =

∫
x

ζ(x̃|x)pdata(x)dx

Before we move on to the proof, we first check that the smoothed data distribution p̃data(x̃) is in fact a valid distribution:

∫
x̃

p̃data(x̃)dx̃ =

∫
x̃

∫
x

ζ(x̃|x)pdata(x)dxdx̃

=

∫
x

(∫
x̃

ζ(x̃|x)dx̃
)
pdata(x)dx

=

∫
x

pdata(x)dx

= 1.

Proof.

E
x1:n

i.i.d∼ pdata(x)

[
∇θL̂s

]
= Ex1:n

[
∇θ

[
1

n

n∑
d=1

∫
x̃d

ζ(x̃d|xd) log pθ(x̃d)dx̃d

]]

= ∇θEx1:n

[
1

n

n∑
d=1

∫
x̃d

ζ(x̃d|xd) log pθ(x̃d)dx̃d

]

= ∇θEx∼pdata(x)

[∫
x̃

ζ(x̃|x) log pθ(x̃)dx̃
]

= ∇θ

∫
x

∫
x̃

pdata(x)ζ(x̃|x) log pθ(x̃)dx̃dx

= ∇θ

∫
x̃

[∫
x

pdata(x)ζ(x̃|x)dx
]
log pθ(x̃)dx̃

= ∇θ

∫
x̃

p̃data(x̃) log pθ(x̃)dx̃

= ∇θEx̃∼p̃data
[log pθ(x̃)]

We would like to emphasize that the reason we could move the ∇θ operator outside the expectation is because the integral∫
x̃
ζ(x̃|x) log pθ(x̃)dx̃ is differentiable with respect to θ: we analytically evaluate the integral using the cumulative density

function (Equation 8). This is in contrast to the non-smoothed objective, which uses the discontinuous probability density
function as analyzed in the previous section. Furthermore, as long as the smoothing kernel ζ has small bandwidth (λ), p̃data
would be close to pdata. As a result, the gradient of the smoothed objective would closely approximate the true objective
that needs to be optimized Ex∼pdata

[log pθ(x)].

C EXPERIMENT DETAILS

To complete all the experiments we did in this paper, we approximatedly used 200 hours of machine time on
NVIDIA DGX-1 machine with Tesla V100. The machine has 8 Tesla V100 GPUs and 2x 20-core Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz (see more detailed specs here https://images.nvidia.com/content/pdf/
dgx1-v100-system-architecture-whitepaper.pdf). We also provide additional details of our hyperpa-
rameters for each task below.

C.1 TABULAR DATASETS

We provide the parameters used for ADACAT and the uniform baseline in Table 1 and 2. Note that the parameters are
different because they are individually tuned for each method via a grid search. Other shared hyperparameters are provided
in Table 3.

Dataset b H λ k n

POWER 32 500 1e-5 100 10000
GAS 32 1000 1e-4 1000 10000

HEPMASS 4 500 1e-4 100 10000
MINIBOONE 32 500 1e-4 100 1000

Table 1: Hyperparameters of ADACAT for UCI Datasets. H is the number of hidden neurons used in each four-layer
network. b is the number of Fourier feature pairs used, λ is the width of the smoothing distribution, k is the number of
mixture components used, and n is the batch size.

https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf

Dataset b H λ k n

POWER 32 500 1e-5 100 10000
GAS 32 1000 1e-4 200 10000

HEPMASS 4 500 1e-4 300 10000
MINIBOONE 32 500 1e-4 100 1000

Table 2: Hyperparameters of the Uniform Baseline for UCI Datasets. H is the number of hidden neurons used in each
four-layer network. b is the number of Fourier feature pairs used, λ is the width of the smoothing distribution, k is the
number of mixture components used, and n is the batch size.

Hyperparameter Value

Weight Decay 1e-4
Learning Rate 1e-4 (Halved every 100 gradient steps)
of Epochs 400
of Layers 4 (3 hidden layers)
Optimizer Adam, (β1, β2, ϵ) = (0.9, 0.999, 10−8)

Table 3: Other Shared Hyperparameters for UCI Datasets

C.2 MNIST

For MNIST image generation experiments, we mostly borrow the default training hyperparameters from the minGPT repo
(github.com/karpathy/minGPT) except for the batch size and the size of the network (number of layers and number
of heads). See Table 4 below.

Hyperparameter Value

Dropout Rate 0.1
Learning Rate 3e-4
Weight Decay 0.1

Gradient Clipping 0.1
of Layers 0.1
Optimizer Adam, (β1, β2, ϵ) = (0.9, 0.95, 10−8)

of Epochs 100
Embedding Size 768

of Layers 4
of Att. Heads 4

Table 4: Hyperparameters for MNIST Experiment

C.3 OFFLINE RL

We used the same hyperparameters as used in the official trajectory transformer codebase (github.com/jannerm/
trajectory-transformer). The only differences aside from the embedding layer change lie in the implementation
details of trajectory sampling:

Mid-Point Sampling vs. Uniform Sampling The original trajectory transformer codebase implements mid-point sampling
where a bin is first sampled with the corresponding predicted probability. Then, the mid-point of the bin is used as the
sampling result. This is different from our implementation where we use a uniform sampling over the selected bin since we
no longer treat states and actions as discretized tokens.

https://github.com/karpathy/minGPT
github.com/karpathy/minGPT
https://github.com/jannerm/trajectory-transformer
github.com/jannerm/trajectory-transformer
https://github.com/jannerm/trajectory-transformer
github.com/jannerm/trajectory-transformer

Action Sampler and Observation Sampler The original trajectory transformer codebase employs different sampling
strategies for actions and observations. In particular, the observation is decoded greedily by always choosing the most
probable bin and the action is decoded by sampling from the top 40% bins (cdf_act=0.6). We follow the same
strategies with the only difference that we use uniform sampling within the bin whereas the original code uses mid-point
sampling (see the discussion in the previous paragraph). In addition, we removed the 40% cut-off (cdf_act=0) for the
Hopper-Medium task as we found it to improve the planning performance.

Exponential Moving Average We also planned with the exponential moving average (with a coefficient of 0.995) of the
parameters for the HalfCheetah-Medium and Walker2d-Medium tasks to help reduce the variance of the planning
results. We did not use it for the Hopper-Medium task because we did not find it to help.

C.4 WAVENET

Our WaveNet experiment code closely follows the implementation of Yamamoto [2019], available at github.com/
r9y9/wavenet_vocoder. The model is a WaveNet audio decoder based on dilated convolutions and conditioned on
ground-truth Mel-spectrograms extracted from the audio files of the LJSpeech 1.1 dataset. Audio is sampled at 22050
Hz. Our µ-law baseline uses a categorical output distribution with an n-bit µ-law quantized waveform as input (8-bit for
256 bins). Waveform samples are represented through one-hot vectors. For Mixture of Logistics (MoL) and Gaussian
conditionals, the input waveform is represented as 16-bit raw audio. WaveNet is optimized with Adam at a learning rate of
0.001 that halves every 200K steps. Checkpoints are averaged during training with an exponential moving average, with
a decay rate of 0.9999. The EMA model is used for evaluation. For AdaCat conditionals, the model is trained with the
uniformly smoothed objective with λ = 0.0001, 0.00005 or 0.00001.

References

Ryuichi Yamamoto. Wavenet vocoder. https://github.com/r9y9/wavenet_vocoder, 2019.

https://github.com/r9y9/wavenet_vocoder
github.com/r9y9/wavenet_vocoder
https://github.com/r9y9/wavenet_vocoder
github.com/r9y9/wavenet_vocoder
https://github.com/r9y9/wavenet_vocoder

	Why is training with the non-smoothed loss unstable?
	Interpretation of the Smoothed Objective
	Experiment Details
	Tabular Datasets
	MNIST
	Offline RL
	WaveNet

