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A GPSSMS AND THE FITC APPROXIMATION

In this section we formalize and prove a remark on the properties of variational approximations for GPSSMs that have been
used in the literature so far. More precisely, we show that the ELBO of Ialongo et al. [2019] remains unchanged when the
FITC approximation [Snelson and Ghahramani, 2005], p(FT | FM ) ≈

∏T−1
t=0 p(ft | FM ) is used in both the prior and the

approximate posterior. This remark is a direct extension of the equivalent remark of Frigola et al. [2014] about the same
property of their model, which can be found in their appendix.

Before we begin, we first reiterate some previous results: The ELBO of the VCDT method from Ialongo et al. [2019] is
given as

LVCDT =

T∑
t=1

Eq(xt) [log p(yt | xt)]−KL [q(x0) ∥ p(x0)]−KL [q(FM ) ∥ p(FM )]

−
T∑
t=1

Eq(xt−1,ft−1,FM ) [KL [q(xt | FM , xt−1) ∥ p(xt | ft−1, xt−1)]] , (21)

where the posterior marginals are given by

q(xt) =

∫ [ t∏
t′=1

q(xt′ | FM , xt′−1)

]
q(x0)q(FM )dFMdx0:t−1, (22)

q(xt−1, ft−1, FM ) =

∫ [ t−1∏
t′=1

q(xt′ | FM , xt′−1)

]
q(x0)q(FM )p(ft−1|FM )dx0:t−2, (23)

where we use the shorthand dxi:j =
∏j
t′=i dxt′ . This can be obtained by using the prior and approximate posterior,

p(YT , XT0
, FT , FM ) = p(x0)p(FT | FM )p(FM )

T∏
t=1

p(yt | xt)p(xt | ft−1, xt−1), (24)

q(XT0
, FT , FM ) = q(x0)p(FT | FM )q(FM )

T∏
t=1

q(xt | FM , xt−1), (25)

respectively. To clarify some of the above points, we first of all note that the expectation value is defined as Ep(a,b) [g(a, b)] =∫
p(a, b)g(a, b)dadb, and the KL-divergence as KL [q(a) ∥ p(a)] =

∫
q(a) log q(a)

p(a)da. The ELBO in Eq. (21) is the same
as in Ialongo et al. [2019], where we simply collected all the terms that are somewhat spread over their paper and use our
notation (introduced in Sec. 2). The marginals in Eqs. (22) and (23) are not written out in as much detail in Ialongo et al.
[2019], but can be simply obtained from plugging in Eqs. (24) and (25) in the general formula for the ELBO in Eq. (9) and
collecting the remaining terms. This will be almost equivalent to the very similar derivation that we perform as part of the
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proof below. Finally, the exact definitions of the distributions q and p appearing in Eqs. (21) - (25) [given in Ialongo et al.,
2019] are not very important for our current undertaking, only their conditional (in)dependencies.

After these preliminaries we are ready to formally state our observation about the FITC approximation:

Remark 1. The ELBO in Eq. (21) remains unchanged when the FITC approximation, p(FT | FM ) ≈
∏T−1
t=0 p(ft | FM ), is

used in Eqs. (24) and (25).

Proof of Remark 1. The proof is conceptually simple: It relies on altering Eqs. (24) and (25) with the FITC approximation
and then calculating the ELBO by using Eq. (9) and showing that this coincides with Eqs. (21) - (23). The concepts needed
in the proof are also very simple: We only require the definition of expectation value and KL-divergences from above, rules
for the logarithm and the property for arbitrary probability densities q(a, b) that∫

q(a, b)g(b)dadb =

∫
q(b)g(b)

(∫
q(a | b)da

)
db =

∫
q(b)g(b)db, (26)

due to the normalization property of probability distributions.

We start by defining the alternative VCDT-FITC model by plugging in the FITC approximation p(FT | FM ) ≈
∏T−1
t=0 p(ft |

FM ) in Eqs. (24) and (25):

pFITC(YT , XT0
, FT , FM ) = p(x0)p(FM )

T∏
t=1

p(ft−1 | FM )p(yt | xt)p(xt | ft−1, xt−1), (27)

qFITC(XT0 , FT , FM ) = q(x0)q(FM )

T∏
t=1

q(xt | FM , xt−1)p(ft−1 | FM ). (28)

Plugging these equations in Eq. (9) yields the formula for the ELBO of this model:

LVCDT-FITC = EqFITC(XT0
,FT ,FM )

[
log

pFITC(YT , XT0
, FT , FM )

qFITC(XT0 , FT , FM )

]
(29)

Evaluating the terms inside the logarithm according to Eqs. (27) and (28) yields

LVCDT-FITC = EqFITC(XT0
,FT ,FM )

[
T∑
t=1

log p(yt | xt) + log
p(x0)

q(x0)
+ log

p(FM )

q(FM )
+

T∑
t=1

log
p(xt | ft−1, xt−1)

q(xt | FM , xt−1)

]
. (30)

Note that here the identical FITC terms,
∏T−1
t=0 p(ft | FM ) in the prior and approximate posterior have canceled each other

out inside the logarithm, but this also happens for the terms p(FT | FM ) in the original VCDT formulation [Eqs. (24) and
(25)].

Using the definition of the expectation value, then the property in Eq. (26) and then the definition of the KL-divergence, we
identify two of the KL-terms in Eq. (21):

LVCDT-FITC = EqFITC(XT0
,FT ,FM )

[
T∑
t=1

log p(yt | xt) +
T∑
t=1

log
p(xt | ft−1, xt−1)

q(xt | FM , xt−1)

]
−KL [q(x0) ∥ p(x0)]−KL [q(FM ) ∥ p(FM )] . (31)

In the following we carefully treat the remaining two terms inside the expectation: First,

EqFITC(XT0
,FT ,FM )

[
T∑
t=1

log p(yt | xt)

]

=

T∑
t=1

∫
q(x0)q(FM )

[
T∏
t′=1

q(xt′ | FM , xt′−1)((((((
p(ft′−1 | FM )

]
log p(yt | xt)dFMdx0:T����df0:T−1

=

T∑
t=1

∫ (∫
q(x0)q(FM )

[
t∏

t′=1

q(xt′ | FM , xt′−1)

]
dFMdx0:t−1

)
log p(yt | xt)dxt

=

T∑
t=1

Eq(xt) [log p(yt | xt)] , (32)



which we recognize as the first term in Eq. (21). Here, we have used Eq. (26) to get rid of the integrals over all ft′ and over
all xt′ for t′ > t in the second step and we have identified q(xt) from Eq. (22) in the last step.

We note that for the term in Eq. (32) as well as for the KL-terms in Eq. (31), the difference between the FITC and the
non-FITC approximate posterior does not play a role since the terms within the expectation value do not depend on any ft.
This is different for the remaining term in Eq. (31), which has a dependence on ft:

EqFITC(XT0
,FT ,FM )

[
T∑
t=1

log
p(xt | ft−1, xt−1)

q(xt | FM , xt−1)

]

=

T∑
t=1

∫ [
q(x0)q(FM )

(
T∏
t′=1

p(ft′−1 | FM )q(xt′ | FM , xt′−1)

)
log

p(xt | ft−1, xt−1)

q(xt | FM , xt−1)
dFMdx0:T df0:T−1

]

=

T∑
t=1

∫ [
q(x0)q(FM )p(ft−1 | FM )

t−1∏
t′=1

q(xt′ | FM , xt′−1)dx0:t−2

×
(∫

q(xt | FM , xt−1) log
p(xt | ft−1, xt−1)

q(xt | FM , xt−1)
dxt

)
dFMdft−1dxt−1

]
=−

T∑
t=1

Eq(xt−1,ft−1,FM ) [KL [q(xt | FM , xt−1) ∥ p(xt | ft−1, xt−1)]] . (33)

We recognize Eq. (33) as the last term in Eq. (21). Here, we have used Eq. (26) to get rid of the integrals over all ft′ for
t′ ̸= t− 1 and over all xt′ for t′ > t in the second step and additionally did some reordering of the terms. In the last step, we
have identified q(xt−1, ft−1, FM ) from Eq. (23) and a (negative) KL-divergence. It is interesting to note that at this point
the non-FITC variational approximation still would not make a difference: Since every summand within the expectation
value in the first line of Eq. (33) only depends on a single ft, the switching of summation and expectation makes both
versions, p(FT | FM ) and

∏T−1
t=0 p(ft | FM ), reduce to p(ft−1 | FM ) [using Eq. (26)] in the end.

Together, Eqs. (29) - (33) show that the ELBO of the VCDT-FITC model matches that of the original VCDT model in
Eq. (21), therefore completing the proof.

We furthermore note that since Eleftheriadis et al. [2017] use the same conditional (in)dependencies in their variational
family as Frigola et al. [2014], the remark in the appendix of the latter work holds also true for the former. In summary,
all practically viable variational treatments of GPSSMs either explicitly use the FITC approximation in both prior and
approximate posterior [Doerr et al., 2018] or implicitly do so [Frigola et al., 2014, Eleftheriadis et al., 2017, Ialongo et al.,
2019], i.e., the latter methods could have used the approximation and would have arrived at the same optimization objective.1

This somewhat weakens the criticism of Ialongo et al. [2019] on the choice of Doerr et al. [2018] to use a FITC prior and
motivates us to do the same in our work.

B DERIVATION OF THE LAPLACE APPROXIMATION

In this section we provide a more extensive derivation for the Laplace approximation in our notation, see e.g. MacKay
[2003], Skaug and Fournier [2006], Kristensen et al. [2016] for derivations in other notations or contexts. As explained in
Sec. 2.1, we use the Laplace approximation to approximate the marginal likelihood [Eq. (2)],

pθ(YT ) =

∫
pθ(YT , XT0)dXT0 . (34)

In some more detail, we do this with the following steps: We first introduce an exponential and a logarithm that cancel each
other out,

pθ(YT ) =

∫
exp [log pθ(YT , XT0

)] dXT0
. (35)

Then we find a mode X̂T0
of log pθ(YT , XT0

),

X̂T0 = argmax XT0
log pθ(YT , XT0), (36)

1This does not hold for the method described as "non-factorised non-linear" in Ialongo et al. [2019], but the O(T 3) scaling makes this
and similar methods unattractive to use in practice.



and perform a second order Taylor expansion of log pθ(YT , XT0) around this mode leading to

pθ(YT ) ≈
∫

exp

[
log pθ(YT , X̂T0

)− 1

2

(
X̂T0

−XT0

)⊤
H
(
X̂T0

−XT0

)]
dXT0

. (37)

Here H is the negative Hessian of log pθ(YT , XT0) as in Eq. (4) and the first order term vanishes since we are expanding
around a mode, where, by definition, the gradient vanishes. The first term in the exponential in Eq. (37) is constant in XT0

and can be pulled out of the integral:

pθ(YT ) ≈ pθ(YT , X̂T0)

∫
exp

[
−1

2

(
X̂T0 −XT0

)⊤
H
(
X̂T0 −XT0

)]
dXT0 . (38)

Remaining in the integral, we recognize the exponential of a negative quadratic form, i.e., an unnormalized multivariate
Gaussian, which generally has the density [see e.g. MacKay, 2003],

N (x|µ,Σ) = det(2πΣ)−
1
2 exp

[
−1

2
(µ− x)

⊤
Σ−1 (µ− x)

]
, (39)

with mean µ and covariance matrix Σ. We therefore recognize X̂T0 as the mean and H as the inverse of the covariance
matrix, i.e., the precision matrix, in Eq. (38), leading to

pθ(YT ) ≈ pθ(YT , X̂T0
)

∫
det(2πH−1)

1
2N

(
XT0

|X̂T0
, H−1

)
dXT0

. (40)

This integral is very easy to solve since the factor with the determinant does not depend on XT0 , leaving us with an integral
over a normalized probability density which, by definition, evaluates to 1. Therefore

pθ(YT ) ≈ pθ(YT , X̂T0) det(2πH
−1)

1
2

=
√
2π

dx(T+1)
pθ(YT , X̂T0

) det(H)−
1
2 , (41)

where we used standard rules for determinants, using that H is of dimension dx(T + 1)× dx(T + 1). This is the formula
that can be found in Eq. (3).

C USING THE IMPLICIT FUNCTION THEOREM

In order to obtain a formula for ∂X̂T0
(θ)

∂θ we start by defining a function h, that is the Jacobian of the function gGP in Eq. (15):

h(x, θ, FM ) = −∂ log pθ(YT , XT0 | FM )

∂XT0

∣∣∣∣
XT0

=x

. (42)

By definition, plugging in the mode X̂T0 for the fixed value θ̂ of the parameters θ that has been used when obtaining X̂T0 ,
yields a vanishing Jacobian, h(X̂T0

(θ̂), θ̂, FM ) = 0. Here, we made the dependence of the mode on the parameter setting θ̂
explicit. Under mild differentiability assumptions, the IFT, roughly speaking, guarantees that X̂T0

(θ) is in fact a function of
θ that is implicitly defined through a vanishing Jacobian in the vicinity of θ̂, i.e., through the equation

h(X̂T0(θ), θ, FM ) = 0, (43)

and that is also differentiable at θ̂ and in its vicinity. Therefore, we can calculate the total derivative wrt. θ on both sides of
Eq. (43), yielding

∂h(X̂T0
, θ, FM )

∂θ
+
∂h(x, θ, FM )

∂x

∣∣∣∣
x=X̂T0

∂X̂T0
(θ)

∂θ
= 0, (44)

where we used the chain rule. Recognizing

∂h(x, θ, FM )

∂x

∣∣∣∣
x=X̂T0

= H(θ, FM ),

i.e., the Hessian H [cf. Eq. (4)] of the function gGP in Eq. (15), we can solve Eq. (44) for the required derivative, obtaining

∂X̂T0
(θ)

∂θ
= H−1(θ, FM )

∂h(X̂T0
, θ, FM )

∂θ
. (45)

This is Eq. (17) appearing in Sec. 3.2.



D EXPLOITING STRUCTURE AND SPARSITY OF THE HESSIAN

In the following we provide some technical details on how we obtain the blocks of the Hessian in Eq. (18) in Sec. D.1 before
we show in Sec. D.2 how these blocks can be used to efficiently calculate the determinant of the Hessian and performing a
Hessian solve needed for Eqs. (14) and (17), respectively.

D.1 EFFICIENTLY OBTAINING THE NON-ZERO BLOCKS OF THE HESSIAN

Reverse mode automatic differentiation frameworks such as TensorFlow [Abadi et al., 2016] implement efficient vector-
Jacobian products. As we can think of the Hessian as the Jacobian of the Jacobian of the function gGP in Eq. (15), we can
naively obtain the dx(T + 1) columns of the Hessian in Eq. (18) by considering the vector-Hessian products e⊤j H with all
dx(T +1) unit vectors ej = {δjj′}dxTj′=0 ∈ Rdx(T+1), where δij is the Kronecker delta. This would require O(T 2d2x) storage
and computation time. As in Sec. 3.3, this is wasteful since many unnecessary zeros are being calculated. Therefore, in order
to tackle the problem of obtaining only the non-zero blocks of the Hessian, we propose instead to use only vector-Hessian
products with the three block-vectors ẽ0, ẽ1, and ẽ2 defined by ẽk = {δk,k′%3Idx}Tk′=0 ∈ Rdx(T+1)×dx . Here % denotes the
modulo operation and Idx is the identity matrix of size dx × dx. As an example, ẽ0 = (Idx , 0, 0, Idx , · · · )⊤ such that

ẽ⊤0 H = (A0, B1, B
⊤
3 , A3, B4, B

⊤
6 , · · · )⊤,

which can be implemented as dx vector-Hessian products. Similarly ẽ⊤1 H = (B⊤
1 , A1, B2, · · · )⊤ and ẽ⊤2 H =

(0, B⊤
2 , A2, B3 · · · )⊤ such that we can obtain all non-zero elements of the Hessian with only 3dx vector-Hessian products,

reducing the memory and time requirements to O(Td2x). After some reshaping and transposing this provides us with the
quantities {At}Tt=0 and {Bt}Tt=1 which are needed for the further steps in our sparse algorithm in the following section.

D.2 EFFICIENTLY CALCULATING THE HESSIAN DETERMINANT AND PERFORMING HESSIAN
SOLVES

We follow e.g. Koulaei and Toutounian [2007] in noting that the Hessian H in Eq. (18) allows the factorization

H = (Λ +B⊤)Λ−1(Λ +B), (46)

where B is the strictly upper-triangular part of H (consisting only of the different Bt blocks) and Λ is the block diagonal
matrix of recursively defined blocks

Λ0 = A0, Λt = At −B⊤
t Λ

−1
t−1Bt, t = 1, . . . , T. (47)

The factorization in Eq. (46) allows us to calculate the determinant of the Hessian as

detH =

T∏
t=0

detΛt, (48)

using det(Λ+B⊤) = det(Λ+B) = detΛ (since Λ is block diagonal and B and B⊤ are strictly upper and lower triangular,
respectively), and det(CD) = detC detD [see also Salkuyeh, 2006]. The Hessian solve in Eq. (17) can be done by
exploiting Eq. (46) as well, yielding

H−1 = (Λ +B)−1Λ(Λ +B⊤)−1. (49)

Therefore a solve with a block banded lower triangular matrix (Λ +B⊤), then a matrix multiplication with a block diagonal
matrix (Λ) followed by a solve with a block banded upper triangular matrix (Λ+B) are equivalent to a solve with H . Since
all of these operations can be performed in O(Td3x) steps, which is true as well for the calculation of the blocks of Λ in
Eq. (47) and the determinant in Eq. (48), we have achieved the desired theoretical speed-ups.

We note that further speed-ups are possible, such as considering the inverse subset algorithm to calculate the derivative of
the logarithm of the determinant of the Hessian [see e.g. Kristensen et al., 2016, Durrande et al., 2019]. Furthermore, several
inherently sequential parts of the code could be written in C++ as is done in Durrande et al. [2019].



Algorithm 1 ELBO for GPSSM

Given time series YT
Choose number of iteration and samples I and N , latent state dimension dx
Initialize model parameters θ, variational parameters ψ = {m,S}
for i = 1 . . . I do ▷ Optimization steps

for n = 1 . . . N do ▷ Reparameterized samples
Sample F (n)

M ∼ qψ(FM )

Find X̂(n)
T0

by maximizing gGP(XT0 , θ, F
(n)
M ) ▷ Eq. (15)

Obtain non-zero elements of H (At, Bt) ▷ Appx. D.1
Evaluate detH ▷ Eqs. (47) and (48)
Evaluate p̃θ(YT | F (n)

M ) ▷ Eq. (14)
end for
Evaluate L(θ, ψ) ▷ Eqs. (16) and (20)

Obtain gradients ∂L
∂θ , ∂L∂ψ , using custom

∂X̂
(n)
T0

∂θ ,
∂X̂

(n)
T0

∂ψ ▷ Eqs. (17) and (49)
Update θ and ψ

end for

E ALGORITHM AND IMPLEMENTATION DETAILS

In Alg. 1, we provide the basic algorithm to evaluate and optimize the optimization objective L(θ, ψ) in Eq. (20). Then, in
the following we provide some details on our implementation of Alg. 1. First general details in Sec. E.1 and then some
practical details that are required to make the algorithm work on practical problems in Sec. E.2.

E.1 GENERAL IMPLEMENTATION DETAILS

We build our implementation on TensorFlow [Abadi et al., 2016] and use the multioutput GP implementation provided
by GPflow [van der Wilk et al., 2020]. For finding the mode in Eq. (36) required for the Laplace approximation, we use
the BFGS algorithm [see e.g. Fletcher, 1987] provided by TensorFlow-Probability. For the implementation of the custom
derivative coming from the Implicit Function Theorem in Eq. (17), we use the custom_gradient function provided by
TensorFlow.

E.2 PRACTICAL IMPLEMENTATION DETAILS

In the following we first tackle the practical details of the three extensions of Alg. 1 mentioned in Sec. 3.4: Minibatches,
multi-dimensional latent states and control inputs. At the end of this section, we also discuss some practical details related to
the optimization required to get the mode X̂T0

for the Laplace approximation.

Minibatches Time series are typically too long to be handled in one batch such that using minibatches helps obtaining a
computationally tractable algorithm. The first term in our optimization objective [Eq. (20)] can be written as a sum over
the observations yt [cf. Eqs. (14) and (10)]. We can approximate this using minibatches (or rather subsequences) of length
Tb, YTb

= {yt}t0+Tb
t=t0 starting at some (random) time index t0. Note that this is an approximation that ignores the temporal

structure of the data and ignores effects coming from observation and transitions before and after the minibatch which is
discussed in more detail in Aicher et al. [2019]. Nevertheless, minibatching nicely integrates with the sampling step in
Eq. (20), where we can draw a new minibatch for every sample from qψ(FM ), resulting in a new approximation,

∫
qψ(FM ) log p̃θ(YT | FM )dFM ≈ T

Tb

N∑
n=1

log p̃θ(Y
(n)
Tb

| F (n)
M ), F

(n)
M ∼ qψ(FM ). (50)

On a more technical note, we find that when using minibatches, we do not need a buffer to reduce the effect of the initial
distribution as suggested in Aicher et al. [2019] and e.g. used in Longi et al. [2021]. This might be the case since we
usually normalize the data and use an uninformative initial distribution such as p(x0) = N (x0|0, 1), such that the Laplace
approximation can flexibly find a value for x̂0 (or x̂t0−1 for the minibatches) that has high mass under the initial distribution.



Multi-dimensional latent states For challenging problems a one-dimensional latent state is typically not expressive
enough [Frigola, 2015] and we require multi-dimensional latent states xt. This is problematic in the transition model
[Eq. (11)], where the mean and the covariance of the GP appear, both of which are one-dimensional. We follow the literature
[e.g. Doerr et al., 2018, Ialongo et al., 2019] and choose independent (sparse) GPs for each dimension of the latent state
resulting in

pθ(xt | xt−1, F
dx
M ) =

dx∏
d=1

N
(
x
(d)
t |x(d)t−1 + µ(d)(xt−1, F

(d)
M ), Qd +Σ(d)(xt−1)

)
,

where F dxM = {F (d)
M }dxd=1 is the collection of all inducing outputs, x(d)t is the d-th dimension of the latent state and µ(d)

and Σ(d) are the mean and covariance of the sparse GP responsible for the d-th dimension, respectively [cf. Eqs. (5)
and (6)]. In order to reduce non-identifiabilities and to simplify training, we choose a diagonal transition noise variance,
Q = diag({Qd}dxd=1), the same inducing pointsXM and kernel hyperparameters for all GPs, thus only leaving the variational
distributions q(d)ψd

(F
(d)
M ) as the distinguishing property of the different dimensions of the transition function.

Control inputs Lastly, time series prediction problems often come with an additional time series UT = {ut}Tt=1, ut ∈ Rdu
of control inputs that are applied at time index t and change the behavior of the system. In GPSSMs these are modeled as
additional (constant) inputs to the GP which are simply concatenated with the latent states xt at the same time index. This
leads only to two small changes in the algorithm: The kernel of the GPs have to accept input pairs coming from Rdx+du and
the inducing points XM also have to live in that higher dimensional space.

Optimizing the latent states In order to obtain the mode X̂T0
required for the Laplace approximation, we have to perform

an optimization in the inner loop of our algorithm (Alg. 1). This requires some fine-tuning to get a numerically stable
algorithm: First, since this is a non-stochastic problem, we use an approximate second-order optimizer for fast convergence
and choose the BFGS optimizer [see e.g. Fletcher, 1987]. Second, while it is generally no longer considered as state of the
art to use the Adam optimizer on all parameters including the variational ones for optimizing models involving sparse GPs
[see e.g. Salimbeni et al., 2018, Adam et al., 2021], we also empirically found that this approach leads to the BFGS optimizer
struggling to find good optima (or even not converging at all). We therefore opted for the following two strategies: we use
the BFGS optimizer to find the mode in the inner loop and then i) the Natural gradient optimizer [Salimbeni et al., 2018] on
the variational parameter ψ and the Adam optimizer on all other model parameters or ii) using a diagonal covariance for the
variational distribution qψ(FM ) and then optimizing all parameters with the Adam optimizer.

We consider the optimization for finding the mode X̂(n)
T0

(see Alg. 1) as failed if (i) the maximum number of iterations has
been reached without converging within the tolerance, (ii) the determinant of the Hessian [required for Eq. (14)] is negative,
or iii) some of the optimal latent states x̂t converge to positions far outside of the region where there are inducing points
XM (which is justified when normalizing the data as we do). In all cases we simply ignore the contributions of these terms
to the optimization objective by removing the n-th term from the sum in Eq. (20). Typically this leads to the removal of well
below 1% of the optimization runs.

F EXPERIMENTAL DETAILS

F.1 KINK

Training data For each of the ten different seeds, we generate a (different, noise dependent) sequence of latent states XT

according to the description in Sec. 5.1. Then we add (seed dependent) zero-mean iid. Gaussian noise with emission noise
variances σ2

y ∈ {0.008, 0.08, 0.8} to each of the sequences of latent states, thus generating YT , our training data, resulting
in 30 time series in total. See also Fig. 5 for a visualization of the data.

VCDT model For the experiment in Sec. 5.1, the VCDT model from Ialongo et al. [2019] uses the same emission
model, p(yt | xt) = N

(
yt|xt, σ2

y

)
that is fixed to the groundtruth. The initial distribution is chosen slightly more flexible,

p(x0) = N (x0|m0, σ0), with learnable parameters m0 and σ0. This is important for this model as the sequential sampling
in the inference requires a well tuned starting point. Another difference lies in the GP contribution to the transition function.
Whereas we use a sparse GP with the FITC approximation, resulting in Eq. (11), Ialongo et al. [2019] use a proper prior
on the GP and inducing outputs, resulting in the standard GP transition model p(xt | xt−1) = N (xt|ft−1, Q), where
ft−1 = f(xt−1). In this experiment a zero-mean GP prior is placed on the function f , as was done in the original work. See
also Appx. A for a discussion on the role of the FITC prior.



VCDT training For the training of the VCDT model we took the code provided in Ialongo et al. [2019] and contacted the
authors for the full experimental details. Taking their suggestions into account and after additional fine-tuning, we fix the
inducing points to 50 points in the range of [−4, 2] and take an RBF kernel for the GP, where we initialize the trainable
variance and lengthscale to 2. We leave all other model parameters at their standard initialization values except for the
Cholesky factor of the covariance matrix of the variational distribution and the transition noise which we scale by a factor of
0.1 and 0.01, respectively. For training we set the number of samples to be drawn from the posterior to 100 and take the
Adam optimizer [Kingma and Ba, 2015] using a learning rate of 10−3 for 104 iterations.

Laplace training We use the same kernel and inducing point settings as for the VCDT model. We initialize the means
of the variational distribution to zero-mean Gaussian noise with standard deviation 10−3 and the Cholesky factor of its
covariance matrix to 10−5 times that of the prior Cholesky factor. The transition noise variance is initialized to 0.0025.
For the training we use N = 10 samples from the variational posterior and a minibatch size of Tb = 30. We optimize
the parameters using a combination of the Adam optimizer [Kingma and Ba, 2015] and the Natural gradient optimizer
[Salimbeni et al., 2018] provided by GPflow [Matthews et al., 2017]: The Natural gradient optimizer is used on the variational
parameters with an initial learning rate of 0.004 and the Adam optimizer on all other parameters with an initial learning rate
of 0.0008. We train for 7000 iterations where we scale both learning rates with a factor of 0.99 every 500 steps. For the first
1000 iterations we scale the KL-divergence in our optimization objective [Eq. (16)] by a factor which we initialize at 0 and
linearly increase to 1 over these iterations. We found this to help learning the sparse GP initially, which in turn improved the
optimization behavior for finding the mode required for the Laplace approximation. For finding this mode, we initialize
XT0 to the observations YT adding zero-mean Gaussian noise with standard deviation 10−3. We set the parameters of the
bfgs_minimize function provided by TensorFlow-Probability to 500 for max_iterations and to 10−8 for tolerance, counting
runs as not converged if this (gradient norm) tolerance is not achieved within the 500 iterations.

Evaluation for Tab. 1 For the evaluation of the (train) log-likelihoods we proceed as follows: We take J = 70 linearly
spaced points {xj}Jj=1 between the minimum and maximum latent state of the ground truth time series XT0

(different for
every seed but not for different σ2

y), since this is the region in which the GP should be able to reasonably learn the ground
truth. For each of the trained sparse GPs we obtain (marginal) predictions for each of these test points xj , i.e., mean and
variance predictions µ(xj), and Σ(xj), respectively using Eqs. (5) and (6). These are then compared with the groundtruth,
i.e., the kink function evaluated at these locations, fk(xj), via the average log-likelihood LL,

LL =
1

J

J∑
j=1

logN (fk(xj)|µ(xj),Σ(xj)) .

Evaluation for Tab. 2 For tracking the convergence of the parameters of q(xt|xt−1, FM ) of the VCDT method, which is
given as

q(xt+1|xt, FM ) = N
(
xt+1|Atµ(xt, FM ) + bt, St +AtΣ(xt)A

⊤
t

)
, (51)

where µ(xt, FM ) and Σ(xt) are as in Eqs. (5) and (6), respectively, we proceed as follows: For all of the ten randomly
generated kink data sets with T = 120 and σ2

y = 0.08 we train the VCDT method and record the values Ait, b
i
t, and Sit

for t ∈ {0, 40, 80, 120} and for every tenth iteration i until I = 10000. As expected, the variance parameter St decreases
towards the end of the optimization, indicating that the GP model can explain larger parts of the data and less transition
noise is needed. The parameters At and bt converge to some one-dimensional value (due to the one-dimensional latent state
chosen for the kink data set) that is in general different for every time point t and depends on the realization of the toy data
set. We define the parameters to be converged when they change only very little until the end of the optimization. More
precisely, we define the iteration at which the parameters are converged as

I (con)
t = (max

i
|Ait −AIt | > 0.03) + 10,

and equivalently for bt. The values reported in Tab. 2 are then the parameters AI
(con)
t
t and bI

(con)
t
t averaged over the ten different

realizations.

F.2 SYSTEM IDENTIFICATION

Training data We prepare the data as follows: First, we normalize the data (observations and control inputs) to have zero
mean and unit variance. Then we prepare the ten splits of the data: These are deterministic and depend on the total length of



the time series Ttot, the length of the training sequence Ttrain (which we always choose to be Ttot/2) and the length of the
test sequence Ttest on which we want to predict, which we choose to be 120. For the first data split, the training sequence
starts with the first data point in the time series, while for the last data split the test sequence ends with the last data point
(meaning, the training sequence starts with data point Ttot − Ttot/2− Ttest = Ttot/2− 120). All other 8 data splits are chosen
such that the inital points of the training sequence are linearly spaced between the extreme cases described above, thus
maximizing the diversity between the training tasks.

Laplace training We use an RBF kernel with automatic relevance determination and initialize its lengthscales to
√
3

and its variance to 0.52. We choose M = 100 trainable inducing points and initialize them with a Sobol sequence in the
hypercube of dimension dx + dc = 3 centered around the origin with side lengths equal to the largest value |yt| in the
(normalized) training sequence. We initialize the means of the variational distributions to zero-mean Gaussian noise with
standard deviation 5× 10−3 and choose diagonal covariance matrices which we initialize to 10−6 times the identity matrix.
The transition noise variance Q is initialized to 0.01 and the trainable parameters of the emission model to b = 0 and
Ω = 0.005. For the training we use N = 10 samples from the variational posterior and a minibatch size of Tb = 30. As a
pretraining step that we found helpful to get the sparse GP and the inner optimization to "interact nicely with each other",
we train all parameters for 50 iterations with the Adam optimizer and a learning rate of 0.003. During this pretraining we
scale the KL-divergence in our optimization objective [Eq. (16)] by a factor which we initialize at 0 and linearly increase to
1, while exponentially scaling the parameter Q down to 0.001. Then, we optimize all parameters using the Adam optimizer
with an initial (dataset dependent) learning rate of 0.2/Ttot. We train for 20000 iterations where we scale the learning rate
with a factor of 0.95 every 500 steps. For finding the mode in the inner optimization, we initialize the first dimension of
XT0 to the observations YT adding zero-mean Gaussian noise with standard deviation 10−3, and we initialize the second
dimension to zero-mean Gaussian noise with standard deviation 10−1. We set the parameters of the bfgs_minimize function
provided by TensorFlow-Probability to 500 for max_iterations and to 2× 10−7 for f_relative_tolerance, counting runs as
not converged if this tolerance (on the relative change of the objective value) is not achieved within the 500 iterations.

VCDT model For the VCDT model, we use the one employed in Ialongo et al. [2019], i.e., a four-dimensional latent state
xt with initial distribution p(x0) = N (x0|m0, σ0), with learnable parameters m0 and σ0, and the GP transition model from
Eq. (7), using a fixed linear mean function (residual). The emission model is the same that we also use.

VCDT training For the training of the VCDT model we took the code provided in Ialongo et al. [2019] and, after contact
with the authors, employed similar settings as in Doerr et al. [2018] for the following hyperparameters: We use an RBF kernel
with automatic relevance determination and initialize its lengthscales to 2 and its variance to 0.52. We choose M = 100
trainable inducing points of dimensionality dx + dc = 5 and initialize them uniformly in the range [−2, 2]. We initialize the
means of the variational distributions to zero-mean Gaussian noise with standard deviation 0.05 and initialize the covariance
matrices to 10−4 times the identity matrix. The transition noise variance Q is initialized to 0.0022, Ω to 10−4, and σ0 to
10−2. For the training we use 100 latent state samples and the Adam optimizer with an initial learning rate of 0.01 running
for 20000 iterations, where the learning rate is scaled by a factor of 0.98 every 500 iterations. For all other settings, we
employed the default values provided in the code of Ialongo et al. [2019].

PRSSM model and training For the PRSSM model we take the exact model used in Doerr et al. [2018] and use the
provided code for training, leaving the recommended settings unchanged. The only difference is the new data split in training
and test sequence as explained above.

Evaluation For the evaluation all models are only provided with the test control inputs for Tpred = 120 time points after
the end of the training series and with those have to predict the future observations YTpred . This is done by getting the latent
state at the end of the training sequence that then becomes x0 for the test sequence. Starting from this, each trained model can
then recursively sample future observations from the prior model [Eq. (8), with trained parameters θ]. We store the means
µt and standard deviations σt over multiple recursive sampling runs at each time point t = t0, . . . , t0 + Tpred, where t0 is
the initial time index of the test sequence. The way how x0 is obtained and the recursive sampling is performed is slightly
different for each model due to the different inference schemes. For PRSSM we simply follow the procedure outlined in the
code. For VCDT we take the x0 as the last state obtained in the last iteration of training, together with the sample from
q(FM ) that has been used to obtain those. See Ialongo et al. [2019] for more information about the inference scheme. There
are multiple, 100, of such x0 and q(FM ) pairs as the inference scheme requires multiple latent state samples per iteration.
The prediction coming from recursively sampling from the model with these values are then averaged over to obtain µt and
σt. For our method we obtain the x0 from the converged model as follows: We take the subsequence of YT of length Tb that
ends at the last observation of the training sequence and obtain N samples from q(FM ). For each of these samples we run



Table 3: Comparison of average mean predictive log-likelihoods (higher is better) and their standard errors for ten repetitions
on five different benchmark datasets. We evaluate our model (Laplace), VCDT [Ialongo et al., 2019] and PRSSM [Doerr
et al., 2018] on predictions for T ∈ {30, 60, 90, 120} steps in the future. See Appx. F.2 for more details and Fig. 4 for a
visualization.

DATASET MODEL T=30 T=60 T=90 T=120

ACTUATOR
LAPLACE -0.6(0.2) -0.8(0.2) -1.7(0.7) -1.7(0.5)

VCDT -0.6(0.3) -0.9(0.3) -1.0(0.3) -1.0(0.2)
PRSSM -1.0(0.3) -0.8(0.2) -0.8(0.1) -0.8(0.2)

BALLBEAM
LAPLACE 1.6(0.4) 1.2(0.3) 0.9(0.3) 1.0(0.2)

VCDT 2.5(0.7) 0.0(1.6) -2.2(2.2) -2.2(2.0)
PRSSM -1.8(1.4) -1.6(0.9) -2.7(1.4) -2.4(1.5)

DRIVE
LAPLACE -1.7(0.5) -1.5(0.3) -1.4(0.2) -1.4(0.1)

VCDT -1.2(0.1) -1.2(0.0) -1.2(0.0) -1.2(0.0)
PRSSM -4.8(1.6) -3.9(1.0) -3.4(0.6) -3.3(0.5)

DRYER
LAPLACE -0.3(0.1) -0.2(0.1) -0.3(0.1) -0.3(0.1)

VCDT -3.2(0.6) -3.2(0.5) -2.8(0.4) -2.9(0.4)
PRSSM -0.9(0.5) -0.3(0.2) -0.1(0.2) -0.0(0.2)

FURNACE
LAPLACE -2.2(0.1) -2.4(0.1) -2.5(0.1) -2.6(0.1)

VCDT -14.0(1.5) -14.2(0.9) -15.6(0.8) -21.2(1.0)
PRSSM -10.1(2.9) -8.5(2.5) -8.4(2.6) -11.8(3.6)

the inner loop of Alg. 1 thus providing us with N optimal latent state sequences X̂(n)
T0

from which we take the last state as
an estimate for x0 for the prediction task. We use the same N samples from q(FM ), sample S = 100 times for each N from
the prior model, thus providing an average over SN samples, yielding µt and σt. The log-likelihood is then evaluated as

LL =
1

Ttest

t0+Ttest∑
t=t0

logN (yt|µt, σt)

and the RMSE as

RMSE2 =
1

Ttest

t0+Ttest∑
t=t0

(yt − µt)
2,

for Ttest ∈ {30, 60, 90, 120}, respectively. Both these quantities are calculated on the unnormalized data, i.e., after reversing
the normalization for the predictions.
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Figure 6: Exemplary figure showing the differences in predictions for the three different methods on the system identification
data sets. Shown are predictions for the same seeds on the Actuator, Ballbeam, Drive, Dryer, and Gas Furnace datasets
in the different rows (top to bottom). From left to right are the predictions for our method, VCDT [Ialongo et al., 2019],
PRSSM [Doerr et al., 2018], and the control inputs (all unnormalized).



Table 4: Comparison of average RMSEs (lower is better) and their standard errors for ten repetitions on five different
benchmark datasets. We evaluate our model (Laplace), VCDT [Ialongo et al., 2019] and PRSSM [Doerr et al., 2018] on
predictions for T ∈ {30, 60, 90, 120} steps in the future. See Appx. F.2 for more details.

DATASET MODEL T=30 T=60 T=90 T=120

ACTUATOR
LAPLACE 0.39(0.20) 0.42(0.18) 0.52(0.24) 0.55(0.23)

VCDT 0.40(0.06) 0.45(0.07) 0.52(0.07) 0.54(0.07)
PRSSM 0.53(0.09) 0.50(0.08) 0.53(0.05) 0.52(0.05)

BALLBEAM
LAPLACE 0.05(0.03) 0.07(0.05) 0.08(0.05) 0.08(0.05)

VCDT 0.03(0.01) 0.07(0.03) 0.11(0.04) 0.14(0.04)
PRSSM 0.06(0.01) 0.06(0.01) 0.07(0.01) 0.07(0.01)

DRIVE
LAPLACE 0.90(0.21) 0.88(0.11) 0.90(0.11) 0.94(0.20)

VCDT 0.76(0.03) 0.77(0.01) 0.77(0.01) 0.77(0.01)
PRSSM 0.58(0.07) 0.58(0.06) 0.56(0.04) 0.55(0.03)

DRYER
LAPLACE 0.31(0.07) 0.33(0.08) 0.39(0.24) 0.58(0.55)

VCDT 0.22(0.01) 0.22(0.01) 0.21(0.01) 0.22(0.01)
PRSSM 0.31(0.07) 0.26(0.06) 0.24(0.06) 0.23(0.06)

FURNACE
LAPLACE 2.15(1.05) 2.82(1.36) 3.48(1.64) 3.60(1.80)

VCDT 1.07(0.05) 1.11(0.02) 1.15(0.01) 1.33(0.03)
PRSSM 1.40(0.30) 1.75(0.55) 2.11(0.82) 2.34(0.86)
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