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We first briefly describe the structure of the Appendix here. In Appendix 1 we add two more examples in the multi-step
settings as supplementary to the example in Section ??. In Appendix 2 we provide the proofs of theorems in Section
??. In Appendix 3, we include more experiment details. In Appendices 4, 5, 6 and 7 we include more results in the
considered domains including experiments with estimating the behavior policy with function approximation and experiments
with an alternative policy selection procedure with best intermittent policy checkpoint and the D4RL dataset. In the real
world dataset on ICU sepsis treatment, we also include in Appendix 5.2 an ablation study without ESS constraints for
hyperparameter selection on the validation set and in Appendix 3.5 an investigation of the effect of eligible action constraints
δ. In Appendix3.4 we also investigate the the weight given by different methods to states with low observed outcomes,
and we conduct experiments on the differences in the methods under the prism of ESS and performance in Appendix 5.3.
Finally, in Appendix 5.4 we include visualizations of eligible actions for high/mid/low-SOFA patients in addition to a
timestep-by-timestep visualization of the two action constraints considered in this paper (based on the eligible action set in
POELA and based on the probability under the behavior policy for other methods).

1 COUNTER EXAMPLES IN RL SETTINGS

In the main text, we gave an example about the overfitting issue in contextual bandits with large state and action space in
small datasets. Here we show that it is even easier for this to occur in sequential reinforcement learning settings, even when
only 2 actions are available in the next two examples with or without state aliasing.

Example 1. Consider a sequential treatment problem as shown in Figure 1a. There are two actions available in each state.
From the first state, action a1 has a 50% chance of leading to an immediate terminal positive reward r = 1 and a 50%
chance of leading to an immediate terminal negative reward r = −1. From the first state, action a2 also has 50% chance
of leading to an immediate terminal positive reward r = 1. For the other 50% of states, action a2 results in transitions to
additional states, which are followed by additional actions, for another H − 1 steps; however, all transitions eventually end
in a large negative outcome (e.g., r = −5). For example, one could consider a risky surgical procedure that results in many
subsequent additional operations and but is ultimately typically unsuccessful. Assume the behavior policy is uniform over
each action, yielding µ(a = 0|x1) = µ(a = 1|x1) = 0.5 and a probability of each action sequence following a2 of 1

|A|H−1 .
With even minimal data the value of π(x0) = a1 will be accurately estimated as 0. However, when H is large relative to
a function of the dataset size, there always exists a action sequence after an initial selection of a2 that is not observed in
the dataset. This means that a policy π2 that starts with π(x0) = a2 and then selects an unobserved action sequence will
essentially put 0 weight on the resulting contexts that incur r = −5 outcomes, even though such outcomes will occur 50% of
the time after taking action a2. In this case, the value of π2 will be overestimated significantly by IS or self-normalized IS.
Thus the offline policy optimization will prefer taking action 2 at the first step as a result of overfitting even though the true
value of first taking a2 is −1.5 and the optimal policy value is 0, obtained by taking action a1.

Now we add a slight change in the transitions shown in Figure 1a. We can see that model/value-based approach will also fail.

Example 2. In this example, we add another action in the first step. The action 3 and action 1 will lead to the same next
state. However in the next state, no matter which action taken, the reward will depends on the action taken in the last step: If
a1 = 1, then we have the same reward for a = 1 in the example in Figure 1a. If a1 = 3 then we have a reward −5. Thus
model and value based method will mix the reward for a1 = 1 and a1 = 3 so fail in this example. Other method is not
affected by the additional structure as it only add an action with minimum reward.
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2 PROOFS OF SECTION ??

Proof of Theorem ??.
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Proof of Proposition ??.

Proof. This is due to π(a|x(i)
h ) and µ(a|x(i)

h ) are independent from history given x(i)
h . So W (i)

1:h and W (i)
h are conditionally

independent given x(i)
h .

Proof of Theorem ??.

Proof. Let Ph(x;µ) to be the distribution of context at h-th step with roll-in policy µ. For any fixed a, we can define the
distribution Ph(x|a;µ) = µ(a|x)Ph(x;µ)/

∑
a µ(a|x)Ph(x;µ). For a such that µ(a|x) > 0, Ph(x|a;µ) is also greater

than zero. All x(i)
h with a(i)

h = a are i.i.d. samples draw from the distribution Ph(x;µ). By the property of nearest neighbor
[?], with probability 1:
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That means with probability 1 a ∈ Ah(x;D, δ) for all a such that µ(a|x) > 0. Thus we proved the theorem statement and
that the policy class will contain all π such that π(a|x) > 0 if µ(a|x) > 0.

Proof of Theorem ??.

Proof. Given the overlap assumption and Theorem ??, for all π we have a ∈ Ah(x;D, δ) for all a such that π(a|x) > 0
with probability 1. Thus the solution to Equation ?? is the same as arg maxπ J(π,D) := π̂J,D.



By the condition that M →∞ and M
n → 0 as n→∞, we have that the truncated IS estimator is mean square consistent
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as n→∞. Similarly, we have that the mean of weights converge to 1 in quadratic mean:
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By continuous mapping theorem, we have that the self-normalized truncated IS converge to vπ in probability v̂SNTIS
p−→ n.

The empirical variance penalty, also converge to 0 almostly surely, since M/n converge to 0:∑n
i=1
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Thus the objective function J(π;D) converge to vπ in probability:

Pr (|J(π;D)− vπ| > ε) = δn → 0. (10)

Since we assume |Π| <∞, we have

Pr (∀π ∈ Π |J(π;D)− vπ| > ε) = |Π|δn. (11)

So with probability |Π|δn, for any ε:

vπ̂J,D ≥ J(π̂J,D,D)− ε (12)
≥ J(π?,D)− ε (13)

≥ vπ
?

− 2ε, (14)

where π? is arg maxπ∈Π v
π. As |Π|δn → 0, we proved the true value of empirical maximizer vπ̂J,D converge to the

maximum of value maxπ∈Π v
π in probability.

3 EXPERIMENT DETAILS

For all experiments in the main text, we report the test performance of the policy saved at the end of training either
through online Monte-Carlo estimation if a simulator is available, or using SNTIS estimates on a held out test set.

For all experiments reported in Appendices 4.2 and 5.1, we follow the 3-phases pipelines we describe hereafter to decide
the test score we report in the corresponding Tables. To put ourselves in the more realistic situation of real-world applications
where practitioners would select a policy from regular checkpoints along its training on the basis of its SNTIS score on the
validation set, an algorithm is trained on the training set multiple times, using different hyperparameters and several restarts.
Intermittent policies generated during the training process identified with the highest self-normalized truncated IS (SNTIS)
estimates on a held-out validation set are saved at checkpoints. The pipeline is illustrated in Figure 2.

Figure 2: The process of hyperparameters search and test in the experiment.

The open-source code for POELA can be found here: https://github.com/StanfordAI4HI/poela.

https://github.com/StanfordAI4HI/poela


3.1 EXPERIMENT DETAILS IN TGI SIMULATOR

The TGI simulator describes low-grade gliomas (LGG) growth kinetics in response to chemotherapy in a horizon of 30
months using an ordinary differential equation model. The parameter in ODEs are estimated using data from adult diffuse
LGG during and after chemotherapy was used, in a horizon of 30 months. The goal in this environment is to achieve a
reduction in mean tumor diameters (MTD) while reducing the drug dosage [?]. We includes the MTD, the drug concentration,
and the number of month (time-step) in the context space. Notice that this context space is non-Markov as it does not include
all parameters in the ODEs. Actions are binary representing taking the full dose or no dose which is same as prior work [?].
The reward at each step consist of an immediate penalty proportional to the drug concentration, and a delayed reward at
the end measures the decrease of MTD compared with the beginning. Each episodes, the parameters including the initial
MTD are sampled from a log-Normal distribution as [?] representing the difference in individuals. The behavior policy is a
fixed dosing schedule of 9 months (the median duration from ?) plus 30% of a uniformly random choice of actions. We
run all algorithms on a training set with 1000 episodes with different hyperparameters (listed below), and 5 restarts, saving
checkpoints along the training.The validation set is comprised of 1000 episodes as well.

Hyperparameters. In the first part of Table 1 we show the searched hyperparameters of each algorithm, except that the
parameter b in PQL is set adaptively as the 2-percentile of the score on the training set as in the original paper ?. As we
know the behavior policy, we use the true behavior policy in BCQ and PQL algorithm. So BCQ threshold takes only two
values as the behavior policy is ε-deterministic so there are only two distinct values. In the second part of Table 1 we specify
some fixed hyperparameters/settings for all algorithm. All policy/Q functions are approximated by fully-connected neural
networks with two hidden layers with 32 units.

Hyperparameters used in algorithms values

δ POELA 0.05, 0.1, 0.5
µ̂ threshold PO-µ 0.01, 0.05, 0.1, 0.2

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1
BCQ threshold BCQ, PQL 0.0, 0.2

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 500

BCQ, PQL 1000
Number of checkpoints All 50

Batch size BCQ, PQL 100

Table 1: Hyperparameters in the TGI simulator experiment

The difference in the max update steps and checkpoints frequency is caused by the fact that BCQ and PQL is updated by
stochastic gradient descent and all policy optimization based on SNTIS is using gradient descent.

3.2 EXPERIMENT DETAILS IN THE MIMIC III DATASET

The MIMIC III sepsis dataset is available upon application and training: https://mimic.mit.edu/iii/gettingstarted/. The code
to extract the cohort is available on: https://gitlab.doc.ic.ac.uk/AIClinician/AIClinician. This cohort consists of data for
14971 patients. The contexts for each patient consist of 44 features, summarized in 4-hour intervals, for at most 20 steps.
The actions we consider are the prescription of IV fluids and vasopressors. Each of the two treatments is binned into 5
discrete actions according to the dosage amounts, resulting in 25 possible actions. The rewards are defined from the 90-day
mortality in the logs, 100 if the patient survives and 0 otherwise.

We now provide details of the experiment on MIMIC III sepsis dataset here. We run all algorithms on a training set with
8982 trajectories with different hyperparameters (listed below), and 3 restarts, saving checkpoints along the training.The
validation set is comprised of 2994 trajectories. Finally we get the v̂SNTIS evaluation on the test set with 2995 trajectories. In
the first part of Table 2 we list the hyperparameters that we searched on the validation set for each algorithm, except that
the parameter b in PQL is set adaptively as the 2-percentile of the score on the training set as in the original paper [?]. In
the second part of Table 1 we specify some fixed hyperparameters/settings for all algorithm. All policy/Q-functions are



approximated by fully-connected neural networks with two hidden layers with 256 units.

Hyperparameters used in algorithms values

δ POELA 0.4, 0.6, 0.8, 1.0
µ̂ threshold PO-µ 0.01, 0.02, 0.05, 0.1

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1, 10
BCQ threshold BCQ, PQL 0.0, 0.01, 0.05, 0.1, 0.3, 0.5

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 1000

BCQ, PQL 10000
Number of checkpoints All 100

Batch size BCQ, PQL 100

Table 2: Hyperparameters in the MIMIC III sepsis experiment

As we explained, the difference in the max update steps and checkpoints frequency is caused by the fact that BCQ and PQL
is updated by stochastic gradient descent and all policy optimization based on SNTIS is using gradient descent.

3.3 EXPERIMENT DETAILS FOR THE BEHAVIOR POLICY ESTIMATION

In the implementation of BC, we use Multi-Layer Perceptrons (MLPs) neural networks with layer dimensions [32, 32, 32]
for the LGG Tumor Growth Inhibition simulator and [256, 256, 256] for the MIMIC III dataset. All use ReLU activations.
For BCRNN, we use 3-layer GRUs with a RNN hidden dimension of size 100. All networks are trained using Adam
optimizer [?] with learning rate 3e− 4. For all experiments, BC and BCRNN are trained for 500 steps and directly serve as
estimated behavior policies.

3.4 IMPORTANCE WEIGHTS IN LOW-REWARD TRAJECTORIES

To examine if the proposed overfitting phenomenon exists in real experimental datasets, we compute the importance weights
of the learned policy on the low-reward trajectories in the training data for our MIMIC III dataset and our tumor simulator.
Our hypothesis is that overfitting of the importance weights in policy gradient methods may result in the algorithm avoiding
initial states with low rewards, which motivated our proposed algorithm.

In MIMIC III dataset the reward for a trajectory is either 0 or 100. We define the low-reward trajectories as those with 0
reward. Low-reward trajectories are over 60% of all trajectories in the dataset. In the Tumor simulation experiment we
define a low-reward trajectory when reward is less than −2. Over 95% of trajectories in the Tumor simulation dataset are
low-reward trajectories.

The table below shows, for each algorithm and setting, the sum of the SNTIS weights of the learned policy on the training
set, for low-reward trajectory states. Our primary interest is to illustrate that alternate policy gradient methods that are also
suitable for non-Markov domains, can exhibit the importance sampling overfitting of avoiding low reward trajectories. We
indeed see in Table 3 that POELA has a much larger weight on low-reward trajectories than alternate offline policy search
methods:

Method POELA PO-µ PO-CRM

MIMIC III 0.028 0.001 0.003
Tumor non-MDP 0.054 - (fixed policy) 0.005

Table 3: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

The Q-learning baselines we consider (BCQ and PQL) do not directly use the importance weights, but they do try to avoid
actions and/or states and actions with little support. Our POELA method can be viewed as being similarly inspired, but for



non-Markovian settings where policy gradient is beneficial. We also compute the SNTIS weights of the BCQ/PQL policy
on the training set in the Markov domain that satisfies the Markov assumptions of BCQ/PQL. In Table 4 we can see that
POELA, BCQ and PQL all still give significantly more weight to low reward trajectories than the alternate policy gradient
methods:

Method POELA PO-µ PO-CRM BCQ PQL

Tumor MDP 0.097 - (fixed policy) 0.0004 0.083 0.124

Table 4: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

These results help illustrate that the over avoidance of low-reward trajectories can be observed by past policy gradient
methods in our datasets. Of course, one challenge is that in real settings, an excellent policy may have low importance
weights in avoidable low-reward states and trajectories, but should have higher importance weights in non-avoidable low
reward starting states and trajectories. To get a fuller picture of performance, it is helpful to look both at the weights on
trajectories with low rewards and the test evaluation results. Compared with strong policy gradient baselines, our proposed
regularization method have larger importance weights on low-reward trajectories, and the gap between training/validation
evaluation and online test performance is also smaller, suggesting that we are less likely to learn policies that erroneously
believe they can avoid unavoidable low reward settings.

3.5 THE EFFECT OF ELIGIBLE ACTION CONSTRAINTS δ

In this section we explore how the choice of δ, which constrains the policy class through impacting the eligible actions,
impacts empirical performance. Larger δ corresponds to a less constrained policy class. Other hyperparameters are selected
by the same procedure as described in previous sections.

Table 5 shows the results. As δ increases, the policy search operates with less constraints. The results show that in this case,
our policy gradient method produces a policy with a higher value in the training set, but that policy may not perform as well
in the test evaluation, and may have a smaller effective sample size than when a smaller δ is used. The best hyperparameter
value δ lies in the middle of the explored range. δ can be selected based on performance and effective sample size.

δ 0.4 0.6 0.8 1.0

training v̂SNTIS 91.62 98.41 98.9 99.12
training ESS 3601.12 2242.07 1993.08 1769.46
test v̂SNTIS 86.62 90.07 91.46 90.23
test ESS 1278.08 819.64 624.92 542.53

Table 5: The effect of eligible action constraints δ on the results in MIMIC III sepsis dataset.



4 ADDITIONAL EXPERIMENTS: LGG TUMOR GROWTH INHIBITION SIMULATOR

In this section, we provide additional experiments to the existing LGG Tumor Growth Inhibition simulator experiments.

4.1 EXPERIMENT WITH ESTIMATING THE BEHAVIOR POLICY WITH FUNCTION APPROXIMATION

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 92.34± 1.57 59.62± 12.71 46.66± 14.05 19.36± 5.66 30.44± 10.38 68.12
v̂SNTIS − vπ 0.94± 1.66 31.38± 10.97 42.98± 12.87 72.35± 5.66 62.24± 10.94 −

MDP Test vπ 91.04± 0.55 78.21± 4.94 78.70± 0.60 99.26± 0.59 99.66± 0.29 68.12
v̂SNTIS − vπ 3.40± 2.48 15.58± 3.92 15.10± 3.97 −3.88± 1.60 −4.09± 1.75 −

Table 6: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is
computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All
numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BC.

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 95.81± 1.68 76.64± 14.65 76.43± 14.59 19.79± 5.76 31.57± 10.63 68.12
v̂SNTIS − vπ −1.52± 1.79 16.35± 14.40 16.56± 14.36 73.71± 6.34 62.92± 11.19 −

MDP Test vπ 89.25± 1.51 75.43± 8.25 73.61± 0.30 99.57± 0.29 99.96± 0.12 68.12
v̂SNTIS − vπ 5.17± 2.20 17.66± 7.90 19.44± 8.52 −4.18± 1.76 −4.38± 1.78 −

Table 7: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is
computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All
numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BCRNN.

4.2 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

In this section, we use the procedure of best policy checkpoint during the training described in Section 3. We report the test
performance of the selected policy through online Monte-Carlo estimation.

Algorithms POELA PO-µ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 92.20± 1.63 76.99± 13.80 75.06± 13.22 57.77± 16.71 74.76± 9.75 68.12
v̂SNTIS − vπ −1.26± 1.92 16.07± 13.55 15.57± 13.07 37.55± 16.91 17.74± 9.49 −

MDP Test vπ 89.52± 1.55 69.18± 10.17 78.79± 6.42 94.7± 3.49 96.88± 3.76 68.12
v̂SNTIS − vπ 5.16± 1.78 24.92± 9.71 14.93± 5.71 2.75± 3.41 −0.26± 4.18 −

Table 8: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is
computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All
numbers are averaged across 5 runs with the standard error reported. Procedure: best intermittent policy checkpoints.

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 94.16± 1.82 74.76± 7.66 76.38± 7.26 92.92± 1.68 74.65± 14.5 68.12
v̂SNTIS − vπ 0.95± 1.92 18.02± 7.07 15.02± 6.68 0.58± 0.27 20.49± 14.46 −

MDP Test vπ 91.81± 1.05 84.86± 3.48 84.08± 3.46 86.22± 9.61 95.02± 4.95 68.12
v̂SNTIS − vπ 2.7± 2.82 9.23± 3.85 10.01± 3.88 11.03± 10.4 2.45± 5.27 −

Table 9: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is
computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting.
All numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BC. Procedure: best
intermittent policy checkpoints.



Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 96.34± 1.58 77.51± 13.87 75.73± 14.3 92.73± 1.67 74.94± 14.47 68.12
v̂SNTIS − vπ −2.05± 1.9 15.48± 13.62 17.27± 14.02 0.77± 0.52 20.2± 14.43 −

MDP Test vπ 90.06± 1.65 79.62± 7.82 79.54± 7.65 86.38± 9.47 95.16± 4.9 68.12
v̂SNTIS − vπ 4.46± 2.31 13.81± 6.96 13.89± 6.81 10.87± 10.24 2.33± 5.19 −

Table 10: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is
computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting.
All numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BCRNN. Procedure: best
intermittent policy checkpoints.

5 ADDITIONAL EXPERIMENTS: MIMIC III SEPSIS

In this section we provide additional experiments to the existing MIMIC III sepsis experiments.

5.1 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

In this section, we use the procedure of using checkpoints to select best policies during the training described in Section 3.
We report the test performance of the selected policy using SNTIS estimates on a held out test set.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 91.46 (90.82) 87.95 87.71 82.67 84.40 81.10
95% BCa UB 93.24 (92.61) 90.58 90.04 86.83 88.29 82.19
95% BCa LB 89.59 (88.68) 84.77 84.90 78.25 80.13 79.80

Test ESS 624.92 (586.37) 372.00 399.59 228.82 231.93 2995

Table 11: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The value
of POELA without a CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 85.01 (89.62) 84.70 85.53 83.17 84.16 81.10
95% BCa UB 88.61 (92.75) 88.56 87.80 92.88 88.04 82.19
95% BCa LB 80.55 (85.57) 80.15 83.23 63.98 79.98 79.80

Test ESS 227.92 (214.12) 228.97 354.86 208.92 209.72 2995

Table 12: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The
value of POELA without a CRM variance penalty is shown in parentheses. Behavior policy µ̂ = BC. Procedure: best
intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 88.34 (90.89) 87.98 85.12 83.20 85.06 81.10
95% BCa UB 91.65 (93.78) 91.06 92.75 91.56 89.12 82.19
95% BCa LB 83.94 (87.05) 84.41 72.96 66.27 79.76 79.80

Test ESS 201.49 (220.86) 285.82 211.20 206.11 212.36 2995

Table 13: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The
value of POELA without a CRM variance penalty is shown in parentheses. Behavior policy µ̂ = BCRNN. Procedure: best
intermittent policy checkpoints.

5.2 ABLATION STUDY: ESS CONSTRAINTS FOR HYPERPARAMETER SELECTION ON VALIDATION
SET

In the main text, we set an effective sample size threshold of 200 for a policy/hyperparameter to be selected on validation set.
This is to make sure we have large enough effective sample size on the test set to provide reliable off-policy test estimates.



In Table 14, we show the results if we do not threshold the effective sample size on validation set. Generally, all algorithms
will prefer a high off-policy estimates without enough effective sample size. On the test set, all algorithms yields a small
effective sample size, thus unreliable off-policy estimates and large bootstrap confidence interval. The proposed methods is
better than baselines but also has much smaller 95% bootstrap lower bound than with the effective sample size constraint.

Method POELA PO-µ PO-CRM BCQ PQL

Test SNTIS 87.63(86.29) 82.36 82.36 83.28 96.32
95% BCa LB 85.06(83.51) 64.92 63.48 56.65 57.25
95% BCa UB 90.00(88.59) 94.22 93.62 100 100

Test ESS 528.18(491.71) 21.23 21.23 9.04 1.27

Table 14: Test evaluation without effective sample size constraint on the validation set, (0.05, 0.95) BCa bootstrap interval,
and effective sample size in the sepsis cohort of MIMIC III dataset. Value inside parenthesis of POELA is without CRM
variance penalty.

5.3 THE TRADE-OFF BETWEEN ESS AND PERFORMANCE ESTIMATES

A tension in conservative offline optimization is that the most reliable and conservative policy estimates come from effectively
imitating the behavior policy (which will maximize ESS). Policies that differ substantially from the behavior policy may
yield higher performance, but have less overlap with the existing logged data (and lower ESS). This is illustrated in Figure 3,
where the value estimates are plotted for each hyperparameter and re-start of the different algorithms. We observe that
POELA achieves a better Pareto frontier between performance estimates and ESS than other algorithms. Note that for this
experiment we placed ourselves in the policy selection procedure in which the best policy is selected during training based
on SNTIS estimates on the validation set (cf. Table 11).

Figure 3: Trade-off between ESS and value estimates.

5.4 ELIGIBLE ACTIONS VISUALIZATION FOR HIGH/MID/LOW-SOFA PATIENTS

In this section, we explore the learned policies for patients with high logged SOFA scores (measuring organ failure) in the
test dataset. Figure 4a illustrates the number of actions taken by different policies and the clinicians. POELA mainly takes
treatments similar to the clinician’s but more concentrated on high-vasopressors treatments, while PO-CRM and value-based
methods take treatments different from the logged clinician decisions, suggesting these policies may be overfitting to avoid
contexts with high SOFA. However, some patients arrive with high SOFA scores and a policy must have suitable treatments
to support such individuals, which our method appears to ensure. For completeness, we also show the visualization of
mid-SOFA (5− 15) and low-SOFA (< 5) patient contexts in Figures 4b and 4c.



(a) Action counts in high-SOFA contexts

(b) Action counts in mid-SOFA contexts

(c) Action counts in low-SOFA contexts

Figure 4: (a): Action counts heatmap in high-SOFA contexts of the policy learned from different algorithms. (b): Action
counts heatmap in mid-SOFA contexts of the policy learned from different algorithms. (c): Action counts heatmap in
low-SOFA contexts of the policy learned from different algorithms.



6 ADDITIONAL EXPERIMENTS: OPENAI GYM ENVIRONMENT CARTPOLE

In this experiment, we collect a dataset by training DQN [?] on the task and saving trajectories of horizon 200 steps at
regular checkpoints during the training. The dataset is composed of a mixture of sub-optimal and expert data totalling 20000
transitions. For the non-Markov modification, we keep the Cart Position, Cart Velocity and Pole Angle observations but
remove the Pole Angular Velocity element. In Table 15, we report the hyperparameter used in the experiments.

Hyperparameters used in algorithms values

δ POELA 0.0001, 0.0005, 0.001, 0.005, 0.01
µ̂ threshold PO-µ 0.05, 0.1, 0.15, 0.2

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1, 10
BCQ threshold BCQ, PQL 0.0, 0.05, 0.1, 0.2, 0.5

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 500

BCQ, PQL 1000
Number of checkpoints All 50

Batch size BCQ, PQL 64

Table 15: Hyperparameters in the CartPole experiment.

6.1 STANDARD EVALUATION PROCEDURE: USE POLICY AT THE END OF TRAINING

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 88.29 (86.62) 78.79 72.63 21.28 23.61 41.41
95% BCa UB 89.70 (89.81) 83.87 76.77 24.63 27.14 45.04
95% BCa LB 85.93 (85.57) 69.64 68.15 16.22 20.36 38.16

Test ESS 43.32 (40.78) 30.51 30.13 30.11 30.08 248

Table 16: CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA without a
CRM variance penalty is shown in parentheses.

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 76.18 (72.21) 68.39 67.14 12.13 5.46 41.41
95% BCa UB 89.27 (88.32) 80.22 83.72 12.89 6.63 45.04
95% BCa LB 68.97 (67.49) 57.13 57.78 9.17 5.02 38.16

Test ESS 36.41 (34.72) 34.56 31.87 31.22 30.07 248

Table 17: Non-MDP CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA
without a CRM variance penalty is shown in parentheses.

6.2 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

7 ADDITIONAL EXPERIMENTS: D4RL

Although our primary focus is on application areas where the Markov assumption may not be correct or unverifiable, we
also compare to an additional standard benchmark, namely D4RL.

An adaptation of the POELA algorithm is necessary to work with continuous action spaces. Practically, instead of using the
eligible action set Ah, for each data sample, we pre-compute a set of similar actions and use the distance to the closest state
xh associated with the most similar action distributions in the dataset as a smooth penalty in Line 5 of Algorithm ??.

For each dataset quality (random, medium, and expert) and task (Hopper and Walker2D), we report the performances scaled
from 0 to 100 (0 corresponds to the average returns of a random policy and 100 that of an expert policy) following the



Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 88.43 (87.56) 76.01 82.25 17.74 17.83 41.41
95% BCa UB 90.46 (90.72) 82.87 86.18 21.80 21.84 45.04
95% BCa LB 85.48 (84.63) 66.21 74.30 12.84 13.26 38.16

Test ESS 43.32 (39.66) 31.04 30.87 30.29 30.18 248

Table 18: CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA without a
CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 75.76 (75.70) 68.66 66.34 11.73 5.70 41.41
95% BCa UB 92.35 (89.16) 79.56 82.46 12.49 6.71 45.04
95% BCa LB 68.34 (66.08) 55.49 57.50 7.98 5.08 38.16

Test ESS 37.72 (35.27) 35.15 36.02 30.12 31.77 248

Table 19: Non-MDP CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA
without a CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

experimental protocol for D4RL with 200 episodes in each dataset. We compare with state-of-the-art methods in this dataset.
The results are reported in Table 20.

Dataset POELA BCQ CQL Behavior policy

Hopper-random 10.5 10.5 10.8 9.8
Hopper-medium 43.7 42.9 41.4 29.0
Hopper-expert 58.9 59.7 52.6 43.6

Walker2D-random 6.1 4.6 5.4 1.6
Walker2D-medium 33.8 31.1 49.6 6.6
Walker2D-expert 32.2 32.8 54.7 50.2

Table 20: Additional experiments on 6 D4RL datasets.

The results in Table 20 suggest that POELA performs similarly to two other state-of-the-art methods in this setting, even
though POELA does not make Markov assumptions, which are made and leveraged in BCQ and CQL.
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