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1 ADDITIONAL PRELIMINARIES

Influence functions Influence function is a popular tool
used to quantify the change in an empirically learned es-
timator with small changes in data. Consider a supervised
learning problem with input space X and output space Y ,
a batch of data (z)ni=1 where zi = (xi, yi) ∈ (X × Y ) and
an unknown prediction function f : X → Y where f is
parameterized by θ ∈ Θ. Given a convex and doubly dif-
ferentiable loss function L(θ, z) such that L : Θ×X → R
and θ ∈ argminθ′∈Θ

1
n

∑n
i=1 L(θ

′, zi) is the empirical risk
minimizer, then, the effect Iz,θ,D of perturbing a data point
z→ zδ = (x+δ, y) on the parameter θ can be approximated
via Taylor expansion as

Izδ,θ,D =
θz,δ − θ

δ
≈ ∂θ

∂x

≈
(
−H−1

θ

∂2L(θ, z)

∂θ∂x

)
where Hθ =

∂2L(θ,D)

∂2θ

(1)

where θz,δ are the new optimal parameters learned from
the training data point after replacing z by zδ . We refer the
readers to [Koh et al., 2018] for more details.

2 PROOFS:

Proof of Theorem 4.1. Recall the optimization problem
in (10):

max
s∈{0,1}n

max
{δi}N

i=1

{
n∑

i=1

siI
⊤
Ψi
δi | ∥δi∥p ≤ ε,∀i

}
,

subject to
n∑

i=1

si = α · n .

(2)

Notice that in (2), ∀k ∈ [1, . . . N ], IΨi
is independent

of δk and so the optimal perturbation δ∗k can be indepen-
dently computed by solving δ∗k ∈ argmaxx{ITΨk,θ,Ψ

x |
∥x∥p ≤ ε}. The p-norm ∥x∥p of any vector x ∈
RM can be expressed using its dual norm as ∥x∥p =

max
{
zTx | ∥z∥q ≤ 1

}
where 1/p + 1/q = 1 [Boyd and

Vandenberghe, 2004]. Thus, given the optimal-perturbation
δ∗k for each k ∈ 1, . . . , n, the problem in (10) boils down to
solving

max
s∈{0,1}N

n∑
k=1

∥IΨk,θ,Ψ∥q∑
k

sk = α · n.
(3)

It is now easy to see that the optimal set of transitions for
the approximate attack problem in (10) is simply the set
of αn transitions with the largest value of the q-norm of
their influence scores. The closed-form solution for δ∗k at
p = 1, 2,∞ follows from standard convex optimization
results for dual norms [Boyd and Vandenberghe, 2004].

3 EXPERIMENTAL DETAILS:

3.1 ADDITIONAL OPTIMIZATION TRICKS USED
IN EXPERIMENTS:

1. Recall that we use the DQN algorithm to learn the op-
timal Q-value function using a neural network, from
which we derive the evaluation policy. In the case of
the Cartpole and Mountain Car domains, we use this
Q-value network to transform the state features into
features ϕ(s, a). Specifically, we use the output of the
second last layer of the Q-value network as the trans-
formed state features. We do this to get a more accurate
feature representation for linear function approxima-
tors which in turn would result in a more accurate
initial value function estimate.

2. In all our experiments, we use line-search to find the
optimal step size to update the state features with the
perturbations derived using Theorem 4.1. If for a given
attacker’s budget, we have access to the error in the
value-function estimate for a lower value of the at-
tacker’s budget, then, we use it as the minimum thresh-
old error to achieve while applying the line search.
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Applying this method enables us to achieve a mono-
tonic trend in the percentage error in the value estimate
with respect to the perturbation budget. The monotonic
trend is otherwise difficult to achieve especially when
the Loss function is non-convex.

3. To optimize the DOPE objective for any given OPE
method, we need have differentiable evaluation policy
action probabilities. In the case, where the evaluation
policy is a deterministic Q-learning policy, we obtain
differentiable action probabilities by applying softmax
to the q-values with very small temperature values.

4. Link to code: https://github.com/elitalobo/DOPE

3.2 ADDITIONAL DOMAIN DETAILS:

Cancer: This domain [Gottesman et al., 2020] models
the growth of tumors in cancer patients. It consists of 4-
dimensional states which represent the growth dynamics of
the tumor in the patient, and two actions that indicate if a
given patient is to be administered chemotherapy or not at a
given time step.
HIV: The HIV domain has 6-dimensional states representing
the state of the patient, and four actions that represent four
different types of treatments.
MountainCar: In the Mountain Car [Brockman et al., 2016]
domain, the task is to drive a car positioned between two
mountains to the top of the mountain on the right in the
shortest time possible. The 2-dimensional state represents
the car’s current position and the current time-step, and the
three actions represent: drive forward, drive backward, and
do not move.
Cartpole: The Cartpole domain [Brockman et al., 2016]
models a simple control problem where the goal is to apply
+1/-1 force to keep a pole attached to a moving cart from
falling. The 2-dimensional state represents the cartpole dy-
namics, and the two actions represent the force applied to
the pole.
Continuous Gridworld: The gridworld domain consists of a
2-dimensional state space that represent the coordinates of
the agent and 2 actions (a0, a1) that determines the direction
and step size of the agent. The task is to begin at coordinate
(1, 1) and move towards coordinates (50, 50). Taking action
a0 at (x, y) transitions the agent to (x+0.2, y+0.45) with
probability 1.0. On the other hand, taking action a1 transi-
tions the agent to (x+ 0.3, y + 0.5) with probability 0.95
and to (1, 1) with probability 0.05. If the agent transitions
to (x′, y′), the agent receives a reward of (x+0.5y). We set
the maximum length of the episode to 50 and collected 500
trajectories using the behavior policy.

4 EXAMPLES OF TWICE
CONTINUOUSLY DIFFERENTIABLE
LOSS FUNCTIONS FOR DOPE
FRAMEWORK :

All the loss functions (L) that we leverage in this work such
as Mean Squared Bellman residual (MSBR) for learning
the Q-value function, and the Cross-Entropy Loss (referred
to as CEL in the paper) for fitting the multinomial logistic
regression model are twice continuously differentiable with
respect to the parameters θ. Below, we show that these loss
functions are twice continuously differentiable.

In BRM and WDR, θ = η represents the parameters of
the q-value function qη. The parameters η are estimated
from the data by minimizing the Mean Squared Bellman
Residual (MSBR). We compute the derivative of MSBR
below to show that this loss function is twice differentiable
and satisfies the assumption of our attack framework.

MSBR(η) = ∥qη − T πqη∥2W
= ∥Φη − (r + γΦpη)∥22
∂MSBR(η)

∂η
= 2 · (Φ− γΦp)

T (Φη − (r + γΦpη))

∂2MSBR(η)
∂η2

= 2 · (Φ− γΦp)
T (Φ− γΦp)

(4)

In the case of Importance Sampling-based OPE methods
such as WIS, PDIS, and CPDIS, the behavior policy param-
eters (θ = θb ∈ RA·d ) are estimated from the data using a
multinomial logistic regression model. Hence, we compute
below the second-order derivative of the cross-entropy loss
of the multinomial logistic regression model and show that
this loss function is twice differentiable as well and satisfies
the assumption of our attack framework.

The, cross entropy loss for θ = θb is given by

CEL(θ) = log

(
n∏

l=1

exp(θTal
ξ(sl))∑A

i=1 exp(θ
T
i ξ(sl))

)

=

n∑
l=1

log

(
exp(θTal

ξ(sl))∑A
i=1 exp(θ

T
i ξ(sl))

)

=

n∑
l=1

θTal
ξ(sl)− log

 A∑
j=1

exp(θTj ξ(sl))

 .

(5)

We can compute the second order derivative of the cross
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Hyperparameter values for Cancer domain
Hyperparameter Value
Number of trajectories 500
Policy Network layers 64× 28
Normalize rewards No
Regularization for πb 1e-2
Regularization for qη 1e-2
Discount factor 0.95
Trajectory Length (T) 30
Direction of Attack +1
Num. Epochs for CEL 5000

Hyperparameter values for HIV domain
Hyperparameter Value
Number of trajectories 1000
Policy Network layers 300× 50
Normalize rewards Yes
Regularization for πb 1e-2
Regularization for qη 1e-2
Discount factor 0.98
Trajectory Length (T) 50
Direction of Attack -1
Num. Epochs for CEL 5000

Hyperparameter values for Continuous Gridworld domain
Hyperparameter Value
Number of trajectories 500
Policy Network layers 24
Normalize rewards No
Regularization for πb 1e-2
Regularization for qη 1e-2
Discount factor 0.95
Trajectory Length (T) 50
Direction of Attack -1
Num. Epochs for CEL 5000

Hyperparameter values for MountainCar domain
Hyperparameter Value
Number of trajectories 250
Policy Network layers 60
Normalize rewards No
Regularization for πb 1e-2
Regularization for qη 1e-2
Discount factor 0.99
Trajectory Length (T) 150
Direction of Attack +1
Num. Epochs for CEL 5000

entropy loss as follows:

∂CEL(θ)
∂θal

=

n∑
l=1

(
ξ(sl)−

exp(θTal
ξ(sl))ξ(sl)∑A

j=1 exp(θ
T
j ξ(sl))

)
∂2CEL(θ)

∂θal
θk(k ̸= al)

=

n∑
l=1

exp(θTk ξ(sl)) exp(θ
T
al
ξ(sl))ξ(sl)

T ξ(sl)

(
∑A

j=1 exp(θ
T
j ξ(sl)))

2

∂2CEL(θ)
∂θ2al

=

n∑
l=1

(
−
exp(θTal

ξ(sl))ξ(sl)
T ξ(sl)∑A

j=1 exp(θ
T
j ξ(sl))

+

exp(θTal
ξ(sl))

2ξ(sl)
T ξ(sl)

(
∑A

j=1 exp(θ
T
j ξ(sl)))

2

)
.

(6)

5 RELATED WORK

Adversarial attacks have been extensively studied in Rein-
forcement Learning [Gleave et al., 2020, Wu et al., 2021a,
Lin et al., 2017, Zhang et al., 2020a,b, Lin et al., 2017,
Kiourti et al., 2020, Chen et al., 2019]. These attacks can



Hyperparameter values for Cancer domain
Hyperparameter Value
Number of trajectories 1000
Policy Network layers 100× 24
Normalize rewards No
Regularization for πb 1e-2
Regularization for qη 1e-2
Discount factor 0.98
Trajectory Length (T) 100
Direction of Attack +1
Num. Epochs for CEL 5000

be broadly classified into two main categories - train-time
attacks (data-poisoning attacks) and test-time attacks.

Test-time attacks: In test-time attacks in RL [Lin et al.,
2017, Gleave et al., 2020, Behzadan and Munir, 2017, Kos
and Song, 2017, Wu et al., 2021b, Chen et al., 2019, Huang
et al., 2017], the attacker manipulates test-time observations
to fool the agent to take target malicious actions, without
directly changing the agent’s policy. In this setting, the noise
added to the test-time observations at any time step does not
directly impact the agent’s future decisions. A large majority
of the work that focuses on test-time attacks aims to either
minimize the agent’s rewards [Huang et al., 2017, Behzadan
and Munir, 2017] or lead the agent to adversarial states [Lin
et al., 2017], which differs from our goal of perturbing train-
time observations to maximize error in the value estimate
of a given policy for a given OPE method.

Train-time attacks: In train-time or data-poisoning attacks,
the adversary perturbs the training data by a small margin to
facilitate erroneous learning of decision models. Prior work
on data-poisoning have mainly targeted supervised learning
models in Machine Learning [Koh et al., 2018, Koh and
Liang, 2017, Fang et al., 2020, Wu et al., 2021a, Steinhardt
et al., 2017]. However, recently there has been emerging in-
terests in data-poisoning attacks on Batch RL agents [Zhang
et al., 2021, Ma et al., 2019, Rakhsha et al., 2020] and On-
line RL Agents [Zhang et al., 2020b,a, Rakhsha et al., 2020,
Zhang and Parkes, 2008, Zhang et al., 2009]. In a pioneering
research work, [Zhang et al., 2020b] proposed a framework
that perturbs rewards such that a batch RL agent learns an
adversarial target policy. In the following work, [Rakhsha
et al., 2020] proposed a framework for poisoning rewards
and transition dynamics to force a Batch agent to learn an
adversarial target policy. In [Wu et al., 2022], authors pro-
pose methods to certify the robustness of a policy learned
from offline data after a poisoning attack. It outputs the
least cumulative reward that can be attained by a poisoned
policy. [Zhang et al., 2020b] develops fast adaptive data-
poisoning attacks on online RL agents where rewards must
be perturbed in real-time. Nonetheless, these data-poisoning
works differ from our work in two main aspects: a)They
target learning of optimal adversarial policies, whereas our
work targets learning erroneous value-function estimates

for any given policy and OPE method b) our main goal is
to analyze the sensitivity of different OPE algorithms to
train-time attacks which has not been explored in any of
these previous work.

Finally, our work is similar in vein to the bilevel-
optimization framework proposed by [Koh et al., 2018] for
data-poisoning attacks on supervised learning algorithms
with data sanitization defense mechanisms. However, in
contrast to this work, we exploit specific properties of OPE
algorithms to construct stronger data-poisoning attacks as
well as compare the sensitivity of different OPE algorithms
in RL.

Influence functions: The influence function was originally
introduced in robust statistics [Cook and Weisberg, 1980,
Hampel, 1974] to understand the effect of perturbing of re-
moving a train data point on small linear models estimated
from the data. In more recent work, influence functions have
been used as an diagnostic tool in deep learning and rein-
forcement learning algorithms to detect adversarial train-
ing data points [Broderick et al., 2021, Koh et al., 2018,
Koh and Liang, 2017, Gottesman et al., 2020, Cohen et al.,
2020], optimal sub-sampling [Ting and Brochu, 2018] and
to aide decision-policy optimization [Munos and Moore,
2002]. A few work have also proposed influence-functions
based data-poisoning attacks on supervised learning algo-
rithms [Koh et al., 2018, Koh and Liang, 2017, Wu et al.,
2021a, Fang et al., 2020]. However, our work differs from
theirs in terms of context (reinforcement learning) and ob-
jectives optimized.

6 EXPERIMENTAL RESULTS:

6.1 EFFECT OF INCREASING RANDOMNESS OF
THE BEHAVIOR POLICY ON DOPE ATTACK:

In all our experiments, we chose small values of ϵ for the be-
havior policy to examine the cases where the OPE methods
are difficult to attack. A larger value of epsilon would result
in a larger state-action distribution mismatch between the
datasets collected using the behavior policy and the datasets
that would have been collected with the evaluation policy.



This distribution mismatch would result in large importance
sampling weights and out-of-distribution estimation errors
and increase the variance in the value function estimates. As
a result, the OPE methods would become more brittle and
thus, more vulnerable to data poisoning attacks.

To illustrate this effect, we compare the percentage error in
the value function estimates of a near-optimal policy in the
HIV domain for two different values of ϵ, 0.05 and 0.25. For
this experiment, we set the perturbation budget to ε = 0.5σ
and percentage of corrupt points to α = 0.05. We report
the interquartile mean of the percentage error in the value
function estimates observed across 5 trials in Table 1. Our
results in Table 1 indicate that OPE methods like BRM,
WDR are more vulnerable to the data poisoning attack for
larger values of ϵ.

6.2 ANOMALY DETECTION METHODS

In this experiment, we investigate if standard anomaly de-
tection methods can identify the poisoned data points from
the dataset.

For this purpose, we use two popular state-of-the-art
anomaly detection methods [Emmott et al., 2013], namely,
the Isolation Forests [Liu et al., 2008] and the Local Outlier
Factor [Breunig et al., 2000] method. We set the perturba-
tion budget ε to be 0.5σ and the percentage of corrupt points
to be α = 0.05. We report the True Positive Rate (Fraction
of perturbed data points tagged as outliers) and the False
Positive Rate (Fraction of original data instances tagged as
outliers). Our experimental results with the aforementioned
anomaly detection methods, and the WDR OPE method
across Cancer, HIV, and Gridworld domains are shown in
in Table 2 and Table 3. While the Isolation Forests method
has a high true positive rate, it also has a high false-positive
rate indicating that several original data instances are be-
ing tagged as outliers. On the other hand, the Local Outlier
Factor method exhibits low true positive and false-positive
rates. The following results suggest that the perturbed data
points are not readily distinguishable from the original data
instances. These results are not surprising as the budget con-
straint embedded in our optimization problem Equation (8e)
ensures that the original data instances are perturbed in a
manner that cannot be easily detected by naive anomaly
detection techniques.

6.3 EFFECTIVENESS OF DOPE ATTACK

(a) Cartpole (b) Mountain Car

Figure 1: Figures 1a and 1b compares the effect of DOPE attack
on BRM, WIS, PDIS, CPDIS and WDR methods in Cartpole and
Mountain Car domains for different values of attacker’s budget
ε = frac · σ and p = 1.

6.4 COMPARISON WITH PROJECTED DOPE
ATTACK METHOD

Here we compare the DOPE attack to Projected DOPE
Attack. In Projected DOPE Attack, we first compute the set
of top αn influential points and their influences. Next, we
set the optimal perturbations for the most influential points
as the projection of their influences on the constrained space
defined by the attack budget constraints. We fix the value of
α to 0.05 and vary the budget ε from 0.0 to 0.25 with step
size 0.04.

Results for all the domains are shown in Figures 8 to 12.
These results indicate that there is no clear winner between
DOPE and Projected DOPE as they both can perform well
depending on the environment and the datasets collected.



Methods BRM WIS PDIS CPDIS WDR
epsilon=0.05 334.2 5.83e-3 1.61 0.22 118.35
epsilon=0.25 427.15 0.0 2.59 0.06 1489.22

Table 1: Percentage errors in the value function estimates observed for different values of ε on the HIV domain.

OPE Method = WDR True Positive Rate False Positive Rate
Cancer 1.0 0.26
HIV 0.47 0.16
Gridworld 1.0 0.9

Table 2: Results with Isolation Forests anomaly detection method and WDR Method.

OPE Method = WDR True Positive Rate False Positive Rate
Cancer 0.02 0.05
HIV 0.08 0.07
Gridworld 0.01 0.07

Table 3: Results with Local Outlier Factor anomaly detection method and WDR Method.

OPE Method = PDIS True Positive Rate False Positive Rate
Cancer 1.0 0.31
HIV 0.17 0.17
Gridworld 1.0 0.5

Table 4: Results with Isolation Forests anomaly detection method and PDIS method.

OPE Method = PDIS True Positive Rate False Positive Rate
Cancer 0.0 0.05
HIV 0.32 0.07
Gridworld 0.03 0.06

Table 5: Results with Local Outlier Factor anomaly detection method and PDIS Method.

(a) Cartpole (b) MountainCar

Figure 2: Figures 2a and 2b compares the effect of DOPE attack on BRM, WIS, PDIS, CPDIS and WDR methods in in Cartpole and
MountainCar domains (left to right) for different percentages of corruption α and p = 1.



(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 3: Figures 3a to 3e compares the effect of random attack, Random DOPE attack, FSGM-based Attack and DOPE attack on the
error in the value function estimates of BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Cancer domain.

(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 4: Figures 4a to 4e compares the effect of random attack, Random DOPE attack, FSGM-based Attack and DOPE attack on the
error in the value function estimates of BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Cartpole domain.



(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 5: Figures 5a to 5e compares the effect of random attack, Random DOPE attack, FSGM-based Attack and DOPE attack on the
error in the value function estimates of BRM, WIS and PDIS, CPDIS, WDR methods (left to right) in HIV domain.

(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 6: Figures 6a to 6e compares the effect of random attack, Random DOPE attack, FSGM-based Attack and DOPE attack on the
error in the value function estimates of BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Continuous Gridworld domain.



(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 7: Figures 7a to 7e compares the effect of random attack, Random DOPE attack, FSGM-based attack and DOPE attack on the
error in the value function estimates of BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in MountainCar domain.

(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 8: Figures 8a to 8e compares the effect of Projected DOPE attack and DOPE attack on the error in the value function estimates of
BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Cancer domain.



(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 9: Figures 9a to 9e compares the effect of Projected DOPE attack and DOPE attack on the error in the value function estimates of
BRM, WIS and PDIS, CPDIS, WDR methods (left to right) in HIV domain.

(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 10: Figures 10a to 10e compares the effect of Projected DOPE attack and DOPE attack on the error in the value function estimates
of BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Continuous Gridworld domain.



(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 11: Figures 11a to 11e compares the effect of Projected DOPE and DOPE attack on the error in the value function estimates of
BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in MountainCar domain.

(a) BRM (b) WIS (c) PDIS

(d) CPDIS (e) WDR

Figure 12: Figures 12a to 12e compares the effect of Projected DOPE and DOPE attack on the error in the value function estimates of
BRM, WIS, PDIS, CPDIS and WDR methods (left to right) in Cartpole domain.
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