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A MODEL ARCHITECTURE, TRAINING, AND OTHER HYPERPARAMETERS

For ImageNet and CelebA, we compute the ECE, MCE, and LCE using 15 equal-width confidence bins. For the UCI
communities and crime dataset, we use 5 equal-width bins because the dataset is much smaller (500 datapoints for
recalibration). These numbers of bins represent a good tradeoff between bias and variance in estimating the relevant
calibration errors. We also ran some initial experiments with equal-mass binning, but found that the results were very similar
to those obtained with equal-width binning.

A.1 IMAGENET

For all experiments with the ImageNet dataset, we used the pre-trained ResNet-50 model from the PyTorch torchvision
package as our classifier. To calculate the LCE and apply LoRe, we used pre-trained Inception-v3 features, applying either
t-SNE to reduce their dimension to 3 or PCA to reduce their dimension to 50, as a feature representation for the kernel.

A.2 UCI COMMUNITIES AND CRIME

For all experiments with the UCI communities and crime dataset, we used a 3-hidden-layer dense neural network as our
base classifier. Each hidden layer had a width of 100 and was followed by a Leaky ReLU activation. We applied dropout
with probability 0.4 after the final hidden layer. We trained the model using the Adam optimizer with a batch size of 64
and a learning rate of 3× 10−4 until the validation accuracy stopped improving. All other hyperparameters were PyTorch
defaults. Training was done locally on a laptop CPU. We trained 60 different models with different random seeds to perform
the experiments described in Section 5.3 and Figure 1. To calculate the LCE and apply LoRe, we used the final hidden layer
representation learned by our model, applying t-SNE to reduce the dimension to 2 or PCA to reduce their dimension to 20,
as a feature representation for the kernel.

A.3 CELEBA

For all experiments with the CelebA dataset, we trained a ResNet50 model and used it as our base classifier. We applied
standard data augmentation to our training data (random crops & random horizontal flips), and trained all models for 10
epochs using the Adam optimizer with a learning rate of 1× 10−3 and a batch size of 256. All other hyperparameters were
PyTorch defaults. Training was distributed over 4 GPUs, and training a single model took about 30 minutes. For both Setting
2 and Setting 3 (described in Section 5.3), we trained 20 models with different random seeds to perform the experiments
shown in Figures 2 and 3. To calculate the LCE and apply LoRe, we used pre-trained Inception-v3 features, applying t-SNE
to reduce their dimension to 2 or PCA to reduce their dimension to 50, as a feature representation for the kernel.
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A.4 COMPAS CRIMINAL RECIDIVISM

For all experiments with the COMPAS criminal recidivism dataset, we used a 3-hidden-layer dense neural network as our
base classifier. Each hidden layer had a width of 100 and was followed by a Leaky ReLU activation. We applied dropout
with probability 0.4 after the final hidden layer. We trained the model using the Adam optimizer with a batch size of 64
and a learning rate of 3× 10−4 until the validation accuracy stopped improving. All other hyperparameters were PyTorch
defaults. Training was done locally on a laptop CPU. We trained 60 different models with different random seeds to perform
the experiments described in Section 5.3 and Figure 1. To calculate the LCE and apply LoRe, we used the final hidden layer
representation learned by our model, applying t-SNE to reduce the dimension to 2 or PCA to reduce their dimension to 20,
as a feature representation for the kernel.

B ADDITIONAL EXPERIMENTAL RESULTS

In Figures 1, 2, 3, and 4 we visualize the MLCE achieved by all recalibration methods for the three experimental settings
evaluated in Section 5.3. Figure 4 in the main paper shows the same visualization for all methods on ImageNet. In Figure 5,
we plot the MLCE achieved by all recalibration methods for CIFAR-100, and in Figure 6, we do the same for CIFAR-10.
Across all settings and datasets, our method LoRe is the most effective at minimizing MLCE across a wide range of γ, even
accounting for variations between runs.

In these figures, “Original” represents no recalibration, “TS” represents temperature scaling, “HB” represents histogram
binning, “IR” represents isotonic regression, “MMCE” represents direct MMCE optimization, and “LoRe” is our method.

Next, we examine the influence of the specific feature map used. In Figures 7, 8, 9, and 10, we plot the MLCE achieved by
all recalibration methods for ImageNet using Inception-v3, AlexNet, DenseNet121, and ResNet101 features. In Figures
11 and 12, we plot the MLCE achieved by all recalibration methods for ImageNet when the features used to calculate the
MLCE are different from the features used by LoRe. For completeness, in Figures 13, 14, 15, and 16, we also visualize the
average LCE for all experimental settings. All plots show similar results: LoRe performs best over a wide range of γ.
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Figure 1: MLCE vs. kernel bandwidth γ for all methods on task 1 of Section 5.3, predicting whether a neighborhood’s crime rate is higher
than the median. LoRe achieves the best (or competitive) MLCE for most γ. Left: 2D t-SNE features. Right: 20D PCA features.
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Figure 2: MLCE vs. kernel bandwidth γ for all methods on task 2 of Section 5.3, predicting hair color on CelebA. LoRe achieves the best
MLCE for virtually all values of γ. Left: 2D t-SNE features. Right: 50D PCA features.
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Figure 3: MLCE vs. kernel bandwidth for all methods on task 3 of Section 5.3, predicting hair type on CelebA. LoRe achieves the best
MLCE for all γ < 1 and is tied with histogram binning for γ > 1. Left: 2D t-SNE features. Right: 50D PCA features.
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Figure 4: MLCE vs. kernel bandwidth for all methods on task 4 of Section 5.3, predicting criminal recidivism. LoRe achieves the best (or
competitive) MLCE for most γ. Left: 2D t-SNE features. Right: 20D PCA features.



Figure 5: MLCE vs. kernel bandwidth γ for all recalibration meth-
ods for CIFAR-100 (3D t-SNE features). LoRe achieves lower
MLCE for most γ.

Figure 6: MLCE vs. kernel bandwidth γ for all recalibration meth-
ods for CIFAR-10 (3D t-SNE features). LoRe achieves lower
MLCE for most γ.
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Figure 7: MLCE vs. kernel bandwidth γ for all recalibration meth-
ods on ImageNet using Inception-v3 features. LoRe achieves the
best MLCE for most γ.

Figure 8: MLCE vs. kernel bandwidth γ for all recalibration meth-
ods on ImageNet using AlexNet features. LoRe achieves the best
MLCE for most γ.

Figure 9: MLCE vs. kernel bandwidth γ for all recalibration meth-
ods on ImageNet using DenseNet121 features. LoRe achieves the
best MLCE for most γ.

Figure 10: MLCE vs. kernel bandwidth γ for all recalibration
methods on ImageNet using ResNet101 features. LoRe achieves
the best MLCE for most γ.



Figure 11: MLCE vs. kernel bandwidth γ for all recalibration
methods on ImageNet using Inception-v3 features to calculate the
MLCE and AlexNet features for applying LoRe.

Figure 12: MLCE vs. kernel bandwidth γ for all recalibration
methods on ImageNet using DenseNet121 features to calculate the
MLCE and AlexNet features for applying LoRe.
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Figure 13: Average LCE vs. kernel bandwidth γ for all recalibra-
tion methods on ImageNet (3D t-SNE features). LoRe gets lower
average LCE for most γ.
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Figure 14: Average LCE vs. kernel bandwidth γ for all recalibra-
tion methods in task 1 (crime data, 2D t-SNE features). LoRe gets
lower average LCE for most γ.
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Figure 15: Average LCE vs. kernel bandwidth γ for all recalibra-
tion methods in task 2 (CelebA, 2D t-SNE features). LoRe gets
lower average LCE for most γ.
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Figure 16: Average LCE vs. kernel bandwidth γ for all recalibra-
tion methods in task 3 (CelebA, 2D t-SNE features). LoRe gets
lower average LCE for most γ.

C PROOF OF LEMMA 1

We restate Lemma 1 below, and provide the proof:



Lemma 1. Assume that limγ→∞ kγ(x, x
′) = 1 for all x, x′ ∈ X . Then, as γ →∞, the MLCE converges to the MCE.

Proof. Since limγ→∞ kγ(x, x
′) = 1 identically,

lim
γ→∞

max
x

L̂CEγ(x; f, p̂) = max
x

1

|β(x)|

∣∣∣∣∣∣
∑

i∈β(x)

p̂(xi)− 1 [f(xi) = yi]

∣∣∣∣∣∣
= max

k

1

|Bk|

∣∣∣∣∣∑
i∈Bk

p̂(xi)− 1 [f(xi) = yi]

∣∣∣∣∣
= max

k
|conf(Bk)− acc(Bk)|

= MCE(x; f, p̂)

D FORMAL STATEMENT AND PROOF OF THEOREM 1

Let B1, . . . , BN denote a set of bins that partition [0, 1], and B(p) denote the bin that a particular p ∈ [0, 1] belongs to.
Let af (x, y) = 1 [f(x) = y] indicate the accuracy of a the classifier (f, p̂) on an input x. We consider the signed local
calibration error (SLCE):

SLCEγ(x; f, p̂) :=
E[(p̂(X)− af (X,Y ))kγ(X,x) | p̂(X) ∈ B(p̂(x))]

E[kγ(X,x) | p̂(X) ∈ B(p̂(x))]

=
E[(p̂(X)− af (X,Y ))kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]]

E[kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]]
.

D.1 ASSUMPTIONS AND FORMAL STATEMENT OF THEOREM

We make the following assumptions:

Assumption A (Lipschitz kernel). The kernel kγ takes the form

kγ(x, x
′) = g

(
ϕ(x)− ϕ(x′)

γ

)
,

where ϕ : X → Rd is a representation function, and g : Rd → [0, 1] is L-Lipschitz with respect to some norm ∥·∥.

Note this definition may require an implicit rescaling (for example, we can take ϕ(x)← ϕfeature(x)/d for a d-dimensional
feature map ϕfeature and take g(z) = exp(−∥z∥1), which corresponds to the Laplacian kernel we used in Section 3.2).

Assumption B (Binning-aware covering number). For any ϵ > 0, the range of the representation function ϕ(X ) :=
{ϕ(x) : x ∈ X} has an ϵ-cover in the ∥·∥-norm of size (C/ϵ)d for some absolute constant C > 0: There exists a set
Nϵ ∈ X with |Nϵ| ≤ (C/ϵ)d such that for any x ∈ X , there exists some x′ ∈ Nϵ such that ∥ϕ(x)− ϕ(x′)∥ ≤ ϵ and
B(p̂(x)) = B(p̂(x′)).

Assumption C (Lower bound on expectation of kernel within bin). We have

inf
x∈X

E[kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]] ≥ α

for some constant α ∈ (0, 1).

The constant α characterizes the hardness of estimating the SLCE from samples. Intuitively, with a smaller α, the denominator
in SLCE gets smaller and we desire a higher accuracy in estimating both the numerator and the denominator. Also note that
in practice the value of α typically depends on γ.

We analyze the following estimator of the SLCE using n samples:

ŜLCEγ(x; f, p̂) =
1
n

∑n
i=1(p̂(xi)− af (xi, yi))kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]

1
n

∑n
i=1 kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]

. (1)



Theorem 1. Under Assumptions A, B, and C, Suppose the sample size n ≥ Õ(d/α4ϵ2) where ϵ > 0 is a target accuracy
level, then with probability at least 1− δ we have

sup
x∈X

∣∣∣ŜLCEγ(x; f, p̂)− SLCEγ(x; f, p̂)
∣∣∣ ≤ ϵ,

where Õ hides log factors of the form log(L/γϵδα).

Theorem 1 shows that Õ(d/ϵ2α4) samples is sufficient to estimate the SLCE simultaneously for all x ∈ X . When α = Ω(1),
this sample complexity only depends polynomially in terms of the representation dimension d and logarithmically in other
constants (such as L, γ, and the failure probability δ).

D.2 PROOF OF THEOREM 1

Step 1. We first study the estimation at finitely many x’s. Let N ⊆ X be a finite set of x’s with |N | = N . Since kγ ∈ [0, 1]
and |p̂(x)− af (x, y)| ≤ 1 are bounded variables, by the Hoeffding inequality and a union bound, we have

P
(

sup
x∈N

∣∣∣∣ 1n
n∑

i=1

(p̂(xi)− af (xi, yi))kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]

− E[(p̂(X)− af (X,Y ))kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]]

∣∣∣∣ > αϵ/10

)
≤ exp

(
−cnα2ϵ2 + logN

)
.

Therefore, as long as n ≥ O(log(N/δ)/ϵ2α2) samples, the above probability is bounded by δ. In other words, with
probability at least 1− δ, we have simultaneously∣∣∣∣ 1n

n∑
i=1

(p̂(xi)− af (xi, yi))kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]︸ ︷︷ ︸
:=Â(x)

− E[(p̂(X)− af (X,Y ))kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]]︸ ︷︷ ︸
:=A(x)

∣∣∣∣
≤ αϵ/10.

for all x ∈ N . Similarly, when n ≥ O(log(N/δ)/ϵ2α4), we also have (with probability at least 1− δ)∣∣∣∣ 1n
n∑

i=1

kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]︸ ︷︷ ︸
:=B̂(x)

−E[kγ(X,x)1 [p̂(X) ∈ B(p̂(x))]]︸ ︷︷ ︸
:=B(x)

∣∣∣∣ ≤ α2ϵ/10

On these concentration events, we have for any x ∈ N that∣∣∣ŜLCEγ(x; f, p̂)− SLCEγ(x; f, p̂)
∣∣∣ = ∣∣∣∣∣ Â(x)

B̂(x)
− A(x)

B(x)

∣∣∣∣∣
≤
∣∣∣Â(x)

∣∣∣∣∣∣∣∣ 1

B̂(x)
− 1

B(x)

∣∣∣∣∣+ 1

|B(x)|

∣∣∣Â(x)−A(x)
∣∣∣

≤ 1 · α2ϵ/10

α(α− α2ϵ/10)
+

1

α
· αϵ/10

≤ ϵ.

Step 2. We now extend the bound to all x ∈ X using the covering argument. By Assumption B, we can take an α2ϵγ/(10L)-
covering of ϕ(X ) with cardinality N ≤ (10CL/α2ϵγ)d. Let N ⊂ X denote the covering set (in the X space). This means



that for any x ∈ X , there exists x′ ∈ N such that ∥ϕ(x)− ϕ(x′)∥ ≤ α2ϵγ/(10L) amd B(p̂(x)) = B(p̂(x′)), which implies
that for any x̃ ∈ X we have

|k(x̃, x)− k(x̃, x′)| =
∣∣∣∣f(ϕ(x̃)− ϕ(x)

γ

)
− f

(
ϕ(x̃)− ϕ(x′)

γ

)∣∣∣∣
≤ L

γ
∥ϕ(x)− ϕ(x′)∥

≤ α2ϵ/10,

where we have used the Lipschitzness assumption of g (Assumption A). This further implies∣∣∣Â(x)− Â(x′)
∣∣∣ = ∣∣∣∣ 1n

n∑
i=1

(p̂(xi)− af (xi, yi))kγ(xi, x)1 [p̂(xi) ∈ B(p̂(x))]

− 1

n

n∑
i=1

(p̂(xi)− af (xi, yi))kγ(xi, x
′)1 [p̂(xi) ∈ B(p̂(x′))]

∣∣∣∣
=

∣∣∣∣ 1n
n∑

i=1

(p̂(xi)− af (xi, yi))[kγ(xi, x)− kγ(xi, x
′)]1 [p̂(xi) ∈ B(p̂(x))]

∣∣∣∣
≤ 1

n

n∑
i=1

|p̂(xi)− af (xi, yi)| · |kγ(xi, x)− kγ(xi, x
′)| · 1 [p̂(xi) ∈ B(p̂(x))]

≤ α2ϵ/10.

Similarly, we have |A(x)−A(x′)| ≤ α2ϵ/10, |B̂(x)− B̂(x′)| ≤ α2ϵ/10, and |B(x)−B(x′)| ≤ α2ϵ/10. This means that
the estimation error at x is close to that at x′ ∈ N and consequently also bounded by ϵ:

∣∣∣ŜLCEγ(x; f, p̂)− SLCEγ(x; f, p̂)
∣∣∣ = ∣∣∣∣∣ Â(x)

B̂(x)
− A(x)

B(x)

∣∣∣∣∣
≤

∣∣∣∣∣ Â(x)

B̂(x)
− Â(x′)

B̂(x′)

∣∣∣∣∣+
∣∣∣∣∣ Â(x′)

B̂(x′)
− A(x′)

B(x′)

∣∣∣∣∣+
∣∣∣∣A(x′)

B(x′)
− A(x)

B(x)

∣∣∣∣
≤ 3

[
1 · α2ϵ/10

α(α− α2ϵ/10)
+

1

α
· α2ϵ/10

]
≤ ϵ.

Therefore, taking this N in step 1, we know that as long as the sample size

N ≥ O

(
log(|N |/δ)

ϵ2α4

)
= O

(
d
[
log
(
10CL/α2ϵγ

)
+ log(1/δ)

]
α4ϵ2

)
= Õ

(
d/α4ϵ2

)
,

we have with probability at least 1− δ that

sup
x∈X

∣∣∣ŜLCEγ(x; f, p̂)− SLCEγ(x; f, p̂)
∣∣∣ ≤ ϵ.

This is the desired result.
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