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A PROBLEM SETTING: THEORETICAL ANALYSIS

The classification problem consists of two tasks: (1) Predicting the correct class label of an adversarially perturbed (or
benign) image using adversarially robust classifier M 4; and (2) Predicting the type of adversarial perturbation that the input
image was subjected to, using attack classifier Cy gy .

Setup. We consider the data to consist of inputs to be sampled from two multi-variate Gaussian distributions such that the
input-label pairs (x,y) can be described as:

yu',f’_;'f {_1,+1}, )
i.4.d
iCO'\“J\/(yavoj): LlyeeeyXg ™~ N(Z/??702),

where the input z ~ N (yp, X) € R@1D; 5 = o/v/d for some positive constant a; g = [a,7,...,7] € R+ and
> = 021 € R We can assume without loss of generality, that the mean for the two distributions has the
same absolute value, since for any two distributions with mean p,, p5, we can translate the origin to % This setting
demonstrates the distinction between an input feature x that is strongly correlated with the input label and d weakly
correlated features that are normally distributed (independently) with mean y7 and variance o2 each. We adapt this setting
from [lyas et al.|[2019] who used a stochastic feature x¢y = y with probability p, as opposed to a normally distributed input
feature as in our case. All our findings hold in the other setting as well, however, the chosen setting better represents true data
distribution, with some features that are strongly correlated to the input label, while others that have only a weak correlation.

B SEPARABILITY OF PERTURBATION TYPES (THEOREM |

Our goal is to evaluate if the optimal perturbation confined within different £, balls have different distributions and whether
they are separable. We do so by developing an error bound on the maximum error in classification of the perturbation types.
The goal of the adversary is to fool a standard (non-robust) classifier M. C,q,, aims to predict the perturbation type based on
only viewing the adversarial image, and not the delta perturbation.

First, in Appendix [B.T|we define a binary Gaussian classifier that is trained on the given task. Given the weights of the binary
classifier, we then identify the optimal adversarial perturbation for each of the /1, {5, /., attack types in Appendix In
Appendix we define the difference between the adversarial input distribution for different £, balls. Finally, we calculate
the error in classification of these adversarial input types in Appendix [B.4]to conclude the proof of Theorem T}

B.1 BINARY GAUSSIAN CLASSIFIER

We assume that we have enough input data to be able to empirically estimate the parameters u, o of the input distribution
via sustained sampling. The multivariate Gaussian representing the input data is given by:
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Figure 1: Simulation: Decision boundary (solid green line) of binary Gaussian classifier. zj; = ﬁ Zle x; represents a
meta feature, and x is the first dimension of the input.
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We want to find p(y = y;|x) Vy; € {—1, +1}. From Bayesian Decision Theory, the optimal decision rule for separating the
two distributions is given by:

ply = Dp(aly =1) "> ply = —)p(aly = —1);

3)
y=—1
ply=Dplly=1) < ply=-Lp(ly=-1).
Therefore, for two Gaussian Distributions N (g1, 31), N (4, X2), we have:
=1
0'< 2T Az — 20"z + ¢
A=37"-37h
b= 37 - 5 )
Ty—1 Ty—1 [l ply=1)
C= g X7 P — o 25 e + log —2log ————.
P e [p2y] ply=—1)
Substituting (2) and (3)) in (@), we find that the optimal Bayesian decision rule for our problem is given by:
T vzl 5
x p > 0, (5)

which means that the label for the input can be predicted with the information of the sign of « " alone. We can define the
parameters W € R+ of the optimal binary Gaussian classifier M" , such that [[W||2 = 1 as:

o o
W= —, W;,=— Vie{l,...,d}
o= vie{..a) o
Mw(x):zTW

The same is also verified via a simulation in Figure[T}



B.2 OPTIMAL ADVERSARIAL PERTURBATION AGAINST M"Y

Now, we calculate the optimal perturbation § that is added to an input by an adversary in order to fool our model. For the
purpose of this analysis, we only aim to fool a model trained on the standard classification metric as discussed in Section 3]
(and not an adversarially robust model). The parameters of our model are defined in (6).

The objective of any adversary § € A is to maximize the loss of the label classifier M. We assume that the classification
loss is given by —y x M"W (x 4 §). The object of the adversary is to find §* such that:

Uz +6,y; MY) = —y x MW (z +6) = —yz " W;
* . w
0 —argrglean((x—Fé,y,M ), %

= -~ 5)TW = —ysTW.
arg max —y(z + 4) arg max —y
We will now calculate the optimal perturbation in the ¢, balls ¥p € {1,2, co}. For the following analyses, we restrict

the perturbation region A to the corresponding ¢, ball of radius {1, €2, €5 } respectively. We also note that the optimal
perturbation exists at the boundary of the respective ¢, balls. Therefore, the constraint can be re-written as :

§* =arg max —yd' W. (8)

61lp=¢p

We use the following properties in the individual treatment of £, balls:

1811, = (ZIW’) :

1_q (9)
1 p ’ p—1 ‘6J| Pl
el =~ | D_ 14l 0|67 sgn(d;) = { 75 sgn(d;).
P\ 1611,

p=2 Making use of langrange multipliers to solve (8), we have:

Vs(—0TS 1) = AV5(||8]2 — €2), 10y
W = A 6]l,Vs(ll6]lp)-
Combining the results from (9) and replacing ¢ with d, we obtain :
Y |02
—W = A d2l2 | 7 ) sen(d2)
[[62]|2
(11)
0g; = —€ < W > = —eaW
2; = —€2 = —€2W.
Wl
p =00 Recall that the optimal perturbation is given by :
0" = arg H(s‘rnax —yd' W,
d (12)
=arg max — o, Wj.
g H‘SHOOZEOC Y ;

Since ||6]|cc = €00, We know that max; |§;| = €. Therefore is maximized when each §; = —yeso sgn W; Vi €
{0,...,d}. Further, since the weight matrix only contains non-negative elements (« is a positive constant), we can conclude

that the optimal perturbation is given by:

boo = —yeool. (13)



p=1 We attempt an analytical solution for the optimal perturbation J;. Recall that the optimal perturbation is given by :

d
0" = arg max —yZéiWi,
i=1

[16]l1=€1
d
=arg max —ydygWgy — oW, (14)
Zlalhoe 70 y;

= arg max

d
o &Y
P R N
lohee V2 y; V2d
Since ||6]|1 = €1, is maximized when:
0o = —yer sgn(a) = —yey, 0; =0 Vie{l...d}. (15)

Combining the results. From the preceding discussion, it may be noted that the new distribution of inputs within a
given label changes by a different amount § depending on the perturbation type. Moreover, if the mean and variance of the
distribution of a given label are known (which implies that the corresponding true data label is also known), the optimal
perturbation is independent of the input itself, and only dependent on the respective class statistics (Note that the input is
still important in order to understand the true class).

B.3 PERTURBATION CLASSIFICATION BY C4,

Now we aim to verify if it is possible to accurately separate the optimal adversarial inputs crafted within different £,, balls.
For the purposes of this discussion, we only consider the problem of classifying perturbation types into ¢; and /., but the
same analysis may also be extended more generally to any number of perturbation types.

We will consider the problem of classifying the correct attack label for inputs from true class y = 1 for this discussion. Note
that the original distribution:
Xtrue ~ N(yﬂ’a 2)

Since the perturbation value d,, is fixed for all inputs corresponding to a particular label, the new distribution of perturbed
inputs X7 and X, in case of ¢; and /., attacks respectively (for y = 1) is given by:

X1~ N(p+ 61, B);

(16)
Koo ~N(p+ 600, ).

We now try to evaluate the conditions under which we can separate the two Gaussian distributions with an acceptable worst-

case error.

B.4 CALCULATING A BOUND ON THE ERROR

Classification Error. A classification error occurs if a data vector x belongs to one class but falls in the decision region of
the other class. That is in (3)) the decision rule indicates the incorrect class. (This can be understood through the existence of
outliers)

P, = /P(err0r|x)p(:r)da:,
a7

_ / min [p(y = £1])p(x), p(y = Lola)p(x)] da.

Perturbation Size. We set the radius of the /., ball, €., = 1 and the radius of the ¢; ball, e; = «. We further extend
the discussion about suitable perturbation sizes in Appendix These values ensure that the ¢, adversary can make
all the weakly correlated labels meaningless by changing the expected value of the adversarial input to less than O
(E[z; + 00 (7)] Vi > 0), while the ¢; adversary can make the strongly correlated feature x(, meaningless by changing its
expected value to less than 0 (E[zo + 61(0)]). However, neither of the two adversaries can flip all the features together.



Translating the axes. We can translate the axis of reference by (—p — (25=)) and define p1,4, = (252=), such that :

X4 NN(I"’adm 2);

(18)
Xoo NN(_:u’adv? E)
We can once again combine this with the simplified Bayesian model in (3)) to obtain the classification rule:
x—r“adv pil 0. (19)

Combining the optimal perturbation definitions in (13) and that prg, = (2552) = L1 + €oo, €o0r- -+, €cc)-

We can further substitute € = avand €5 = 1 = %. Notice that 4, (i) > 0 Vi > 0. Without loss of generality, to

simplify further discussion we can flip the coordinates of x(, since all dimensions are independent of each other. Therefore,

Hodo = ﬁ Vd—1,1,..., 1] . Consider a new variable x, such that:

1 1< 2
. =m0 <1 - \/g> 7 Zaz = = (=" Haan) (20)

Since each z;Vi > 0 is independently distributed, the new feature z, ~ N (., 03), where

1 1 d 1 1)
2 2 ) Y -
o, =0 <1+d 2\/&+E d)’

Therefore, the problem simplifies to calculating the probability that the meta-variable z, > 0.

For % > 10 and d > 1, we have in the z-table, z > 10:

P, <107, (22)

which suggests that the distributions are significantly distinct and can be easily separated. This concludes the proof for
Theorem [T

Note: We can extend the analysis to other £,, balls as well, but we consider £; and £, for simplicity.

C ROBUSTNESS OF THE PROTECTOR PIPELINE (THEOREM

In the previous section, we show that it is indeed possible to distinguish between the distribution of inputs of a given class
that were subjected to ¢; and /., perturbations over a standard classifier. Now, we aim to develop further understanding of
the robustness of our two-stage pipeline in a dynamic attack setting with multiple labels to distinguish among. The first
stage is a preliminary classifier Cyq, that classifies the perturbation type and the second stage consists of multiple models
M 4 that were specifically trained to be robust to perturbations to the input within the corresponding £, norm.

First, in Appendix [C.1] we calculate the optimal weights for a binary Gaussian classifier M 4, trained on dataset D to be
robust to adversaries within the £, ball Vp € {1, co}. Based on the weights of the individual model, we fix the perturbation
size €, to be only as large, as is required to fool the alternate model with high probability. Here, by ‘alternate’ we mean
that for an £, attack, the prediction should be made by the M, ., model,where p,q € {1,00};p # q. In Appendix we



calculate the robustness of individual M 4 models to £, adversaries, given the perturbation size €, as defined in Appendix
In Appendix we analyze the modified distributions of the perturbed inputs after different ¢, attacks. Based on this
analysis, we construct a simple decision rule for the perturbation classifier Cq,. Finally, in Appendix [C.5| we determine the
perturbation induced by the worst-case adversary that has complete knowledge of both C, 4, and M, e, VD € {1,00}. We
show how there exists a trade-off between fooling the perturbation classifier (to allow the alternate My, ., model to make
the final prediction), and fooling the alternate M, lprep model itself.

Perturbation Size. We set the radius of the ¢/, ball, e, = 1 + ( and the radius of the ¢; ball, e; = « + (7, where
(p are some small positive constants that we calculate in Appendix These values ensure that the /., adversary can
make all the weakly correlated labels meaningless by changing the expected value of the adversarial input to less than O
(E[z; + 000 (7)] Vi > 0), while the ¢, adversary can make the strongly correlated feature o meaningless by changing its
expected value to less than 0 (E[z + d1(0)]). However, neither of the two adversaries can flip all the features together. The
exact values of (, determine the exact success probability of the attacks. We defer this calculation to later when we have
calculated the weights of the models M 4. For the following discussion, it may be assumed that ¢, — 0 Vp € {1, 0o}.

C.1 BINARY GAUSSIAN CLASSIFIER M 4

Extending the discussion in Appendix we now examine the learned weights of a binary Gaussian classifier M 4 that is
trained to be robust against perturbations within the corresponding ¢, ball of radius €,. The optimization equation for the
classifier can be formulated as follows: 1
nE [—yz' W] + Z\[|W|[3 23
minE [—ya"W] + SA[Wl, (23)

where ) is tuned in order to make the ¢ norm of the optimal weight distribution, ||[W*||2, = 1. Following the symmetry
argument in Lemma D.1 [Tsipras et al., 2018|] we extend for the binary Gaussian classifier that :

W =W; =Wy Vije{l,....d}. (24)

We deal with the cases pertaining to p € {co, 1} in this section. For both the cases, we consider existential solutions for the
classifier M 4 to simplify the discussion. This gives us lower bounds on the performance of the optimal robust classifier. The
robust objective under adversarial training can be defined as:

d

1
min max E W0~(x0+50)+WM-Z(9L‘i+5i) + = A|W3;
W [llp <ep Pt 2
- , 25)
« 1
in{ —1 (W d x Wy ——= —\[W|2 E |-y | Wodp+ W 5
{1 (Wor )+ I g By (ot )

Further, since the A constraint only ensures that ||[W*||2 = 1, we can simplify the optimization equation by substituting

Wo=V1-d- WM2 as follows,

d
ind —1(ay1—d Wy +dx Wy—— E|—y|do\/1—d- W2+ W s11Y. e
%1541{ (a M~ +dXx M\/§>+|gn|pagxep [ y(o M-t MZ (26)

i=1
p =00 Asdiscussed in the optimal perturbation d., is given by —ye., 1. The optimization equation is simplified to:

%ihrﬂl{(eoo—a)\/l—d-WMz—&—deM(eoo—%)}. 27

Recall that e, = % + (- To simplify the following discussion we use the weights of a classifier trained to be robust
against perturbations within the /., ball of radius ¢, = %. The optimal solution is then given by:

Jim W =0. (28)

Therefore, the classifier weights are given by W = [Wo, Wy, ..., W] = [1,0,...,0]. We also show later in Appendix|C.3|
that the model achieves greater than 99% accuracy against ¢, adversaries for the chosen values of (.



p =1 We consider an analytical solution to yield optimal weights for this case. Recall from that the optimal
perturbation d; depends on the weight distribution of the classifier. Therefore, if Wy > Wy the optimization equation can
be simplified to

. « 1
min {Wo(e1 —a)—deM\/g+2)\||W|§}, (29)

and if Wy > W,

. 1
rr‘l}%]n{—Woa—WM (\/ga—q) +2)\||W||§} (30)

Recall that ; = « + (3. Once again to simplify the discussion that follows we will lower bound the robust accuracy of the
classifier My, by considering the optimal solution when zeta; = 0. The optimal solution is then given by:

Clllglo WM = 1. 31)

For the robust classifier My, , the weights W = [Wy, Wy, ..., W,] = [0, %, %, cee ﬁ] While this may not be the
optimal solution for all values of (;, we are only interested in a lower bound on the final accuracy and the classifier described

by weights W simplifies the discussion hereon. We also show later in Appendix [C.3|that the model achieves greater than
99% accuracy against ¢1 adversaries for the chosen values of (5.

C.2 PERTURBATION SIZES FOR FOOLING M 4 MODELS

Now that we exactly know the weights of the learned robust classifiers My, and M,__, we can move towards calculating
values (7 and (., for the exact radius of the perturbation regions for the ¢; and /., metrics. We set the radii of these regions
in such a way that an ¢; adversary can fool the model M;__ with probability ~ 98% (corresponding to z = 2 in the z-table
for normal distributions), and similarly, the success of /., attacks against the M, model is ~ 98%.

Let By, , represent the probability that model My, ~correctly classifies an adversarial input in the £,,, region. For p; = oo
and py =1,

Po1 =Ponyus)ly - Mo (x+61) > 0],
= IF’INN(W,Z)[y . (33 + (51)TW > 0},
2 Poanuz) (o > €l;
€] —« a+( —a 1 (32)

z = = :—:2’
(o g (o

(1 = 203

€1 =a+ 20.

To simplify the discussion for the M, model, we define a meta-feature x5 as:

d
1
TM = —= in, (33)
Vd =

which is distributed as :

war ~ NV, o) £ N (ya, o2).
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Figure 2: Simulation: Decision boundary (solid green line) and robustness of individual M 4 models to different ¢, attacks.
x) represents the meta feature as defined in Equation [33] and x is the first dimension of the input. Notice how the
distribution of perturbed samples varies according to the change in model architecture (scatter plots in the same color in the
two graphs represent the same distribution). (a) The M,_ model is able to correctly classify all benign and ¢, perturbed
samples. However, the ¢ adversary is able to successfully flip the decision of most data points (b) The same illustration is
repeated for the M7 model. In this case, while the model is robust to #; attacks, it fails against an /., adversary.

For p; = 1 and po = o0,

Ploo = Poan(yus) [y - My, (x4 0o0) > 0],
=Pon(yuz) [y - (z+ 500)TW > 0],

d
1 )
=Prnus) Y ﬁ Z(l’z + 000 (1)) > 0],
i=1

= ]P)xw./\/(yu,z) [y ’ (xM - \/& ’ 6C>O) > 0]7

> Pons) |70 > Vi e (34)
o \/Cj'ew_a_a+\/g'<oo_a_ \/aCoo —9.
= > - - _ ~ — 2.
20
Coo_ﬁa
a+ 20

C.3 ROBUSTNESS OF INDIVIDUAL M 4 MODELS

Additional assumptions. We add the following assumptions: (1) the dimensionality parameter d of input data is larger
than 100; and (2) the ratio of the mean and variance for feature z is greater than 10. (These assumptions were also made
when introducing the problem in the main paper.)

d > 100, > 10. (35)

We define P, as the probability that for any given input 2 ~ N (ypu, 3), the classifier M 4 outputs the correct label y for the
input = + §,.



Poo,oo: wa(qu)[y Mf ( +500)>0L
=Ponus)y - (T +600) W > 0],
=Pon(yus) Y - (0 + 000(0)) > 0],

> PINN(}L,E)[‘]:O > 600];
1
— 1)+
()

Pro.oo > 0.999.

(36)

2

7

€oo — O

a

i
g

using the assumptions in (33]),
(37)

p=1

Pl,l = Psz(yu,E)[y :
=Prnus)ly-

d
- %Zm +o1(i)) > 0],

=Ponus)y

= ]P):cw./\/(yu,z) [y ’

My, (m + 51) > O],
(x4 01) "W > 0],

€1
> PrnN(p,s) |:1‘M > \/ﬂ ;

o
Vd @

g

L (2
Vd
using the assumptions in (33)),

Py > 0.999. (39)

C.4 DECISION RULE FOR C,q,

We aim to provide a lower bound on the worst-case accuracy of the entire pipeline, through the existence of a simple
decision tree C'yg4,. For given perturbation budgets €; and €., we aim to understand the range of values that can be taken by
the adversarial input. Consider the scenarios described in Table [I|below. The same is also corroborated via the empirical
experiments shown in Figure

Table 1: The table shows the range of the values that the mean can take depending on the decision taken by the adversary.

134 and pSdY represent the new mean of the distribution of features x and ) after the adversarial perturbation.
Attack e uadv
Type y=1 y=-1 y=1 y=-1
None « —« 7]\/3 77/\/8
loo {a— €yt €oc} {—Q— €, —a+ €} (VA + esoVd,nVd — ecVd}  {—1Vd + €xcVd, —nVd — €coV/d}
b {a—e,a+a}l {-a—ea,—a+ea} {Wd+e/Vdn/d—ea/Vd} {-—nVd+e/Vd,—nVd—e/Vd}

Note that any adversary that moves the perturbation away from the y-axis is uninteresting for our comparison, since
irrespective of a correct perturbation type prediction by Cl,4,, either of the two second level models naturally obtain a high
accuracy on such inputs. Hence, we define the following decision rule with all the remaining cases mapped to ¢; perturbation

type.

L
0,

if |[zo] —af <€+ G

40
otherwise (40)

Cad'u ((E) = {

where the output 1 corresponds to the classifier predicting the presence of /., perturbation in the input, while an output of 0
suggests that the classifier predicts the input to contain perturbations of the ¢; type.
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Figure 3: Simulation: Decision boundary of the overall two stage classifier. z,; represents the meta feature as defined in
Equation[33|and o is the first dimension of the input.

If we consider a black-box setting where the adversary has no knowledge of the classifier C\4,, and can only attack M 4 it
is easy to see that the proposed pipeline obtains a high adversarial accuracy against the union of ¢; and ¢, perturbations
(since the given decision rule correctly classifies known examples as simulated in Figure

Note: (1) There exists a single model that can also achieve robustness against the union of ¢; and ¢, perturbations, however,
learning this model may be more challenging in real data settings. (2) The classifier need not be perfect.

C.5 TRADE-OFF BETWEEN ATTACKING M 4 AND C, 4,

To obtain true robustness it is important that the entire pipeline is robust against adversarial attacks. More specifically, in
this section we demonstrate the natural tension that exists between fooling the top level attack classifier (by making an
adversarial attack less representative of its natural distribution) and fooling the bottom level adversarially robust models
(requiring stronger attacks leading to a return to the attack’s natural distribution).

The accuracy of the pipelined model f against any input-label pair (x,y) sampled through some distribution N (ygt,,4,,, 2)
(where p,,,4, incorporates the change in the input distribution owing to the adversarial perturbation) is given by:

Pf(x) =yl = Pornyu,,,,5) [Cado ()] Pornryp, .5 [¥ - Me, (2) > 0[Caay(2)]
+ (1 =Pon(yp, ) [Cado () Porn(yp, 0.3 [V - Me, (2) > 0[=Caan ()],
= PN (. 2) [Cado(T)] Poan(u,,,.3) Mo, (¥) > 0]Cagy ()]
+ (1 = Porn(p, %) [Cado(2))Pamnru,,,.=) [Me, (x) > 0]=Clan ()] -

(41)

{~, adversary. To simplify the analysis, we consider loose lower bounds on the accuracy of the model f against the £,
adversary. Recall that the decision of the attack classifier is only dependent of the input x. Irrespective of the input features
x;Vi > 0, it is always beneficial for the adversary to perturb the input by p; = —eo.. However, the same does not apply
for the input . Analyzing for the scenario when the true label y = 1, if the input xq lies between § + € of the mean «,
irrespective of the perturbation, the output of the attack classifier Cyq,, = 1. The M,_ model then always correctly classifies
these inputs. The overall robustness of the pipeline requires analysis for the case when input lies outside 5 + €, of the
mean as well. However, we consider that the adversary always succeeds in such a case in order to only obtain a loose lower
bound on the robust accuracy of the pipeline model f against /., attacks.



P [f(.%) = y] = ]P:CNN([J,adU,E) [Cad'u(x)] PmNN(uadv,E) [MZOO (‘L') > O|Cadv(x)] )
+(1 - Pzw\/(uadv,E) [Cadv(w)])PmNN(uadv,E) [Me, (z) > 0|=Caan(2)],
> Psz(uad,U,E) [Cadv(x)] HDQ:N./\/'(/.LadU,Z) [MZOQ (.23) > 0|Cadv(x)] )

«
> Ponm) |70 = 0] € 5 — ] “2)
> 2Pm~]\/(u,2) |:x0 <a-— % + 6ooj| )

_(a7%+eoo)fa_ a 30
o 20 20Vd

using the assumptions in (33]),

P(f(z) = y] ~ 0.99. (43)
{, adversary. It may be noted that a trivial way for the ¢, adversary to fool the attack classifier is to return a perturbation
01 = 0. In such a scenario, the classifier predicts that the adversarial image was subjected to an ¢, attack. The label
prediction is hence made by the M,_ model. But we know from that the M,__ model predicts benign inputs correctly
with a probability Py, o, > 0.99, hence defeating the adversarial objective of misclassification. To achieve misclassification
over the entire pipeline the optimal perturbation decision for the ¢; adversary when xy € [—a -5 —€,—a+ g+ 61}
the adversary can fool the pipeline by ensuring that the C\ 4, () = 1. However, in all the other cases irrespective of the
perturbation, either C,q, = 0 or the input features z( has the same sign as the label y. Since, P, ; > 0.99 for the My,
model, for all the remaining inputs xo the model correctly predicts the label with probability greater than 0.99 (approximate
lower bound). We formulate this trade-off to elaborate upon the robustness of the proposed pipeline.

Plf(x) =yl = Porn(u,yy.2) [Cado(T)] Ponnu, . 2) [Mey, (¥) > 0]Cogy ()]
+ (1 = Ponn(u, .. %) [Cado(@))Pomnr(u, . x) [Me, (2) > 0[=Cago()],

o «
> Pornv(p,®) [_0‘_ b} —€1 <1 < —oz—&—a—i—el}

(44)
+0.999(Pyn(n,3) [mo < —a-— % —€orry > —a+ % + 61} ),
> 0~999(Pm~/\/(;4,2) [xo < —a— % —€0rryg > —+ % + 61} )
using the assumptions in (33)),
P[f(x) =y] ~ 0.99. (45)

This concludes the proof for Theorem [2] showing that an adversary can hardly stage successful attacks on the entire pipeline
and faces a natural tension between attacking the label predictor and the attack classifier. We verify these results via a
simulation in Figure [3] We emphasize that these accuracies are lower bounds on the actual robust accuracy, and the objective
of this analysis is not to find the optimal solution to the problem of multiple perturbation adversarial training, but to elucidate
the trade-off between attacking the two pipeline stages.

D MODEL ARCHITECTURE

Second-level M 4 models. A key advantage of PROTECTOR is that we can build upon existing defenses against individual
perturbation type. Specifically, for MNIST, we use the same CNN architecture as|Zhang et al.|[2019] for our M 4 models,
and we train these models using their proposed TRADES loss. For CIFAR-10, we use the same training setup and model
architecture as |Carmon et al,| [2019]], which is based on a robust self-training algorithm that utilizes unlabeled data to
improve the model robustness.

Perturbation classifier C,;,. For both MNIST and CIFAR-10 datasets, the architecture of the perturbation classifier
Cladv 1s similar to the individual M 4 models. Specifically, for MNIST, we use the CNN architecture in|Zhang et al.|[2019]]
with four convolutional layers, followed by two fully-connected layers. For CIFAR-10, C4, is a WideResNet [Zagoruyko
and Komodakis| 2016] model with depth 16 and widening factor of 2 (WRN-16-2). The architectures for classifying
£, perturbations and common corruptions are largely the same, except that the final classification layers have different
dimensions due to the different label set sizes.



E TRAINING DETAILS

E.1 SPECIALIZED ROBUST PREDICTORS M 4

MNIST. We use the Adam optimizer [Kingma and Bal 2015]] to train our models along with a piece-wise linearly
varying learning rate schedule [[Smith, 2018] to train our models with maximum learning rate of 10~3. The base models
My, , My,, M,__ are trained using the TRADES algorithm for 20 iterations, and step sizes a1 = 2.0, a2 = 0.3, and oo =
0.05 for the ¢1, 5, {, attack types within perturbation radii €; = 10.0, e = 2.0, and €, = 0.3 respectively

CIFAR10. The individual M 4 models are trained to be robust against {{,, {1, >} perturbations of {€,€1,€2} =
{0.003,10.0,0.05} respectively. For CIFAR10, the attack step sizes {oo, a1, a2} = {0.005,2.0,0.1} respectively. The
training of the individual M 4 models is directly based on the work of (Carmon et al.|[2019].

E.2 PERTURBATION CLASSIFIER C,4,

MNIST. We train the model for 5 epochs using the SGD optimizer with weight decay as 5 x 10~%. We used a variation of
the learning rate schedule from Smith|[2018]], which is piecewise linear from 5 x 10~* to 10~ over the first 2 epochs, and
down to 0 till the end. The batch size is set to 100 for all experiments.

CIFAR10. We train the model for 5 epochs using the SGD optimizer with weight decay as 5 x 10~*. We used a variation
of the learning rate schedule from Smith| [2018], which is piecewise linear from 5 x 1073 to 10~2 over the first 2 epochs,
and down to O till the end. The batch size is set to 100 for all experiments.

Creating the Adversarial Perturbation Dataset. We create a static dataset of adversarially perturbed images and their
corresponding attack label for training the perturbation classifier C,4,,. For generating adversarial images, we perform
weak adversarial attacks that are faster to compute. In particular, we perform 10 iterations of the PGD attack. For MNIST,
the attack step sizes {@oo, a1, a2} = {0.05,2.0,0.3} respectively. For CIFAR10, the attack step sizes {qoo, @1, 02} =
{0.005,2.0,0.1} respectively. Note that we perform the Sparse-¢; or the top-k PGD attack for the ¢; perturbation ball, as
introduced by [Tramer and Boneh| [2019]. We set the value of k to 10, that is we move by a step size * in each of the top 10
directions with respect to the magnitude of the gradient.

CIFAR10-C. We use a dropout value of 0.3 along with the same optimizer (SGD). We use a learning rate of 0.01 and SGD
optimizer for 5 epochs, with linear rate decay to 0.001 between the second epoch and the fifth epoch For experiments on
classifying corruptions of severity 1, we find that the model takes longer to train. Hence, we train the model for 10 epochs,
whereas all other models (at other severity levels) were trained for 5 epochs.

F ATTACKS USED FOR EVALUATION

A description of all the attacks used for evaluation of the models is presented here. From the AutoAttack library [Croce and
Hein, [2020b]], we make use of all the three variants of the Adaptive PGD attack (APGD-CE, APGD-DLR, APGD-T) along
with the targeted and standard version of Fast Adaptive Boundary Attack (FAB, FAB-T) [Croce and Hein, [2020al] and the
Square Attack [Andriushchenko et al., 2020]. We utilize the AA™ version in the auto-attack library for stronger attacks.

Attack Hyperparameters. For the attacks in the AutoAtack library we use the default parameter setting in the strongest
available mode (such as AAT). For the custom PGD attacks, we evaluate the models with 10 restarts and 200 iterations
of the PGD attack. The step size of the {/, ¢1, >} PGD attacks are set as follows: For MNIST, the attack step sizes
{Qoo, 1,02} = {0.01,1.0,0.1} respectively. For CIFARIO0, the attack step sizes {0, 1,2} = {0.003,1.0,0.02}
respectively.

Further, in line with previous work [Tramer and Bonehl 2019, [Maini et al., 2020] we evaluate our models on the first
1000 images of the test set of MNIST and CIFAR-10, since many of the attacks employed are extremely computationally
expensive and slow to run. Specifically, on a single GPU, the entire evaluation for a single model against all the attacks
discussed with multiple restarts will take nearly 1 month, and is not feasible.

'We use the Sparse ¢; descent [Tramer and Boneh, [2019]] for the PGD attack in the ¢; constraint.
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Figure 4: We present the Fourier spectrums of various attacks on a vanilla model trained on (a) MNIST and (b) CIFAR10
datasets by averaging the per-pixel DFT over the entire test set, i.e. for an £, £1, {5 adversarial example corresponding to
image in the test set.

G FOURIER FEATURES

Yin et al.{[2019] studied various perturbations in their Fourier domain. Their work mainly focused on studying the Fourier
spectrum of various common corruptions, and they showed how model robustness was affected by the data augmentation
scheme used. In particular, they found that certain augmentation strategies benefit robustness to perturbations in the high
frequency domain.

On the contrary, in our work, we use Fourier features to classify perturbation types. While|Yin et al.|[2019] directly studied
only the perturbation (¢) added to the image, we visualize the Fourier transform of the actual perturbed image (x + §). This
makes it more challenging to distill the perturbation from the original image. Secondly, we study the Fourier transform of
various adversarially crafted examples. In what follows, we will first provide a visual example to justify how adversarial
examples crafted by different attack types, have different Fourier spectrums. We then utilise this property to use Fourier
features as an input to the perturbation classifier for classifying the perturbation type.

Fourier Spectrum. We follow the same naming convention as Yin et al.[[2019]. For an input image x € R4 %% we will
represent the 2-dimensional discrete Fourier transform (DFT) by F : R%1%d2 — Cd1xdz F~1 represents the inverse DFT.
Since the Fourier transform belongs to the complex plane, we estimate E [| F(Xq40)[¢, j]|] by averaging over adversarial
examples generate for each image in the test set.

Note that|Yin et al{[2019] had estimated only the perturbation (E [| F (Xa4v — X)[4, j]|]) and not the perturbed image in their
work. However, since at test time we do not have access to the original image, we only perform our analysis based on the
perturbed input.

We present the Fourier spectrums in Figure ] While adversarial examples typically have an imperceptible amount of
perturbation for the human eye, the visualization of these adversarial examples through the Fourier spectrums help us visually
distinguish between them. We also note that the Fourier spectrum for each attack does not show similar characteristics
across different datasets (MNIST and CIFAR10). However, the characteristics stay consistent when independently attacking
a given model on the same dataset.



Table 2: Vanilla Model: Empirical overlap of /, ., attack perturbations in different ¢, . regions for (a) MNIST
(€1, €2, €00) = (10,2.0,0.3); (b) CIFAR-10 (€1, €2, €5 ) = (10,0.5,0.03). Each column represents the range (min - max) of

£4 norm for perturbations generated using £, PGD attack.

Attack MNIST CIFAR10

s < 0.3 ly < 2.0 {1 <10 ls < 0.03 ly < 0.5 /1 <10
PGD /o, <03 (3.67-6.05) (54.8-140.9) <0.03 (1.33-1.59) (62.7-85.5)
PGD /¢, (0.40 - 0.86) <2.0 (11.2-24.1) | (0.037 -0.10) <0.05 (15.4-20.9)
Sparse /1 (0.70-1.0) (2.08-2.92) <10.0 | (0.27-0.77) (1.32-1.88) <10.0

Table 3: PROTECTOR: Empirical overlap of Ep,ep attack perturbations in different Eq,eq regions for (a) MNIST (ey, €2, €x) =
(10,2.0,0.3); (b) CIFAR-10 (€1, €2, €50) = (10, 0.5, 0.03). Each column represents the range (min - max) of ¢, norm for
perturbations generated using £, PGD attack.

Attack MNIST CIFAR10

s < 0.3 ly < 2.0 /1 <10 loo < 0.03 ly < 0.5 /1 <10
PGD /, <03 (5.03-6.12) (100.40-138.52) <0.03 (1.46-1.69) (73.15-93.26)
PGD /4, (0.35-0.95) <2.0 (17.06-27.88) | (0.036-0.29) <0.05  (5.83-21.21)
Sparse /1 (0.81-1.0) (2.13-2.98) <10.0 (0.42-1.0) (1.50-2.91) <10.0

We use this observation to augment PROTECTOR with an ensemble of diverse perturbation classifiers. We do so by training
another model C'4,, for which the inputs are only the Fourier features of the corresponding adversarial examples. The training
process and architecture for such a classifier stays identical as one that classifies adversarial examples in their image domain.

H PERTURBATION CATEGORIZATION

H.1 EMPIRICAL PERTURBATION OVERLAP

While we justify the choice of perturbation sizes in our theoretical proofs in Appendix and in this section we
demonstrate the empirical agreement of the choices of perturbation sizes we make for our results on MNIST and CIFAR10
datasets. To measure how often adversarial perturbations of different attacks overlap, we empirically quantify the overlapping
regions by attacking a benign model with PGD attacks. In Table[2] we report the range of the norm of perturbations in the
alternate perturbation region for any given attack type. The observed overlap is exactly 0% in all cases and the observation is
consistent across MNIST and CIFAR10 datasets.

Table 4: Perturbation type classification accuracy for different perturbation types. The perturbation classifier Cy g, is trained
on adversarial examples against two M 4 models. Each column represent the model used to create transfer-based attack via
the attack type in the corresponding row. The represented accuracy is an aggregate over 1000 randomly sampled attacks of
the (o, {2, {1 types for the corresponding algorithms (and datasets).

M,_ M, M, MAX AVG MSD
MNIST-PGD 100% 100% 99.3% 99.0% 99.6% 99.1%
MNIST-AutoAttack | 100% 100% 99.0% 99.5% 100%  100%
CIFAR10-PGD 99.9% 99.5% 100% 100% 98.7% 95.7%
CIFARI0-AutoAttack | 99.9% 99.9% 100% 100% 99.7% 99.7%

To contrast the results with that of attacking a vanilla model, we also present results on the perturbation overlap when we
attack PROTECTOR with PGD attacks (in Table[3)). It is noteworthy that the presence of a perturbation classifier forces the
adversaries to generate such attacks that increase the norm of the perturbations in alternate ¢, region. Secondly, we also
observe that in the case of CIFAR10, the /> PGD attack has a large overlap with the ¢; norm of radius 10. However, recall
that in case of ¢, attacks for CIFAR10, both the base models M/, and M, were satisfactorily robust. Hence, the attacker
has no incentive to reduce the perturbation radius for an £, norm since the perturbation classifier only performs a binary
classification between ¢ and /., attacks.



H.2 ROBUSTNESS OF C4,

In this section, we present the results of the perturbation type classifier C, 4, against transfer adversaries. The results for
the robustness of the perturbation classifier C,q, in the presence of adaptive adversaries is presented in Table[d] Note that
Cqv transfers well across the board, even if the adversarial examples are generated against new models that are unseen
for C, 4, during training, achieving extremely high test accuracy. Further, even if the adversarial attack was generated by a
different algorithm such as from the AutoAttack library, the transfer success of C, 4, still holds up. In particular, the obtained
accuracy is > 95% across all the individual test sets created. The attack classification accuracy is in general highest against
those generated by attacking M, or M,__ for CIFARI10, and M, or M,__ for MNIST. This is an expected consequence of
the nature of generation of the static dataset for training the perturbation classifier C'y4,, as described in Section[5.1]

Table 5: Classification accuracy for common corruptions at different severity levels. The task is a 19 class classification
problem. In the training setting “Combined”, all images of different severity levels are used for training. The model predicts
the corruption type among the 19 possible corruptions.

Tested on
Training Level 1 Level2 Level3 Level4 Level5
Level Specific | 87.2% 97.7% 97.0% 98.7%  99.5%
Combined 854% 962% 972%  98.1%  99.1%

H.3 MORE RESULTS ON COMMON CORRUPTIONS

For each image in the original CIFAR-10 test set, CIFAR-10-C includes corrupted images of 19 different corruption types at
5 severity levels. In this section, we present results on corruption classification at different severity levels. Specifically, we
train a single model on images of all severity levels. Then to evaluate on each of the 5 severity levels, we also train another
model on corrupted images of the same level. As mentioned in Section [6.1} each corruption type has 9K training samples at
each severity level, and 1K for testing. We ensure that all corrupted samples of the same original CIFAR-10 image are in the
same data split, so that no sample in the test split corresponds to the same original image in the training split.

We present the corruption type classification accuracies at different severity levels in Table[5}] We observe that the classification
accuracy is around 90% for all severity levels, even when the severity level is low and the corruptions are hard to notice for
the human eye. Note that for a 19-class classification problem, random guessing would only yield about 5% accuracy. Further,
the test accuracy increases as the severity of the corruption increases. This can be explained due the fact that increasing the
magnitude of corruptions makes them more representative and easier to be distinguished from others. Note that models
trained on standard image classification tasks are typically more resilient to corruptions at a lower severity, and images with
a high corruption severity can be detrimental to the prediction performance of standard classifiers. Therefore, it is important
to correctly identify such highly corrupted images. We also note that a combined model trained on multiple corruption
severity levels does not have a significant trade-off in test accuracy to those trained on the specific levels. Specifically,
the drop in test set accuracy varies between 0.4% and 1.8% across various severity levels, and the decrease is much less
noticeable when the severity level becomes large.

I ADAPTIVE ATTACKS

L1 AGGREGATING PREDICTIONS FROM DIFFERENT M 4 AT INFERENCE

In all our experiments in this work the adversary constructs adversarial examples using the softmax based adaptive strategy
for aggregating predictions from different M 4 models, as described in Equation [] for the column ‘Ours’ and using the ‘max’
strategy (Equation [3) for results described in the column ‘Ours*’.

However, for consistency of our defense strategy irrespective of the attacker’s strategy, the defender only utilizes predictions
from the specialized model M 4 corresponding to the most-likely attack (Equation [3) to provide the final prediction (only
forward propagation) for generated adversarial examples. In our evaluation, we found a negligible impact of changing this
aggregation to the ‘softmax’ strategy for aggregating the predictions. For example, we show representative results in case of
the APGD (£, {2) attacks on the CIFAR10 dataset in Table [f]



Table 6: Comparison between using a ‘softmax’ based aggregation of predictions from different specialized models versus
using the prediction from the model corresponding to the most likely attack (only at inference time). Results are presented
for APGD /5, ., attacks on the CIFAR10 dataset.

Attack Max-approach (Eq. Softmax-approach (Eq. EI)
APGD-CE /5 (e = 0.5) 75.7% 75.6%
APGD-DLR /5 (e5 = 0.5) 76.5% 76.7%
APGD-CE /, (€5, = 0.03) 86.9% 86.9%
APGD-DLR Y, (€00 = 0.03) 91.8% 91.2%

Table 7: Performance of Adaptive attacks that attempt to separately fool the perturbation classifier and the alternate
specialized robust model. The corresponding objective functions for each attack are specified in Appendix E}

Attack Dual Attack (Eq. Binary Attack (Eq.
PGD /o, (€50 = 0.03) 69.3% 73.2%
PGD ¢, (¢5 = 0.5) 72.1% 74.8%
Sparse PGD ¢; (¢; = 10) 64.7% 59.1%

I.2 TRADE-OFF BETWEEN FOOLING M 4 AND Cq4,

The adversary chooses the strongest attack over a set of adaptive attacks targeted at each M 4. For any data point (x,y) each
targeted attack optimises the following constraint:

min ¢, (z + dp)
5y (46)
st. Ma(x+0y) #y; Cadw(®+9p) =p

We perform the attack for each of the PGD attacks for p € {1, 2, co}. To design the exact objective function for optimization
of Equation[46] we take inspiration from a similar exploration by Carlini and Wagner [2017].

First, we combine a dual loss function for individually fooling the M 4 model and the perturbation classifier C, 4, by giving
different importance to each of them using a parameter A. More specifically, for an input (z, y), the objective for finding an
adversarial example of type A € S can be written as:

L(z,y,4) = —1 - CrossEntropyLoss(Cody (), A) + A - CrossEntropyLoss(Mp(x),y) 47)

where B = argmax Cyq, (). We experiment with values of A € {1071,1,10,100} and report the worst adversarial
example in each case.

Secondly, we design an alternate approach where the adversary is constrained to fool the perturbation classifier (owing to a
strong binary misclassification loss). It then attempts to fool the alternate M 4 model under this constraint. More specifically,
if B = arg max Cyq, (), then

Lzy4) = —1-(A=B)+ X\-CrossEntropyLoss(Mp(x),y) (48)

We perform the above optimization for the PGD attacks in the /., ¢1, {5 perturbation radius constraints. In case of the ¢,
attack, we optimize using the stronger Sparse-¢; attack [Tramer and Boneh, [2019]. The adversarial robustness of PROTECTOR
(on CIFAR10) to these attacks is reported in Table[7] We note that the formulation used in the main paper (Equation ) that
uses a ‘softmax’ bridge between the two levels of the pipeline performs better than the attacks outlined above. In particular,
we observe that adversaries find it difficult to balance the two losses separately in order to satisfy the dual constraint.



Table 8: Attack-wise breakdown of adversarial robustness on the MNIST dataset. Ours represents the PROTECTOR method
against the adaptive attack strategy described in Section and Ours* represents the standard attack setting.

M, My, M, MAX AVG MSD  Ours Ours*
Benign Accuracy 992% 98.7% 988% 98.6% 99.1% 983% 989% 98.9%
PGD-/, 928% 62% 0.0% 50.0% 64.8% 657% 83.5% 89.1%
APGD-CE 91.5% 3.6% 00% 41.0% 59.1% 652% 843% 84.6%
APGD-DLR 918% 8.0% 0.0% 439% 619% 660% 88.6% 88.4%
APGD-T 919% 29% 00% 39.6% 59.0% 644% 88.0% 88.6%
FAB-T 925% 50% 00% 488% 643% 655% 99.0% 98.6%
SQUARE 903% 7.6% 00% 459% 651% 682% 93.0% 93.3%
l attacks (e =0.3) | 90.2% 2.6% 0.0% 39.0% 57.8% 63.5% 78.1% 79.0%
PGD-/ 84.9% 749% 51.6% 63.6% 695% T1.7% 13.0% 75.5%
DDN 423% T76.0% 53.1% 622% 64.6% 70.1% 87.5% 94.3%
APGD-CE 789% 74.0% 50.7% 61.9% 65.0% 69.6% 722% 76.4%
APGD-DLR 793% 752% 541% 632% 651% 709% T4.4% 78.2%
APGD-T 80.7% 73.8% 48.0% 61.0% 63.9% 69.6% 7T0.8% T4.3%
FAB-T 122% 74.8% 49.4% 62.5% 63.7% 69.1% 869% 96.3%
SQUARE 25.6% 823% 66.6% T1.7% T71.8% 750% 96.9% 96.6%
{5 attacks (e = 2.0) 95% T723% 478% 585% 58.6% 65.7% 66.6% 72.3%
PGD-/; 72.5% 74.6% 785% 529% 593% 6719% 7T3.8% 79.4%
FAB-T 200% 71.6% 77.6% 439% 512% 67.5% 743% 85.0%
£y attacks (e = 10) 188% 70.6% 77.5% 41.8% 46.1% 643% 68.1% 72.5%
All Attacks 73% 26% 00% 291% 371% 572% 63.6% 67.2%
Average All Attacks | 69.8% 474% 353% 541% 632% 684% 83.1% 86.6%

J BREAKDOWN OF COMPLETE EVALUATION

Now we present a breakdown of results of the adversarial robustness of baseline approaches and PROTECTOR against all the
attacks in our suite. We also report the worst case performance against the union of all attacks.

J.1 MNIST

In Table 8] we provide a breakdown of the adversarial accuracy of all the baselines, individual M 4 models and the
PROTECTOR method, with both the adaptive and standard attack variants on the MNIST dataset. PROTECTOR outperforms
prior baselines by 6.4% on the MNIST dataset. It is important to note that PROTECTOR shows significant improvements
against most attacks in the suite. Compared to the previous state-of-the-art defense against multiple perturbation types
(MSD), if we compare the performance gain on each individual attack algorithm, the average accuracy increase of 14.7%
on MNIST dataset. These results demonstrate that PROTECTOR considerably mitigates the trade-off in accuracy against
individual attack types.

J.2 CIFAR-10

In Table 0] we provide a breakdown of the adversarial accuracy of all the baselines, individual M4 models and the
PROTECTOR method, with both the adaptive and standard attack variants on the CIFAR10 dataset. PROTECTOR outperforms
prior baselines by 10%. Once again, note that PROTECTOR shows significant improvements against most attacks in the suite.
Compared to the previous state-of-the-art defense against multiple perturbation types (MSD), if we compare the performance
gain on each individual attack algorithm, the improvement is significant, with an average accuracy increase of 14.2% on.
These results demonstrate that PROTECTOR considerably mitigates the trade-off in accuracy against individual attack types.
Further, PROTECTOR also retains a higher accuracy on benign images, as opposed to past defenses that have to sacrifice the
benign accuracy for the robustness on multiple perturbation types. The clean accuracy of PROTECTOR is over 7% higher
than such existing defenses on CIFAR-10, and the accuracy is close to M 4 models trained for a single perturbation type.



Table 9: Attack-wise breakdown of adversarial robustness on CIFAR-10. Ours represents PROTECTOR against the adaptive
attack strategy described in Section and Ours* represents the standard attack setting.

M, My, M, MAX AVG MSD  Ours Ours*
Benign Accuracy 89.5% 93.9% 89.0% 81.0% 84.6% 81.7% 89.0% 89.0%
PGD-/, 623% 362% 36.0% 432% 41.1% 46.6% 623% 62.3%
APGD-CE 62.1% 355% 359% 385% 41.1% 463% 622% 63.9%
APGD-DLR 60.9% 38.0% 37.7% 39.1% 433% 46.6% 59.1% 63.8%
APGD-T 594% 349% 350% 365% 39.7% 438% 58.7% 62.3%
FAB-T 599% 359% 354% 408% 402% 44.0% 79.1% 84.7%
SQUARE 672% 571.7% 505% 51.8% 50.8% 52.1% 85.6% 80.3%
l attacks (e = 0.003) | 59.3% 34.8% 350% 349% 39.7% 43.7% 56.1% 58.4%
PGD-/ 66.5% T1.5% 72.4% 644% 61.7% 662% 69.4% 69.6%
DDN 66.9% T1.5% 72.6% 64.5% 61.7% 662% 83.1% 852%
APGD-CE 663% 774% 723% 644% 672% 66.1% 71.1% 70.8%
APGD-DLR 65.6% 77.6% 72.0% 63.0% 660% 653% 70.5% 70.6%
APGD-T 651% 7173% 71.5% 621% 655% 645% 69.4% 69.6%
FAB-T 65.0% 774% 71.1% 62.7% 657% 645% 88.7% 90.4%
SQUARE 812% 86.2% 81.7% 72.0% 77.1% 722% 902% 92.1%
¢ attacks (e = 0.5) 64.6% 712% 71.5% 61.8% 655% 645% 693% 69.4%
PGD-¢; 302% 48.5% 62.5% 50.8% 61.0% 582% 59.8% 64.1%
FAB-T 350% 472% 613% 483% 63.8% 57.7% 655% 69.3%
¢y attacks (e = 10) 27.6% 453% 609% 43.7% 60.0% 56.1% 579% 59.5%
All Attacks 27.6% 329% 35.0% 31.5% 393% 43.5% 53.5% 54.9%
Average All Attacks 609% 59.0% 579% 53.5% 572% 57.4% 71.6% 73.3%

Table 10: Effect of the number (n) of specialized robust predictors M 4 in PROTECTOR(n) on CIFAR-10. The analysis was
performed for an architecture that only utilizes the raw input, and not the Fourier features.

PROTECTOR(2) PROTECTOR(3)
Clean accuracy 90.8% 92.2%
APGD /., (e = 0.03) 64.8% 56.3%
APGD /5 (e = 0.5) 68.8% 69.2%
Sparse ¢; (e = 10) 55.9% 52.3%

J.3 DIFFERENT NUMBER OF SECOND-LEVEL M 4 PREDICTORS

We also evaluate PROTECTOR with three second-level predictors, i.e., My, , My, and M,__ . The results are presented in
Table This alternative design reduces the overall accuracy of the pipeline model. We hypothesize that this happens
because the M,, model is already reasonably robust against the /o attacks, as shown in Table However, having both M,
and M, models allows adaptive adversaries to find larger regions for fooling both C4,, and M 4, thus hurting the overall
performance against adaptive adversaries.
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