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A PRELIMINARY LEMMAS

We state some standard concentration bounds that are used in our proofs. Their proofs can be found in the citations provided.

Lemma A.1 (Chernoff Bounds, Section 4.2 in Mitzenmacher and Upfal [2005])
Let Z be any random variable. Then for any t > 0,

1. P(Z ≥ E[Z] + t) ≤ minλ>0 E[eλ(Z−E[Z])]e−λt

2. P(Z ≤ E[Z]− t) ≤ minλ>0 E[eλ(E[Z]−Z)]e−λt

Lemma A.2 (Hoeffding’s Lemma, Lemma 2.6 in Massart and Picard [2007])
Let Z be a bounded random variable with Z ∈ [a, b]. Then,

E[exp(λ(Z − E[Z])] ≤ exp
(λ2(b− a)2

8

)
for all λ ∈ R.

Lemma A.3 (Chernoff-Hoeffeding inequality, Chernoff [1952], Hoeffding [1963])
Suppose X1, . . . , XT are independent random variables taking values in the interval [0, 1], and let X =

∑
t∈[T ] Xt and

X = 1
T (
∑

t∈[T ] Xt). Then for any ε ≥ 0 the following holds:

1. P(X − E[X] ≥ ε) ≤ e−2ε2T

2. P(X − E[X] ≤ −ε) ≤ e−2ε2T

B EXAMPLE OF CBN WITH m(C)≪ N

Consider a CBN C = (G,P) with N intervenable nodes and in-degree at most k− 1, and let k be such that 2k ≪ N . Further,
let P be such that for at most 2k nodes, chosen in the reverse topological order, the conditional probability of a node being 1
given its parents is Bernoulli with parameter 1/2k+1, and for the remaining nodes the conditional probability of a node
being 1 given its parents is Bernoulli with parameter 1/2. Now, using the definition of m(C) provided in Section 3, it is easy
to see that m(C) ≤ 2k ≪ N .

C ESTIMATION OF REWARD FROM OBSERVATION

In Algorithm C.1 below we explain our strategy (derived from Bhattacharyya et al. [2020]) for estimating the reward of the
interventional arms ai,x using T/2 observational samples collected by playing the observational arm a0. This is followed by
details on each of the steps involved. Recall, N is the number of intervenable nodes.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:aurghya.kgp@gmail.com?Subject=Your UAI 2022 paper
mailto:vineetn90@gmail.com?Subject=Your UAI 2022 paper
mailto:sinhagaur88@gmail.com?Subject=Your UAI 2022 paper


Algorithm C.1 Estimating Rewards from Observational Samples

INPUT: His containing the T/2 observational samples collected by playing arm a0, and G
1: For each i ∈ [N ], reduce the input ADMG G to ADMGHi as outlined in Algorithm C.2.
2: Next, for each i ∈ [N ] and x ∈ {0, 1}, construct the Bayes net Di,x which simulates the causal effect of intervention

do(Xi = x) on the reduced graphHi.
3: Using Algorithm C.3 on the input samples, estimate the distributions of all Di,x. Then, using learned Di,x, generate

samples to estimate marginal of Y and return them as estimated rewards.

Step 1 : This step executes Algorithm C.2 based on the reduction algorithm from Bhattacharyya et al. [2020].

Algorithm C.2 Reducing G toHi

INPUT: ADMG G and index i ∈ [N ].
1: Let W = Y ∪Xi ∪Pac(Xi), and G′i be the graph obtained by considering V\W as hidden variables. Let Vi denote

the nodes in G′i
2: Projection Algorithm: It reduces G′i toHi as follows:

1. Add all observable variables in G′i toHi.
2. For every pair of observable variable V i

j , V
i
k ∈ Vi, add a directed edge from V i

j to V i
k inHi, if (a) there exists a

directed edge from V i
j to V i

k in G′i, or if (b) there exists a directed path from V i
j to V i

k in G′i which contains only
unobservable variables.

3. For every pair of observable variable V i
j , V

i
k ∈ Vi, add a bi-directed edge between V i

j and V i
k inHi, if (a) there

exists an unobserved variable U with two directed paths in G′i going from U to V i
j and U to V i

k and containing
only unobservable variables.

3: ReturnHi.

Algorithm C.3 Estimating distributions of Di,x

INPUT: ADMGHi and x ∈ {0, 1}.
1: for every Vj ∈ S1 do
2: for every assignment Vj = v and Zj = z where Zj are effective parents of Vj inHi do
3: Nj ← the number of samples with Zj = z
4: Nj,v ← the number of samples with Zj = z and Vj = v

5: D̂i,x(Vj = v|Zi = z)← Nj,v+1
Nj+2

6: for every Vj ∈ Vi\S1 do
7: for every Vj = v and Zj\Xi = z, where Zj are effective parents of Vj inHi do
8: if X ∈ Zi then
9: Nj ← the number of samples with Zj\Xi = z and Xi = x

10: Nj,v ← the number of samples with Vj = v, Zj\Xi = z and Xi = x
11: if Nj ≥ t then
12: D̂i,x(Vj = v|Zi = z)← Nj,v+1

Nj+2

13: else
14: D̂i,x(Vj = v|Zj − {Xi} = z, Xi = x)← 1

2

15: else
16: Nj ← the number of samples with Zj = z
17: Nj,v ← the number of samples with Vj = v and Zj = z
18: if Nj ≥ t then
19: D̂i,x(Vj = v|Zi = z)← Nj,v+1

Nj+2

20: else
21: D̂i,x(Vj = v|Zj = z)← 1

2

22: Return D̂i,x.



Step 2 : Construction of Di,x is done using the method described in Section 4.1 of Bhattacharyya et al. [2020]. Without loss
of generality let S1 be the c-component containing Xi. To construct Di,x, we start withHi. Then, for each V /∈ S1 such
that Xi is in the set Zi of “effective parents” (Section 4, Bhattacharyya et al. [2020]) of V , we create a clone of Xi and fix
its value to x (i.e. the clone has no parents). Then we remove all the outgoing edges from the original Xi. Note that, for any
assignment v of all variables except Xi inHi, the causal effect PHi

(v|do(Xi = x)) =
∑

x PDi,x
(v, Xi = x).

Step 3 : In this step, we estimate the distributions of all Di,x using the T/2 samples that were provided as input. Details are
described in Algorithm C.3. Using this estimated distribution, we get O(T ) samples and compute an empirical estimate µ̂i,x

of the reward µi,x = PG(Y = 1|do(Xi = x)). This follows from the construction of Di,x in Step 2 which implies,

µi,x = PG(Y = 1|do(Xi = x)) = PHi
(Y = 1|do(Xi = x)) =

∑
x,v′

PDi,x
(Y = 1,v′, Xi = x)

where v′ is an assignment of nodes in Di,x other than Xi and Y .

D PROOF OF THEOREM 3.1

For the sake of analysis, we assume without loss of generality that q1, q2, . . . , qN are arranged such that their corre-
sponding c-component sizes k1, k2, . . . , kN satisfy the following relation: (q1)k1 ≤ (q2)

k2 ≤ . . . ≤ (qN )kN . Also, let
q = mini{qi>0} qi (if qi = 0 for all i ∈ [N ] then q = 1

N+1 ), k = maxi ki, and pi,xz = P(Xi = x,Pac(Xi) = z). We
remark that pi,xz is different from pi,xz used in Section 5 to denote P(Xi = x,Pa(Xi) = z); note that Pa(Xi) ⊆ Pac(Xi).
Let d be the maximum indegree of any node in Si for i ∈ [N ]. Finally, let Zi be the size of the domain from which Pac(Xi)
takes values, and note that Zi ≤ 2kid+ki and let Z = maxi Zi. Note that, by our assumption Z is O(1). Also, in this section,
let m(C) be denoted by m.

We begin by proving Lemmas D.1, D.2, and D.3 which would be used to prove Theorem 3.1. The following lemma bounds
the probability of making a bad estimate of qi for any i ∈ [N ], at the end of T/2 rounds.

Lemma D.1
Let F = 1{At the end of T/2 rounds, there exists i such that |q̂i − qi| ≥ 1

4 (1 − 2−1/k)q}. Then P(F = 1) ≤
4NZe−

1
16 (1−2−1/k)2q2T .

Proof. Let Fi,x = 1{At the end of T/2 rounds there exists z such that |p̂i,xz − pi,xz | ≥ 1
4 (1− 2−1/k)q}. From Lemma A.3,

it follows that,

P
(
|p̂ i,x

z − pi,xz | ≥
1

4
(1− 2−1/k)q

)
≤ 2e−2 1

16 (1−2−1/k)2q2 T
2

By union bound,

P(Fi,x = 1) ≤ 2Zie
− 1

16 (1−2−1/k)2q2T

By definition qi = minx,z p
i,x
z and q̂i = minx,z p̂

i,x
z . Hence,

P
(
|q̂i − qi| ≥

1

4
(1− 2−1/k)q

)
≤ 2P (Fi,x = 1) ≤ 4Zie

− 1
16 (1−2−1/k)2q2T

Taking union bound, we get P(F = 1) ≤ 4NZe−
1
16 (1−2−1/k)2q2T .

The next lemma shows that with high probability the estimate of m at Step 6 of SRM-ALG is good.

Lemma D.2
Let F be as defined in Lemma D.1 and let J = 1{At the end of T/2 rounds the following holds m̂ ≤ 2m}. Then F = 0

implies J = 1, and in particular, P(J = 1) ≥ 1− 4NZe−
1
16 (1−2−1/k)2q2T .

Proof. Note that if qi = 0 for all i ∈ [N ], then our proposition is trivially true. F = 0 implies after T/2 rounds for all
i ∈ [N ], |q̂i − qi| ≤ 1

4 (1 − 2−1/k)q. Now from definition of m we know that there is an l ≤ m such that for i > l,



(qi)
ki ≥ ( 1

m ). Hence, for i > l, since q ≤ qi by definition

(q̂i)
ki ≥

(
qi −

1

4
(1− 2−1/k)q

)ki

≥
(
qi − (1− 2−1/k)qi

)ki

≥ 1

2ki/km
≥ 1

2m

Since, l ≤ m, we have |{j | q̂kj

j < 1
2m}| ≤ 2m. This implies m̂ ≤ 2m.

The next lemma provides the confidence bound on the estimate of µi,x computed by Algorithm C.1 for each i, x .

Lemma D.3
For an action ai,x ∈ A, at the end of T/2 rounds P(|µ̂i,x − µi,x| > ϵ) ≤ exp

(
−ϵ2 q

ki
i T

KG

)
, where KG ≥ 1 is a constant

dependent on the structure of G but independent of P.

Proof. Using Theorem 2.5 and Theorem A.1 in Bhattacharyya et al. [2020], it can be inferred that the learner can
estimate µ̂i,x, such that |µ̂i,x − µi,x| ≤ ϵ, with probability 1− δi, using O

(
22u

2
i log 22u

2
i log 1

δi
/(qki

i ϵ2)
)

samples, where

ui = 1+ ki(d+1). Hence using samples T = K ′ 22.2u
2
i

q
ki
i ϵ2

log 1
δi

, where K ′ is a constant independent of the problem instance,

we get, P (|µ̂i,x − µi,x| ≤ ϵ) ≥ 1− δi. Writing δi in terms of T and ϵ, and using KG = max{1,K ′22.2u
2
i },

P(|µ̂i,x − µi,x| > ϵ) ≤ exp

(
− T

K ′
qki
i ϵ2

22.2u
2
i

)
≤ exp

(
−ϵ2 q

ki
i T

KG

)
Also by A.3, for a0, by,

P(|µ̂0 − µ0| ≥ ϵ) ≤ exp

(
− 2ϵ2

T

2

)
.

Now we are ready to prove the theorem using the above Lemmas, and let K = 2k−1KG . Let L1 =

mint∈N(4NZe−
1
16 (1−2−1/k)2q2t ≤

√
144Km

t log Nt
m ) and L2 = mint∈N

6
N3 (

m
t )

4 ≤
√

16Km
t log Nt

m and we assume
throughout the proof that T ≥ max{L1, L2}. Consider ai,x ∈ Q. By Lemma A.3, and Lemma D.2,

P
(
|µ̂i,x − µi,x| ≥ ϵ | F = 0

)
≤ 2 exp

(
−ϵ2 2T

4m̂

)
≤ 2 exp

(
−ϵ2 T

4m

)
≤ 2 exp

(
−ϵ2 T

4Km

)
If ai,x /∈ Q, and qki

i ≥ 1
m , then given F = 0 we get,

P
(
|µ̂i,x − µi,x| > ϵ | F = 0

)
≤ exp

(
−ϵ2 q

ki
i T

KG

)
≤ exp

(
−ϵ2 T

4Km

)

If ai,x /∈ Q, and qki
i < 1

m , then given F = 0 from Lemma D.1, qki
i ≥ (q̂i− 1

4 (1−2
−1/k)q)ki ≥ (( 1

m̂ )1/ki− 1
4 (

1
m )1/ki))ki ≥

(( 1
2m )1/ki − 1

4 (
1
m )1/ki))ki ≥ 1

2k+1m
we get,

P
(
|µ̂i,x − µi,x| > ϵ | F = 0

)
≤ exp

(
−ϵ2 q

ki
i T

KG

)
≤ exp

(
−ϵ2 T

2k+1KGm

)
≤ exp

(
−ϵ2 T

4Km

)

P{There exists an action a such that |µ̂a − µa| > ϵ | F = 0} ≤ (4N + 2) exp

(
−ϵ2 T

4Km

)
≤ 6N exp

(
−ϵ2 T

4Km

)



Substituting ϵ =
√

16Km
T log NT

m , we get,

E[rT | F = 0] ≤ 2

√
16Km

T
log

NT

m
+

6

N3

(
m

T

)4

≤
√

144Km

T
log

NT

m

Finally, the expected simple regret of Algorithm 1 is as follows:

E[rT ] = E[rT |F = 0]P(F = 0) + E[rT |F = 1]P(F = 1)

≤ E[rT |F = 0] + P(F = 1)

≤
√

144Km

T
log

NT

m
+ 4NZe−

1
16 (1−2−1/k)2q2T

Since T ≥ max(L1, L2) the simple regret is O
(√

m
T log NT

m

)
.

E PROOF OF THEOREM 4.1

Throughout this proof we assume the following terminology: a) a node is a root node if it has not parents, b) a node is a
leaf node if it has no children. Consider an n-ary tree T ∈ T on N intervenable nodes. Note that since T is a tree, each
node Xi for i ∈ [N ] has at most one parent. In addition T has one special node Y , called the outcome. There is a directed
from every leaf node in T to Y , and let LT be the set of all leaf nodes. We use V to denote the set of nodes in T , that is,
V = {X1, . . . , XN , Y }. Without loss of generality, we assume that X1, . . . , XN is in the reverse topological order, that is,
X1 is a leaf node, XN is a root node, XN−1 is either a root node or a child of XN , and so on. Let TM be the sub-graph of T
defined by the nodes X1, . . . , XM . An edge belongs to TM if both its endpoints belong to {X1, . . . , XM}. Further, let h
be the maximum number of nodes in a (directed) path from a root node to Y . Now we define distributions P0, . . . ,PM all
compatible with T such that the optimal arm in the CBN Ci = (T ,Pi) is ai,1 for i ∈ [M ], and for C0 = (T ,P0) every arm
is an optimal arm.

Defining P0: For Xi not belonging to TM let P0(Xi = 1|.) = 0.5, and for Xi belonging to TM and for an appropriately
chosen α let

P0(Xi = 1) = α If Xi is a root node,
P0(Xi = 1 | Pa(Xi) = 0) = α If Xi is not a root node,
P0(Xi = 1 | Pa(Xi) = 1) = 1− α If Xi is not a root node,
P0(Y = 1 | .) = 0.5 P0(Y = 0 | .) = 0.5

The value of α is appropriately chosen later to achieve the desired lower bound. Note that in the above equations if Xi is not
a root node then Pa(Xi) is a singleton set. Also, P0(Y = 1|.) denotes the probability of Y = 1 conditioned on any value of
its parents. Next, we define Pi for i ∈ [N ].

Defining Pi: Let Li be the set of leaf nodes that are reachable from Xi, that is there is a directed path from Xi to every leaf
node in Li. Note that if Xi is a leaf then Li = {Xi}. We use Li = 1 and Li = 0 to denote all nodes in Li evaluated to 1
and 0 respectively. Also, let LM

T be the set of all leaves in TM and L′
i = LM

T \ Li. Then

Pi(Y |Li = 1, L′
i = 0) = 0.5 + ϵ .

The value of ϵ is appropriately chosen later to achieve the desired lower bound. The distributions of Xi given its parents
corresponding to Pi is the same as those defined for P0.

We set α = min{(2h|LT |+ 2h+1)−1, (2h|LT |M)−1} and hence α < 1
M . Using this it is easy to see that m(Ci) = M for

i ∈ [0,M ] and M > 4. Additionally, in Ci arm ai,1 is the optimal arm for i ∈ [1,M ] and the reward for every arm in C0 is
0.5. We will denote a∗ as the optimal arm for every Ci, and note that a∗ = ai,1 for Ci, where i ∈ [M ]. First, in Lemma E.1,
we lower bound the regret of returning a sub-optimal arm in Ci at the end of T rounds. Further, in Lemma E.2, we show that
any algorithm would have a non-trivial probability of returning a sub-optimal arm in at least one of the constructed CBNs.
Finally, we would use Lemmas E.1 and E.2 to lower bound the expected regret of any algorithm. Let rewi(aj,x) denote



the expected reward of action do(Xj = x) under the distribution Pi. We deviate from the usual notation of µ in this case,
because the reward now depends on the arm and the corresponding distribution. We require the following sets in Lemmas
E.1 and E.2: V1 = Li \ Lj , V2 = Li ∩ Lj , V3 = Lj \ Li, V4 = LM

T \ (Li ∪ Lj), and V5 = V \ LM
T .

Lemma E.1
For every i ∈ [1,M ], j ∈ [1, N ], x ∈ {0, 1}, and (j, x) ̸= (i, 1) the following holds: rewi(ai,1)− rewi(aj,x) ≥ 0.5ϵ.

Proof. For any i, j ∈ [M ], we have

rewi(ai,1) = 0.5 + Pi(V4 = 0, V1 = 1, V2 = 1, V3 = 0 | do(Xi = 1))(ϵ) (E.1)
rewi(aj,1) = 0.5 + Pi(V4 = 0, V1 = 1, V2 = 1, V3 = 0 | do(Xj = 1))(ϵ) (E.2)

Subtracting Equation E.2 from Equation E.1 we have

rewi(ai,1)− rewi(aj,1)

= Pi(V4 = 0)
[
Pi(V1 = 1, V2 = 1, V3 = 0 | do(Xi = 1))− Pi(V1 = 1, V2 = 1, V3 = 0 | do(Xj = 1))

]
ϵ

= Pi(V4 = 0)
[
Pi(V3 = 0)Pi(V1 = 1, V2 = 1 | do(Xi = 1))− Pi(V1 = 1)P (V2 = 1, V3 = 0 | do(Xj = 1))

]
ϵ

≥
(i)

(1− α)h|V4|
[
(1− α)h(|Li|+|V3|) − (2hα)

]
ϵ

≥ ((1− α)h|LT | − 2hα)ϵ

≥ ((1− h|LT |α)− 2hα)ϵ

≥ 0.5ϵ

(i) in the above equations follows from the definitions of h and Pi. Similarly, it can be shown that rewi(ai,1)− rewi(aj,0) ≥
0.5ϵ for j ∈ [N ], and rewi(ai,1)− rewi(aj,1) ≥ 0.5ϵ for j ∈ [M + 1, N ]. Also rewi(ai,1)− rewi(a0) ≥ 0.5ϵ.

Let ALG be an algorithm that outputs arm aT at the end of T rounds. We choose ϵ = min{ 14 ,
√

M
18T }. Note that corresponding

to every Ci for i ∈ [0,M ], ALG and Pi together define a probability measure on all the sampled values of the nodes of T
over T rounds. Denote Di as this measure and Ei as the expectation over Di for i ∈ [0,M ]. Let Gt be the sampled values of
the nodes of T at time t and let Gt = {G1, . . . ,Gt}. Also, for i ∈ [0,M ] let Di(.|Gt−1) = Pt

i(.); here Di(.|Gt−1) denotes
the probability of the sampled values of the nodes of G conditioned on its history till time t− 1. Observe that conditioned on
history Gt−1, ALG determines an arm, say at, to pull at time t (either deterministically or in a randomized way), and for
j, j′ ∈ [1, N ] if at = aj,x then Pt

i(Xj′ = x|do(Xj = x)) = Pi(Xj′ = x|do(Xj = x)).

Lemma E.2
For any algorithm ALG there exists an i ∈ [M ] such that Di(aT ̸= ai,1) ≥

M
4e−1

M .

Proof. We use KL(D0,Di) to denote the KL divergence between D0 and Di for any i ∈ [M ]. Let N (i,1)
T be the number

of times ALG plays the arm ai,1 at the end of T rounds. Also, let B = {ai,1 | i ≤M and E0[N
(i,1)
T ] ≤ 2T/M}. Observe

that |B| ≥M/2, as otherwise the sum of the expected number of arm pulls of arms not in B would be greater than T . First,
using Lemma 2.6 from Tsybakov [2008], we have,

D0(aT = ai,1) + Di(aT ̸= ai,1) ≥
1

2
· exp (−KL(D0,Di))

Rearranging and summing the above equation over arms in B, and observing that
∑

ai,1∈B D0(aT = ai,1) ≤ 1 we have∑
ai,1∈B

Di(aT ̸= ai,1) ≥
1

2
·
∑

ai,1∈B
exp(−KL(D0,Di))− 1 (E.3)

Now we bound exp(−KL(D0,Di)) for every i such that ai,1 ∈ B. Using the chain rule for product distributions (see Auer
et al. [1995] and Chapter 2 in Slivkins [2019]) the KL divergence of D0 and Di for any i ∈ [M ] can be written as

KL(D0,Di) =

T∑
t=1

KL(D0(Gt|Gt−1),Di(Gt|Gt−1) =

T∑
t=1

KL(Pt
0(Gt),Pt

i(Gt)) (E.4)



Each term on the right hand side of the above summation can be computed as follows:

KL(Pt
0,Pt

i) =
∑
v

Pt
0(V = v) log

Pt
0(V = v)

Pt
i(V = v)

=
(i)

∑
x,v5

Pt
0(Y = x, Li = 1, L′

i = 0, V5 = v5) log
Pt
0(Y = x|Li = 1, L′

i = 0, V5 = v5)

Pt
i(Y = x|Li = 1, L′

i = 0, V5 = v5)

=
(ii)

0.5 · Pt
0(Li = 1, L′

i = 0)
[
log

0.5

0.5 + ϵ
+ log

0.5

0.5− ϵ

]
≤
(iii)

0.5
(
Pt
0{do(Xi = 1)}+ 2h|LT |α

)
log

0.25

0.25− ϵ2

= −0.5
(
Pt
0{do(Xi = 1)}+ 2h|LT |α

)
log(1− 4ϵ2)

= 0.5
(
Pt
0{do(Xi = 1)}+ 2h|LT |α

)(
4ϵ2 +

(4ϵ2)2

2
+

(4ϵ2)3

3
+ . . .

)
≤ 6
(
Pt
0{do(Xi = 1)}+ 2h|LT |α

)
ϵ2 . (E.5)

In the above equations: (i) follows by observing that for every other evaluation of V the distributions Pt
0 and Pt

i are same
hence the corresponding terms in KL divergence amount to zero, (ii) follows from the definitions of Pt

0 and Pt
i, and (iii)

follows by observing that

Pt
0(Li = 1, L′

i = 0) ≤ Pt
0{do(Xi = 1)}+ 2h|LT |α .

Using Equations E.4 and E.5, we have for every ai,1 ∈ B,

KL(D0,Di) ≤
T∑

t=1

6
(
E0[N

(i,1)
T ] + 2h|LT |αT

)
ϵ2 ≤

(i)

18T

M
ϵ2 ≤ 1 , (E.6)

where (i) follows from the definition of B. Finally, using Equations E.3 and E.6, and |B| ≥M/2, we have

∑
ai,1∈B

Di(aT ̸= ai,1) ≥
1

2

∑
ai,1∈B

exp(−KL(D0,Di))− 1

≥ |B|
2e
− 1

≥ M

4e
− 1 .

Therefore as |B| ≤M , by averaging argument there exists an i ∈ [M ] such that

Di(a
∗
T ̸= ai,1) ≥

M
4e − 1

M
.

From Lemmas E.1 and E.2 for any algorithm ALG, if ϵ < 1
4 then the expected simple regret of ALG can be upper bounded

as follows

rALG(T ) ≥ Di(a
∗
T ̸= ai,1)

1

2
ϵ ≥

M
4e − 1

M
· (1

2
ϵ) ≥

M
4e − 1

2M

√
M

18T
. (E.7)

On the contrary, if ϵ ≥ 1
4 then M ≥ T , so

√
M/T = Ω(1) and regret rALG(T ) ≥ Ω(1). Hence, for any algorithm there

exists an i ∈ [0,M ] such that the expected simple regret of the algorithm on Ci is Ω
(√

m(Ci)
T

)
.



F PROOF OF THEOREM 4.2

We begin by constructing the causal graph G on N + 1 nodes {X1, . . . , XN , Y }, where N ≥ 3. In G, XN is the parent of
X1, . . . , XN−1 and there is a directed edge form each node to the outcome node Y . The strategy remains the same as in the
proof of Theorem 4.1; Now given q1, q2, . . . , qN , compatible with the graph G, we will construct P0, . . . ,PN such that on at
least one CBN Ci = (G,Pi) the expected simple regret of any algorithm is tight. Also, without loss of generality, assume
that q1 ≤ q2 ≤ · · · ≤ qN .

Defining P0: For all the nodes in the graph G, we define the distribution P0 as follows:

P0(XN = 1) = qN

P0(Xi = 1|XN = 0) =
qi

1− qN

P0(Xi = 1|XN = 1) =
1

2
P0(Y = 1|.) = 0.5

P0(Y = 1|.) denotes the probability of Y = 1 conditioned on any value of the parents. Also, note that since q1, . . . , qN are
compatible with the given graph G, we have, for any i ̸= N , qi = minxi,xN

P0(Xi = xi, XN = xN ) ≤ P0(Xi = 1, XN =
1) = qN/2. In addition, P0(Xi = 1|XN = 0) = qi/(1− qN ) ≤ 2qi. Let M = m(Ci) for all i ∈ [N ] and M ′ = M − 1.

Case a: M ≥ 12.

Defining Pi: For i = N , define PN (Y = 1|XN = 1) = 0.5 + ϵ, and for i ̸= N , Pi(Y = 1|Xi = 1, XN = 0) = 0.5 + ϵ.
The remaining conditional distributions are same as those of P0.

Now, it is easy to see that the optimal action for Pi is ai,1. As in proof of Theorem 4.1, let rewi(aj,x) denote the expected
reward of action do(Xj = x) under the distribution Pi.

Lemma F.1
For every i ∈ [M ′], j ∈ [N ], x ∈ {0, 1}, and (j, x) ̸= (i, 1) the following holds: rewi(ai,1)− rewi(aj,x) ≥ 0.1ϵ.

Proof. For i = N , the regret for choosing a sub-optimal arm a is rewN (aN,1)− rewN (a) ≥ (1− qN )ϵ ≥ 0.5ϵ. For i ̸= N ,
the regret for choosing a sub-optimal arm aj,x, where j ̸= N is as follows:

rewi(ai,1)− rewi(aj,x) ≥ (1− qN )ϵ− qiϵ

≥
(
1− 3qN

2

)
ϵ

≥ 0.25ϵ

For j = N , the regret is as follows:

rewi(ai,1)− rewi(aN,0) = (1− q1)ϵ− Pi(Xi = 1|XN = 0)ϵ ≥ (0.5− 2qi)ϵ

rewi(ai,1)− rewi(aN,1) = (1− q1)ϵ ≥ 0.5ϵ

Hence, if qi ≤ 1/M ′ ≤ 1
5 , the regret of pulling a sub-optimal arm is 0.1ϵ.

Let ALG be an algorithm that outputs arm aT at the end of T rounds. We choose ϵ = min{ 14 ,
√

M ′

24T }. For i ∈ [N ], denote
Di as the measure on all the sampled values of the nodes of G over T rounds and Ei as the expectation over Di. Let Gt be the
sampled values of the nodes of G at time t and let Gt = {G1, . . . ,Gt}. Also, for i ∈ [0,M ′] let Di(.|Gt−1) = Pt

i(.). Note
that ALG determines the arm at conditioned on Gt−1 (either in a deterministic or randomized way). Also for j, j′ ∈ [1, N ],
if at = aj,x and j′ ̸= j, then Pt

i(Xj′ = x|do(Xj) = x) = Pi(Xj′ = x|do(Xj = x)).

Lemma F.2
For any algorithm ALG, there exists an i ∈ [M ′], such that Di(aT ̸= ai,1) ≥

M′
4e −1

M ′ .



Proof. We use KL(D0,Di) to denote the KL divergence between D0 and Di for any i ∈ [N ]. Let N (i,1)
T be the number of

times ALG plays the arm ai,1 at the end of T rounds. Also, let B = {ai,1 | i ≤M ′ and E0[N
(i,1)
T ] ≤ 2T/M ′}. Observe that

|B| ≥ M ′/2, as otherwise the sum of the expected number of arm pulls of arms not in B would be greater than T . First,
using Lemma 2.6 from Tsybakov [2008], we have,

D0(aT = ai,1) + Di(aT ̸= ai,1) ≥
1

2
· exp (−KL(D0,Di))

Rearranging and summing the above equation over arms in B, and observing that
∑

ai,1∈B D0(aT = ai,1) ≤ 1 we have

∑
ai,1∈B

Di(aT ̸= ai,1) ≥
1

2
·
∑

ai,1∈B
exp(−KL(D0,Di))− 1 (F.8)

Now we bound exp(−KL(D0,Di)) for every i such that ai,1 ∈ B. Using the chain rule for product distributions (see Auer
et al. [1995] and Chapter 2 in Slivkins [2019]) the KL divergence of D0 and Di for any i ∈ [M ] can be written as

KL(D0,Di) =

T∑
t=1

KL(D0(Gt|Gt−1),Di(Gt|Gt−1) =

T∑
t=1

KL(Pt
0(Gt),Pt

i(Gt)) (F.9)

Now each term in the summation can be written as, for i ̸= N ,

KL(Pt
0,Pt

i)

=
∑
v

Pt
0(v) log

Pt
0(v)

Pt
i(v)

=
∑
y

Pt
0(Y = y|XN = 0, Xi = 1)Pt

0(XN = 0, Xi = 1) log
Pt
0(Y = y|XN = 0, Xi = 1)

Pt
i(Y = y|XN = 0, Xi = 1)

= 0.5Pt
0(XN = 0, Xi = 1)

[
log

0.5

0.5 + ϵ
+ log

0.5

0.5− ϵ

]
≤ 6Pt

0(XN = 0, Xi = 1)ϵ2 (F.10)

For i = N ,

KL(Pt
0,Pt

i) =
∑
v

Pt
0(v) log

Pt
0(v)

Pt
i(v)

=
∑
y

Pt
0(Y = y|XN = 1)Pt

0(XN = 1) log
Pt
0(Y = y|X1 = 1)

Pt
i(Y = y|XN = 1)

= 0.5Pt
0(XN = 1)

[
log

0.5

0.5 + ϵ
+ log

0.5

0.5− ϵ

]
≤ 6Pt

0(XN = 1)ϵ2 (F.11)

Using Equation F.10 and F.11 in equation F.9, we get when qi ≤ 1
M ′

KL(D0,Di) ≤ 6

[
E0[N

(i,1)
T ] +

2

M ′T

]
ϵ2

≤ 24T

M ′ ϵ
2

≤ 1



Now putting the value of KL(D0,Di) in Equation F.8 we get the following,∑
ai,1∈B

Di(aT ̸= ai,1) ≥
1

2

∑
ai,1∈B

exp(−KL(D0,Di))− 1

≥ |B|
2e
− 1

≥ M ′

4e
− 1 .

Therefore as |B| ≤M ′, by averaging argument there exists an i ∈ [M ′] such that

Di(a
∗
T ̸= ai,1) ≥

M ′

4e − 1

M ′ .

From Lemmas F.1 and F.2 for any algorithm ALG, if ϵ < 1
4 then the expected simple regret of ALG can be upper bounded as

follows

rALG(T ) ≥ Di(a
∗
T ̸= ai,1) · (0.1ϵ) ≥

M ′

4e − 1

M ′ · (0.1ϵ) ≥
M ′

4e − 1

10M ′

√
M ′

24T
. (F.12)

Otherwise, if ϵ ≥ 1
4 , M ′ ≥ T , so

√
M ′/T = Ω(1) and regret rALG(T ) ≥ Ω(1).

Hence, it is proved that regret is lower bounded by Ω
(√

M
T

)
.

Case b: M < 12. Define N distributions P1, . . . ,PN as follows. We choose ϵ =
√

1
45T . The rest of conditional distributions

remain same as P0. For all i ∈ [N ],

Pi(Y = 1|Xi = 1) = 0.5 + ϵ

Now, the optimal arm for action Pi is ai,1, and the regret of pulling a sub-optimal arm in place of the optimal arm ai,1 is
(1− qi)ϵ ≥ 0.5 · ϵ. Each term in the summation of Equation F.9 can be written as

KL(Pt
0,Pt

i) =
∑
v

P0(v) log
Pt
0(v)

Pt
i(v)

=
∑
y

Pt
0(Y = y|Xi = 1)Pt

0(Xi = 1) log
Pt
0(Y = y|Xi = 1)

Pt
i(Y = y|Xi = 1)

= 0.5Pt
0(Xi = 1)

[
log

0.5

0.5 + ϵ
+ log

0.5

0.5− ϵ

]
≤ 6Pt

0(Xi = 1)ϵ2

Since P0(Xi = 1|.) ≤ 0.5.

KL(D0,Di) ≤ 6

[
E0[N

(i,1)
T ] +

T

2

]
ϵ2 (F.13)

Note that E0[N
(i,1)
T ] ≤ T

KL(D0,Di) ≤ 9Tϵ2 ≤ 0.2 (F.14)

Now putting the value of KL(D0,Di) in Equation F.8 we get the following,∑
i∈[N ]

Di(aT ̸= ai,1) ≥
1

2

∑
i∈[N ]

exp(−KL(D0,Di))− 1

≥ N

2e0.2
− 1 .



Hence any algorithm ALG there exists an i such that the regret incurred by it is

rALG(T ) ≥ 0.5Di(aT ̸= ai,1)ϵ ≥
N

2e0.2 − 1

N

√
1

45T
(F.15)

Finally, from Equations F.12 and F.15 it follows that the expected simple regret of any algorithm is Ω
(√

M
T

)
, where M

depends on q and ki for i ∈ [N ].

G PROOF OF THEOREM 5.1

Throughout the proof we use a∗ to denote the optimal arm. First, we prove a few lemmas, and then use it to bound the
expected cumulative regret of CRM-ALG. Recall the definitions of Et, Ot and Cx

t from Section G. In this section we need to
keep the context of which Xi the Cx

t corresponds to, therefore, we refer to it as Ci,x
t instead. The following lemma shows

that the expectation of µ̂i,x as defined in Equation 5 is equal to µi,x for every i, x.

Lemma G.1
µ̂i,x(t) is an unbiased estimator of µi,x, that is E[µ̂i,x(t)] = µi,x. Moreover P(|µ̂i,x(t)− µi,x| ≥ ϵ) ≤ 2 exp(−2(N i,x

t +

Ci,x
t )ϵ2) .

Proof. We begin by restating the the definition of µ̂i,x from Equation 5.

µ̂i,x(t) =

∑
j∈Si,x

t
1{Yj = 1}+

∑
c∈[Ci,x

t ] Y
i,x
c

N i,x
t + Ci,x

t

We note that in Equation 5, Y i,x
c is a random variable such that E[Y i,x

c ] = µi,x. Note that this holds because we partition the
time steps where arm a0 was pulled into odd and even instances Ot and Et.Taking expectation on both sides of the above
equation we have

E[µ̂i,x(t)]

= E
[∑

j∈Si,x
t
1{Yj = 1}+

∑
c∈[Ci,x

t ] Y
i,x
c

N i,x
t + Ci,x

t

]
=

∞∑
a=1

∞∑
b=0

E
[∑

j∈Si,x
t
1{Yj = 1}+

∑
c∈[Ci,x

t ] Y
i,x
c

N i,x
t + Ci,x

t

∣∣∣ N i,x
t = a,Ci,x

t = b

]
P(N i,x

t = a,Ci,x
t = b)

=

∞∑
a=1

∞∑
b=0

(
aµi,x + bµi,x

a+ b

)
P(N i,x

t = a,Ci,x
t = b)

= µi,x

∞∑
a=1

∞∑
b=0

P(N i,x
t = a,Ci,x

t = b)

= µi,x

Next we prove the concentration inequality part of the lemma, which is similar to Chernoff-Hoeffding inequality (Lemma
A.3) for our estimator.



P
(∑

j∈Si,x
t
1{Yj = 1}+

∑
c∈[Ci,x

t ] Y
i,x
c

N i,x
t + Ci,x

t

≥ µi,x + ϵ

)
= P

( ∑
j∈Si,x

t

1{Yj = 1}+
∑

c∈[Ci,x
t ]

Y i,x
c ≥ (N i,x

t + Ci,x
t )µi,x + (N i,x

t + Ci,x
t )ϵ

)
(i)

≤ min
λ>0

E

[
exp

(
λ
( ∑
j∈Si,x

t

(1{Yj = 1} − µi,x) +
∑

c∈[Ci,x
t ]

(Y i,x
c − µi,x)

))]
e−λ(Ni,x

t +Ci,x
t )ϵ

= min
λ>0

E

[ ∏
j∈Si,x

t

exp
(
λ(1{Yj = 1} − µi,x)

) ∏
c∈[Ci,x

t ]

exp
(
λ(Y i,x

c − µi,x)
)]
e−λ(Ni,x

t +Ci,x
t )ϵ

(ii)
= min

λ>0

∏
j∈Si,x

t

E

[
exp

(
λ(1{Yj = 1} − µi,x)

)] ∏
c∈[Ci,x

t ]

E

[
exp

(
λ(Y i,x

c − µi,x)
)]
e−λ(Ni,x

t +Ci,x
t )ϵ

(iii)

≤ min
λ>0

exp

(
N i,x

t λ2

8
+

Ci,x
t λ2

8
− λ(N i,x

t + Ci,x
t )ϵ

)
≤ exp (−2(N i,x

t + Ci,x
t )ϵ2) (G.16)

In the above equations, the inequality in (i) follows from Lemma A.1, the equality in (ii) follows from the fact that each
term in the product are independent, and (iii) follows from Lemma A.2. Following the same steps as above we get the
following two sided bound

P(|µ̂i,x(t)− µi,x| ≥ ϵ) ≤ 2 exp (−2(N i,x
t + Ci,x

t )ϵ2) . (G.17)

Next we show that the estimates of µa at the end of T rounds is good with high probability.

Lemma G.2
Let p = mini,x,z P(Xi = x,Pa(Xi) = z). Then for sufficiently large T ∈ N, at the end of T rounds the following hold:

1. P
(
|µ̂0(T )− µ0| ≥ ∆0

4

)
≤ 2T−∆2

0
8 .

2. Let p̂ i,x
z,T = 1

|OT |
∑

t∈OT
1{Xi(t) = x,Pa(Xi)(t) = z}, and p̂ i,x

T = minz p̂
i,x
z,T . Then P

(
p̂i,xT ≥

p
2

)
≥ 1 − ZiT

− p2

4 ,
where Zi is the size of the domain from which Pa(Xi) takes values.

3. P
(
|µ̂i,x(T )− µi,x| ≥ ∆0

4

)
≤ 2T− p∆2

0
32 + ZiT

− p2

4 .

Proof. a) Since β ≥ 1, at the end of T rounds arm a0 is pulled by Algorithm 2 at least (lnT ) times. Hence, N0
T ≥ (lnT ),

and by A.3,

P
(
|µ̂0(T )− µ0| ≥

∆0

4

)
≤ 2e−

∆2
0
8 lnT = 2T−∆2

0
8

b) In this part we show, using union bound, that the estimation of p̂ i,x
T being less that p/2 have low probability. Since,

|OT | ≥ N0
T /2, by Lemma A.3, we have,

P
(
p̂i,xz,T > pi,xz −

p

2
≥ p

2

)
≥ 1− e−2 p2

4
lnT
2 = 1− T− p2

4

Now using this we get,

P
(
p̂ i,x
T ≤ p

2

)
= P

(
min
z

p̂ i,x
z,T ≤

p

2

)
≤
∑
z

P
(
p̂ i,x
z,T ≤

p

2

)
≤ ZiT

− p2

4 (G.18)



c) Let the conditional probability distribution P(. | p̂ i,x
T > p

2 ) be denoted by Pp. Since β ≥ 1, N0
T ≥ lnT . Further if

p̂ i,x
T > p

2 then Ci,x
T > p

2
N0

T

2 ≥
p
4 lnT (from the definition of Ci,x

T ). Hence, from Lemma G.1 we have

Pp

(
|µ̂i,x(T )− µi,x| ≥

∆0

4

)
≤ 2 exp

(
− ∆2

0

32
p lnT

)
= 2T− p∆2

0
32 (G.19)

Finally by the law of total probability and using Equations G.18 and G.19

P
(
|µ̂i,x(T )− µi,x| ≥

∆0

4

)
≤ Pp

(
|µ̂i,x(T )− µi,x| ≥

∆0

4

)
+ P

(
p̂ i,x
T ≤ p

2

)
≤ 2T− p∆2

0
32 + ZiT

− p2

4

Next we show that β as set in CRM-ALG is bounded in expectation. Lemma G.3 and its proof is similar to Lemma 8.6 in
Nair et al. [2021].

Lemma G.3

Let L = argmint∈N

{
t
p2∆2

0
32

ln t ≥ 3N(Z+3)

}
, where Z = maxi Zi, and suppose CRM-ALG pulls arms for T rounds, where

T ≥ max(L, e
50

∆2
0 ), and let a∗ ̸= a0. Then at the end of T rounds, 8

9∆2
0
≤ E[β2] ≤ 50

∆2
0

.

Proof. Before proceeding to the proof of the lemma we make the following two observations.

Observation G.4
1. If a∗ ̸= a0 then ∆0 = µa∗ − µ0

2. Let µ̂∗ = maxi,x(µ̂i,x(T )). If |µ̂0(T )−µ0| ≤ ∆0

4 and |µ̂i,x(T )−µi,x| ≤ ∆0

4 for all (i, x) then ∆0

2 ≤ µ̂a∗−µ̂0(T ) ≤ 3∆0

2 ,

and 32
9∆2

0
≤ β2 ≤ 32

∆2
0

. Notice that since T ≥ e
50

∆2
0 , 32

∆2
0
≤ lnT .

Let U0 be the event that |µ̂0(T ) − µ0| ≤ ∆0

4 , and for any i, x let Ui,x be the event |µ̂i,x(T ) − µi,x| ≤ ∆0

4 . Also let
U = (∩i,xUi,x) ∩ U0. If U0, U i,x, and U denote the compliment of the events U0, Ui,x, and U respectively, then

P(U0) ≤ 2T−∆2
0
8 , and

for a fixed (i, x) P(U i,x) ≤ 2T− p∆2
0

32 + ZiT
− p2

4 .

Hence applying union bound,

P(U) ≤ 2N

(
2

T
p∆2

0
32

+
Z

T
p2

4

)
+

2

T
∆2

0
8

≤ 2N

(
2

T
p2∆2

0
32

+
Z

T
p2∆2

0
32

)
+

2N

T
p2∆2

0
32

as p ≤ 1,∆0 ≤ 1

≤ 2N(Z + 3)

T
p2∆2

0
32

= δ

We will use the above arguments to first show that E[β2] ≥ 8
9∆2

0
. From part 2 of Observation we have that the event U

implies β2 ≥ 32
9∆2

0
. Since P{U} ≥ 1− δ,

E[β2] ≥ 32

9∆2
0

(1− δ) =
32

9∆2
0

− 32δ

9∆2
0



Since T satisfies T
p2∆2

0
32

lnT ≥ 3N(Z + 3), this implies 32δ
9∆2

0
≤ 24

9∆2
0

, and hence E[β2] ≥ 8
9∆2

0
. Similarly, from part 2 of

Observation we have that the event U implies β2 ≤ 32
∆2

0
. If U does not hold then β2 ≤ lnT . Hence using the fact that T

satisfies T
p2∆2

0
32

lnT ≥ 3N(Z + 3), and hence δ lnT ≤ 18
∆2

0
, we get,

E[β2] ≤ 32

∆2
0

(1− δ) + δ lnT ≤ 32

∆2
0

+ δ lnT ≤ 50

∆2
0

.

Lemma G.5
Suppose a∗ ̸= ai,x. Then at the end of T rounds the following holds:

E[N i,x
T ] ≤ max

(
0,

8 lnT

∆2
i,x

+ 1− 1

4
· pi,x · ηi,xT · E[N

0
T ]

)
+

π2

3
.

Further if a∗ ̸= a0 then

E[N0
T ] ≤

(
E[β2] lnT +

8 lnT

∆2
0

+ 1
)
+

π2

3
.

Proof. Let F i,x
T = N i,x

T + Ci,x
T . Then,

N i,x
T =

∑
t∈T

1{at = ai,x} . (G.20)

N i,x
T ≤ max(0, ℓ− Ci,x

T ) +
∑
t∈T

1{at = ai,x, F
i,x
t ≥ ℓ} (G.21)

Here, we make an observation regarding the expected value of Ci,x
T .

Observation G.6
E[Ci,x

T ] = E[minz p̂
i,x
z,T ⌈N0

T /2⌉] ≥ 1
4 · pi,x · E[N

0
T ] · (1− ZiT

−
p2i,x
2 ) = 1

4 · pi,x · η
i,x
T · E[N0

T ]

Proof. Note that the expectation of minz p̂
i,x
z,T is over the distribution of the CBN and that of N0

T over the distribution in the
observation across all T rounds. Recall pi,x = minz p

i,x
z . By Lemma A.3, we have,

P
(
p̂ i,x
z,T > pi,xz −

pi,x
2
≥ pi,x

2

)
≥ 1− e−2

p2i,x
4

lnT
2 = 1− T−

p2i,x
4

Now using this we get,

P
(
p̂ i,x
T ≤ pi,x

2

)
≤ P

(
min
z

p̂ i,x
z,T ≤

pi,x
2

)
≤
∑
z

P
(
p̂ i,x
z,T ≤

pi,x
2

)
≤ ZiT

−
p2i,x
4



We can now bound the expectation of Ci,x
T for sufficiently large T as follows:

E[min
z

p̂i,xz,T ⌈N
0
T /2⌉] ≥

1

2
E[min

z
p̂i,xz,TN

0
T ]

=
1

2

∞∑
a=1

a · E[min
z

p̂i,xz,T | N
0
T = a]P(N0

T = a)

≥ 1

2

∞∑
a=1

a · pi,x
2
· P
(
min
z

p̂i,xz,T >
pi,x
2
| N0

T = a

)
P(N0

T = a)

≥ 1

2

∞∑
a=1

a · pi,x
2
· P
(
min
z

p̂i,xz,T >
pi,x
2
| N0

T = a

)
P(N0

T = a)

≥ pi,x
4

E[N0
T ] ·max

{
0, 1− ZiT

−
p2i,x
4

}
=

1

4
· pi,x · ηi,xT · E[N

0
T ] (G.22)

Taking expectation of Equation G.21, we get

E[N i,x
T ] ≤ max

{
0, ℓ− pi,x

4
· ηi,xT · E[N

0
T ]
}
+

∑
t∈[ℓ+1,T ]

P(at = ai,x, F
i,x
t ≥ ℓ) (G.23)

Now we bound
∑

t∈[l+1,T ] P(a(t) = ai,x, F
i,x
t ≥ ℓ), and assuming a∗ ̸= a0. The proof for a∗ = a0 is similar. We use F a∗

T

to denote the effective number of pulls of a∗ at the end of T rounds. Also, for better clarity, we use µ̂i,x(F
i,x
T , T ) (instead of

µ̂i,x(T )) and µ̂0(N
0
T , T ) (instead of µ̂0(T )) to denote the empirical estimates of µi,x and µ0 computed by Algorithm 2 at

the end of T rounds.

∑
t∈[ℓ+1,T ]

P

(
at = ai,x, F

i,x
t ≥ ℓ

)

=
∑

t∈[ℓ,T−1]

P

(
µ̂a∗(F a∗

t , t) +

√
2 ln t

F a∗
t

≤ µ̂i,x(F
i,x
t , t) +

√
2 ln(t)

F i,x
t

, F i,x
t ≥ ℓ

)

≤
∑

t∈[0,T−1]

P

(
mins∈[0,t]µ̂a∗(s, t) +

√
2 ln t

s
≤ maxsj∈[ℓ−1,t]µ̂i,x(sj , t) +

√
2 ln t

sj

)

≤
∑
t∈[T ]

∑
s∈[0,t−1]

∑
sj∈[ℓ−1,t]

P

(
µ̂a∗(s, t) +

√
2 ln t

s
≤ µ̂i,x(sj , t) +

√
2 ln t

sj

)

If µ̂a∗(s, t) +
√

2 ln t
s ≤ µ̂i,x(sj , t) +

√
2 ln t
sj

is true then at least one of the following events is true

µ̂a∗(s, t) ≤ µa∗ −
√

2 ln t

s
, (G.24a)

µ̂i,x(sj , t) ≥ µi,x +

√
2 ln t

sj
, (G.24b)

µa∗ ≤ µi,x + 2

√
2 ln t

sj
. (G.24c)



The probability of the events in Equations G.24a and G.24b can be bounded using Chernoff-Hoeffding inequality

P

(
µ̂a∗(s, t) ≤ µa∗ −

√
2 ln t

s

)
≤ t−4 ,

P

(
µ̂i,x(sj , t) ≥ µi,x +

√
2 ln t

sj

)
≤ t−4 .

Also if ℓ ≥ ⌈ 8 lnT
∆2

i,x
⌉ then the event in Equation G.24c is false, i.e. µa∗ > µi,x +2

√
2 ln t
sj

. Thus for ℓ = 8 lnT
∆2

i,x
+1 ≥ ⌈ 8 lnT

∆2
i,x
⌉,

which implies ∑
t∈[ℓ+1,T ]

P{a(t) = ai,x, F
i,x
t ≥ ℓ} ≤

∑
t∈[T ]

∑
s∈[0,t−1]

∑
sj∈[ℓ−1,t]

2t−4 ≤ π2

3
(G.25)

If a∗ = a0 then using the exact arguments as above we can show that Equation G.25 still holds. Hence, using Equations
G.23 and G.25 we have if a∗ ̸= ai,x then

E[N i,x
T ] ≤ max

{
0,

8 lnT

∆2
i,x

+ 1− pi,x
4
· ηi,xT · E[N

0
T ]

}
+

π2

3
.

The arguments used to bound E[N0
T ], when a∗ ̸= a0 is similar. In this case the equation corresponding to Equation G.23 is

E[N0
T ] ≤ E[β2] lnT + ℓ+

∑
t∈[ℓ+1,T ]

P{a(t) = a0, N
0
t ≥ ℓ} . (G.26)

Also the same arguments as above can be used to show that for ℓ = 8 lnT
∆2

0
+ 1,

∑
t∈T

P{a(t) = a0, N
0
t ≥ ℓ} ≤ π2

3
. (G.27)

Finally using Equations G.26 and G.27, we have

E[N0
T ] ≤

(
E[β2] lnT +

8 lnT

∆2
0

+ 1

)
+

π2

3
.

Lemma G.7
If a∗ = a0 then at the end of T rounds the following is true:

E[N0
T ] ≥ T −

2N(1 +
π2

3
) +

∑
i,x

8 lnT

∆2
i,x

 .

Proof. At the end of T rounds we have
N0

T +
∑
i,x

N i,x
T = T .

Taking expectation on both sides of the above equation and rearranging the terms we have,

E[N0
T ] = T −

∑
i,x

E[N i,x
T ] .

Now we use Lemma G.5 to conclude that

E[N0
T ] ≥ T −

2N(1 +
π2

3
) +

∑
i,x

8 lnT

∆2
i,x

 .



Now that we have bounds on E[N0
T ] and E[N i,x

T ], we can bound the regret as follows.

Case a (a∗ = a0): In this case we bound the expected cumulative regret of Algorithm 2. From Lemma G.5 and G.7 for any

T satisfying both T−
p2i,x
4 > Zi and

T ≥ 4

pi,x · ηi,xT

(
1 +

8 lnT

∆2
i,x

)
+

(
2N(1 +

π2

3
) +

∑
i,x

8 lnT

∆2
i,x

)
(G.28)

we have E[N i,x
T ] ≤ π2

3 . Notice that Equation G.28 holds for sufficiently large T . Hence the cumulative regret caused by
pulling sub-optimal arms ai,x is

E[R(T )] ≤
∑
∆a>0

∆a
π2

3
(G.29)

Case b (a∗ ̸= a0): In this case we bound the regret of pulling sub-optimal arms when T ≥ max(L, e
50

∆2
0 ), where L is as

defined in Lemma G.3. Note that this is satisfied for sufficiently large T . Hence from Lemma G.3 and Lemma G.5, we have
for a∗ ̸= ai,x and for a0

E[N i,x
T ] ≤ max

{
0, 1 + 8 lnT

(
1

∆2
i,x

−
pi,x · ηi,xT

36∆2
0

)}
+

π2

3
(G.30)

E[N0
T ] ≤

58 lnT

∆2
0

+ 1 +
π2

3
(G.31)

Hence the cumulative regret can be written as

E[R(T )] ≤ ∆0

(
58 lnT

∆2
0

+ 1 +
π2

3

)
+

∑
∆i,x>0

∆i,x

(
max

{
0, 1 + 8 lnT

(
1

∆2
i,x

−
pi,x · ηi,xT

36∆2
0

})
+

π2

3

)
(G.32)

H REMARKS ON EXPERIMENT INVOLVING ALGORITHM FROM Yabe et al. [2018]

We mention few issues faced while implementing PROP-INF using the details from Yabe et al. [2018] and how we resolved
them: (a) In Step (3) of Algorithm 1 in Yabe et al. [2018] (which is a subroutine for PROP-INF), they iterate over all
possible assignments to the parents of each node. Specifically, the algorithm would be exponential time in the in-degree of
the reward node Y and therefore it runs efficiently only when Y has a small number of parents. SRM-ALG does not face this
issue. To compare both algorithms we therefore created instances where in-degree of Y was small. (b) Another issue faced
while implementing their algorithm is in an inequality condition specified in Equation 4 of Yabe et al. [2018]. We observe
that this inequality is trivially satisfied unless the time period becomes very large (of the order of ≥ 1010) even for their
experiments given in Section 5 of Yabe et al. [2018]. Since running the algorithms for such a long time period is not feasible,
we run both algorithms till we see clear convergence of SRM-ALG. (c) A third problem we faced was in setting the time
period range for our Experiments. They use T ∈ {C, 2C, . . . , 9C}, but in Step 3 of Algorithm 1 and Step 4 of Algorithm
2 in Yabe et al. [2018], they estimate probabilities using T/3C samples. This would leave them with at most 3 samples
for such an estimation which would give noisy and unreliable estimates. Instead of using this set of values for T , we use
equally spaced points in a time range where we see clear convergence of SRM-ALG (d) Finally, it is not discussed how the
optimization problem giving η̂ in Step 12 of Algorithm 2 of Yabe et al. [2018] is solved, and they use a fixed value for η̂ in
experiments. Since there is no technique proposed to solve the optimization problem, we use the same fixed η̂ as them.
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