Case-Based Off-Policy Evaluation Using Prototype Learning
(Supplementary material)

Anton Matsson!

Fredrik D. Johansson!

!Chalmers University of Technology

A THE PROTOTYPE MODEL

In Section 3.1, we only briefly described the objective func-
tion

J(©)

where NLL(D; ©) is the negative log-likelihood, R;(©),
R.(©) and R.(O) are regularization terms and A4, A. and
e are regularization parameters. © denotes the set of model
parameters, i.e., the parameters of the encoding network e,
the weights B, ¢ and the prototypes H. For a given dataset
D = ((hi,, atl) , (R ,af™)), drawn according to a dis-
tribution p,,, the NLL loss of the estimate p,,, parameterized
in ©, is defined as

= NLL(D; 0) + A\Ra(0) + AeRe(0) + A Re(O),

1 «— X ; ;
- Zlog (pM(At =a;, | Hy = hi))

i=1

NLL(D; ©) =

Furthermore, the regularization terms are defined as follows
(see Ming et al.|[2019]] for further details):

* The diversity regularization

ZZmax

1=1 j=141

mln - d(éza ’gj))z)

where d(z, z") = ||z — 2’||2, penalizes latent prototypes
that are too close to each other. The parameter d;,, is
a tunable hyperparameter in our experiments.

* The clustering regularization
=Y mind(;, e(h))?
hep "

encourages the encoded histories to approach the most
similar latent prototypes, which creates a clustering
structure in the latent space.

* The evidence regularization

R(©) = }{nelg d(Zi,e(h))?

=1

encourages the latent prototypes to approach the en-
codings that are most similar to them.

A.1 PROTOTYPE VALUE

In Section 3.3, we showed how the prototypes can be used
to compute the value of a policy 7 for prototype j at time ¢,
Vj+(). Below, we derive a statistical estimator for V; ;()
using observations under p. First, we have

Vio(r) =E, {Z R | Ji = j]

t'>t

(Jt—]‘Ht }
=E,| "Y' N "R,
R o

This equation follows from the fact that J; is conditionally
independent of all other variables given H;. Now, with W
importance weights for 7 and p,

p(Jy =3 | Hy)
Vj,t(w)zEu[(tJ‘” i WZRt/}
(Je =) t'>t

Following standard definitions,
pr(Je = j) = Ex[p(Ji | Hy),

which may be identified using importance sampling,

pr(Jt) = Ex[p(J; | Hy)] = E[p(Jy | Hi)Wil,

(A |H .
with W; = Ht, pti"t') . Hence, we may estimate

=0 pu(Ay|Hy)"

. N : oy

Pr(Je =J) = - Zp(Jt =Jj | Hy = hi)w;.
i=1

For trajectories ¢ which end before ¢, we let p(J; = j |
Hy = hy) =

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

A.2 IS THERE A GOOD PROTOTYPE MODEL?

In Section 3.1, we asked the question: Assuming that ad-
justing for the history H; is sufficient for unbiased policy
evaluation, do there exist prototype histories H,an encoding
e and a similarity function s such that evaluation using the
prototype model is accurate? Here follows an example when
this is provably the case.

Consider the history at the first time step, Hy = X, € R%.
Assume that for each action a, the distribution of his-
tories in which action a is taken is isotropic Gaussian,
(Ho | Ao = a) ~ N(pa,7?). Then, the joint distribu-
tion of (Hy, Ap) is a Gaussian mixture model (GMM) with
components identified by the actions, a = 1,..., k. We
have by the definition of the GMM that

_lh—nall}

p(Ado=a| Hy=h)xe % = 5(uq,h),

where s is defined as in (3). As a result, with the compo-
nent means X = [111, ..., jix] as prototypes and S(X, h) =
[s(p1,h), ..., s(px, h)]T, the behavior policy is given by
p(Ao | Ho = h) = S(X,h)/(¥, s(&u,h)). which
matches (4)with B = 1/(3°, s(Zq4, h)) and ¢ = 0, up to the
application of the softmax function. Furthermore, the pro-
totype assignment probability in (8)is equal to the behavior
policy. We state a generalization below.

Theorem 1. Assume that there exists a bijective, dif-
ferentiable encoding function e : H — Z such that
Vi o (e(Hy), Ar) ~ GMM with stationary component
means {jia}*_, and variance 2. Then, with prototypes
H=le"Ypu1),...,e Y (ux)]7, and S as defined above,

Vit p(Ay | Hy = h) o< S(e(H), e(h)).

Proof. Due to bijectivity, p(A; | H = h) = p(A: |
e(H;) = e(h)). The final result follows from the same
argument as for the special case of H above. O

Theorem [T| shows that there are indeed problems for which
a prototype model that exactly describes the behavior policy
exists. This also implies that there exists a prototype estimate
of the value V() which is unbiased. However, it does not
give guarantees for recovering such a model from data, or
that the training set contains samples which act well as
prototypes. Learning encoding functions e which satisfy the
conditions of Theorem [I] has been studied in the context
of normalizing flows [Kong and Chaudhuri, 2020, |[Rezende
and Mohamed, 2015]).

B EXPERIMENTAL DETAILS

The prototype approach for off-policy evaluation was evalu-
ated on real-world sepsis data extracted from the MIMIC-III
database [Johnson et al.l |2016]. In addition, a synthetic

environment for sepsis management, provided by |Oberst
and Sontag| [2019]], was used to study the bias induced by
prototypes as a function of the trajectory length. In this
section, we give further details about the experiments. To
produce the results presented in this paper, we needed about
750 core-hours of computational time. The neural networks
were implemented in PyTorch [Paszke et al.l 2019] and
trained on GPU (Nvidia Tesla T4) using the skorch frame-
work [Tietz et al., 2017]]. Other models were implemented
using scikit-learn [Pedregosa et al., 2011].

B.1 USING DATA FROM MIMIC-III

We extracted the dataset of sepsis patients from the MIMIC-
IIT database using the code provided by [Komorowski et al.
[2018]E]This dataset contains the features listed in Supple-
mentary Table 2 in|Komorowski et al.|[2018]] as well as the
total fluid intake and the total urine output for each patient.
We also built the AI Clinician using the code provided by
Komorowski et al.|[2018]]. To evaluate the 500 candidate
policies, we used only the MIMIC-III test data and not data
from the eICU Research Institute Database.

We used the train-test split associated with the best per-
forming candidate policy in our experiments. We trained
and evaluated the estimators of the behavior policy using
a subset of the available features: heart rate, systolic blood
pressure, diastolic blood pressure, mean blood pressure,
shock index, hemoglobin, BUN, creatine, urine output over
4 hours, pH, base excess, bicarbonate, lactate, PaO, /FiO,
ratio, age, Elixhauser index and SOFA score. In addition, we
included the treatment dose of vasopressors and I'V fluids,
respectively, over the previous 4 hours. These values were
set to O at the initial time steps.

For ProNet and ProSeNet, we selected parameters of the di-
versity regularization (dpin, Ag) by performing 3-fold cross-
validation over a grid of points in the parameter space
{1,2,3,4,5} x {0.00001,0.0001,0.001,0.01,0.1}. These
parameters were optimized for each combination of proto-
types n and prediction prototypes ¢ in our experiments. The
parameters A, and A, were set to 0.001, and we performed
the projection step, see (6), every fifth epoch.

For LR and RF, we searched for optimal models using 3-
fold cross-validation, considering the following parameter
values:

* LR: regularization: {L1, L2}; regularization strength:
10 values spaced evenly on a log-scale from 1 x 10~ to
1 x 10%;

* RF: maximum tree depth: {5, 10, 15, 20, None}.

To create the model based on post-hoc clustering of en-

!The original code is available at https://github.com/
matthieukomorowski/AI_Clinician.

https://github.com/matthieukomorowski/AI_Clinician
https://github.com/matthieukomorowski/AI_Clinician

codings, we performed K-means clustering to cluster the
encodings of the converged RNN model into 10 clusters.
We used the encodings that had the shortest Euclidean dis-
tance to the cluster centroids as “prototypes” and trained a
logistic regression model on the similarity vector between
encodings and “prototypes”.

We estimated the value of the target policies—the Al Clin-
ician and the zero-drug policy—by performing weighted
importance sampling of the test set trajectories. In accor-
dance with Komorowski et al.|[2018]], we used a final reward
r* = 4100 based on the survival of the patient. For all esti-
mators of the behavior policy, we excluded a small number
of sequences whose WIS weight exceeded 100.

B.2 USING THE SEPSIS SIMULATOR

To estimate the bias induced by prototypes as a function
of trajectory length, we utilized the sepsis simulator pro-
vided by |Oberst and Sontag [2019]E] We used the full state
representation consisting of five discrete variables—a bi-
nary diabetes indicator and four ordinal-valued vital signs
(heart rate, systolic blood pressure, blood glucose level and
blood oxygen level)—as well as the previously administered
treatments. There is a probability of 0.2 that a randomly ini-
tialized patient has diabetes. Furthermore, there are three
binary treatment variables—antibiotics, vasopressors and
ventilation—resulting in an 8-dimensional action space. A
simulated patient is discharged if the patient has normal
vitals and is not given any treatments; discharge results in a
positive reward. Death is associated with a negative reward
and occurs if at least three vitals are abnormal. If neither dis-
charge nor death has occurred at the end of the sequence, the
reward is zero. We refer to the code for details about, for ex-
ample, the levels of the vitals and the transition probabilities
of the Markov decision process (MDP).

For the experiment presented in Figure 8, we used the note-
book learn_mdp_parameters provided by|Oberst and
Sontag|[2019] to estimate the true parameters of the MPD.
We then learned an optimal behavior policy using policy
iteration. The policy was softened so that all actions had
a nonzero probability of being chosen in each state. We
generated trajectories of varying length from this policy to
estimate the effect of bias. Some trajectories ended prema-
turely due to discharge or death and we therefore ensured
that the number of collected state-action pairs were roughly
the same for all sequence lengths. Specifically, for each se-
quence length, we generated 20 000 state-action pairs for
training and sigmoid calibration of the estimators i, respec-
tively.

Since we used the full state representation, we made the
Markov assumption and estimated the behavior policy us-

The simulator is publicly available at https://github
com/clinicalml/gumbel-max—scm/tree/sim-v2,

ing a vanilla FNN and FNN-based prototype models. We
trained all models over 30 epochs, using a batch size of 128.
Otherwise we used the same architectures and settings as in
the main experiment with the MIMIC-III data.

The collected training set was also used to estimate the MDP
parameters and learn a target policy 7 using policy iteration.
Again, this policy was softened to avoid zero probabilities.
We generated an additional evaluation set of the same size
as the training and calibration sets. We repeated the process
of data collection and learning 100 times. To produce Figure
8, we removed a small fraction of samples for which the
weight ratio exceeded 103.

References

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi, Ben-
jamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. Mimic-iii, a freely accessible critical care
database. Scientific data, 3:160035, 2016.

Matthieu Komorowski, Leo A Celi, Omar Badawi, An-
thony C Gordon, and A Aldo Faisal. The artificial in-
telligence clinician learns optimal treatment strategies
for sepsis in intensive care. Nature medicine, 24(11):
1716-1720, 2018.

Zhifeng Kong and Kamalika Chaudhuri. The expressive
power of a class of normalizing flow models. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 3599-3609. PMLR, 2020.

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Inter-
pretable and steerable sequence learning via prototypes.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 903-913, 2019.

Michael Oberst and David Sontag. Counterfactual off-policy
evaluation with gumbel-max structural causal models. In

International Conference on Machine Learning, pages
4881-4890. PMLR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32,
pages 8024—-8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

https://github.com/clinicalml/gumbel-max-scm/tree/sim-v2
https://github.com/clinicalml/gumbel-max-scm/tree/sim-v2

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International conference on
machine learning, pages 1530-1538. PMLR, 2015.

Marian Tietz, Thomas J. Fan, Daniel Nouri, Benjamin
Bossan, and skorch Developers. skorch: A scikit-learn
compatible neural network library that wraps PyTorch,
jul 2017. URL https://skorch.readthedocs.
io/en/stable/.

https://skorch.readthedocs.io/en/stable/
https://skorch.readthedocs.io/en/stable/

	The Prototype Model
	Prototype Value
	Is There a Good Prototype Model?

	Experimental Details
	Using Data from MIMIC-III
	Using the Sepsis Simulator

