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A DISCRETE-TIME MODEL

In this appendix, we provide further details on the discrete-
time model. We begin by discussing some of the proper-
ties of the resulting compound process. Then, we derive
a simpler variant of the model by replacing the general-
ized Dirichlet mixture distribution by a (standard) Dirichlet
distribution.

A.1 PROPERTIES OF THE COMPOUND PROCESS

It is insightful to contrast the properties of a Markov chain
with those of our compound process. Unlike a DTMC, our
model no longer satisfies the Markov property, and in gen-
eral future transitions depend on the entire past. While (er-
godic) DTMCs converge to a stationary distribution [Norris,
1998], our compound process does not: By construction, the
distribution our process converges to is different for differ-
ent values of the latent Θ. Nevertheless, it is easy to show
(by continuity) that the limiting distribution

lim
k→∞

∫
π>Θkp(Θ)dΘ

exists and is independent of the initial distribution π. We
also note that Markov chains are a limiting case of our com-
pound process. Informally, this happens when the mixture
distribution concentrates at a single value of Θ. We make
this precise in the next section..

A.2 SIMPLIFIED DISCRETE-TIME MODEL

Preliminaries. The Dirichlet distribution has support on
the set of N -dimensional probability vectors and density

Dir(x | η) =
1

B(η)

N∏
i=1

xηi−1i ,

where η ∈ RN
>0 is a parameter vector and the multivariate

beta function is defined as B(η) =
∏
i Γ(ηi)/Γ(

∑
i ηi).

It is easy to verify that Dir(x | η) = GDir(x | α,β) if
αi = ηi and βi =

∑N
j=i+1 ηj for i = 1, . . . , N−1 [Connor

and Mosimann, 1969]. The Dirichlet distribution can be
reparametrized by a concentration parameter ρ =

∑
i ηi

and a mean vector η̄, where η̄i = ηi/ρ. For any mean vector
η̄, we have that

lim
ρ→∞

Dir(x | ρη̄) = δ(x− η̄), (1)

where δ is the Dirac delta function. That is, the distribution
concentrates around its mean η̄ as ρ becomes larger.

Mixture Model. We assume that the transition matrix Θ
of a DTMC is sampled from a product of Dirichlet distribu-
tions,

p(Θ |H) =
∏
i

Dir(θi | ηi),

whereH = [ηi]. In other words, each row of Θ is sampled
from a distinct Dirichlet distribution independently from the
other rows. We can write the compound likelihood given a
sequence s as

p(s |H) =

∫
p(s | Θ)p(Θ |H)dΘ =

N∏
i=1

B(ηi + ki)

B(ηi)
,

where K = [kij ] is the matrix counting the number of
transitions observed between each pair of states. Note that
the Dirichlet mixture model has N2 free parameters, com-
pared to N(N − 1) for a DTMC and 2N(N − 1) for the
generalized mixture model.

DTMC as a Limiting Case. Let Θ̄ be a (row-stochastic)
transition matrix, and let H = ρΘ̄ for some ρ > 0. Then,
by property (1),

p(s |H)
ρ→∞−−−→ p(s | Θ̄) =

∏
i,j

θ̄
kij
ij ,

which shows that a DTMC is the limiting case of a Dirichlet
mixture model when the concentration parameter tends to
infinity.
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B PREDICTIVE STATE DISTRIBUTION

In this appendix, we first develop polynomial-time algo-
rithms for computing the exact predictive state distribution
in the discrete-time setting. Then we provide the continuous-
time equivalent of Algorithm 1 presented in the main text.
We conclude with an empirical study of Algorithm 1.

B.1 DIRECTED ACYCLIC GRAPHS WITH
SELF-LOOPS

We assume that the transition graph G = ([N ], E) is such
that there are no directed cycles, except for self-loops. In-
tuitively, this restriction means that once the process leaves
a state, it will never return to that state in the future. This
special case is relevant in practice: For example, the EBMT
dataset we consider in Section 5 of the main text satisfies
the assumption.

For conciseness, we consider only the (simple) Dirichlet
mixture model introduced in Appendix A. The extension
to the generalized Dirichlet distribution is straightforward.
We assume that the parameter matrixH = [ηij ] is such that
ηij = 0 if (i, j) /∈ E . Let zi be the time at which state i is
first reached and let kii count the number of self-transitions
on state i. Then,

π?T,i =

T∑
t=0

P[zi = t]P[kii ≥ T − t]. (2)

Starting with P[kii ≥ 0] = 1 and P[zi = 0] = π0i, we can
compute the required quantities recursively as

P[kii ≥ t] = P[kii ≥ t− 1] · ηii + t− 1∑
` ηi`+ t− 1

, (3)

P[zi = t] =
∑
j

t−1∑
t′=1

[
P[zj = t′] ·P[kjj ≥ t− t′]

· ηji∑
` ηj` + (t− t′)

]
,

(4)

for t = 1, . . . , T .

This explicit decomposition of the predictive state distri-
bution leads to a proof of Proposition 1, which we briefly
recall here.

Proposition 1. Let (A,B) be any generalized Dirichlet
mixture of Markov chains on a graph G = ([N ], E), and
let π0 be an initial state distribution. If G has no cycle of
length greater than one, then π?T can be computed exactly
in time O(T 2N2).

Proof. The predictive state distribution π?T can be com-
puted exactly using (2), (3) and (4). There are N · T dis-
tinct quantities to compute for (3), each with running time

O(1). Similarly, there are N · T distinct quantities to com-
pute for (4), each with running time O(NT ). Finally, (2)
involves N distinct quantities with running time O(T )
each. Adding up the contributions, the total running time is
O(NT · 1 +NT ·NT +N · T ) = O(T 2N2).

B.2 EXACT ALGORITHM FOR THE GENERAL
CASE

Given a discrete-time mixture model, an initial distribution
π0 and a time horizon T , we seek to predict the marginal
state distribution after T steps,π?T . A naive solution involves
of enumerating all paths of length T , with running time
exponential in T . We now introduce an alternative procedure
that computes π?T exactly with running time polynomial in
T .

LetKt ∈ NN×N be a matrix counting the number of times
each transition has occurred up to time t. We write

π?T =
∑
K

P[sT = i,KT = K],

where K ranges over all integer-valued matrices whose
entries sum up to T . Starting from

P[s0 = i,K0 = 0N×N ] = π0i,

we can recursively compute

P[st = i,Kt = K] =
∑
j

P[st = i, st−1 = j,Kt = K]

=
∑
j

P[st = i, st−1 = j,Kt−1 = K −∆ji]

=
∑
j

(
P[st = i | st−1 = j,Kt−1 = K −∆ji]

·P[st−1 = j,Kt−1 = K −∆ji]
)

for t = 1, . . . , T , where ∆ij is the N ×N indicator matrix
whose entry (i, j) is 1 and all other entries are 0, and where

P[st = i | st−1 = j,Kt−1 = K]

=

(
αji + kji

αji + βji +
∑
o≥i kjo

)1{i6=N}

·
i−1∏
`=1

βj` +
∑
o>` kjo

αj` + βj` +
∑
o≥` kjo

.

In the case of the standard Dirichlet distribution (see Ap-
pendix A), the transition probability simplifies to

P[st = i | st−1 = j,Kt−1 = K] =
ηji + kji∑
`(ηj` + kj`)

.



Running-Time Analysis. The stars and bars theorem im-
plies that Kt can take

(
t+N2−1
N2−1

)
different values [Feller,

1968]. Thus, the total number of subproblems we need to
solve is given by

T∑
t=0

(
t+N2 − 1

N2 − 1

)
=

(
T +N2

N2

)
= O

(
TN

2)
,

where the first equality follows from the hockey-stick iden-
tity [Jones, 1996], a special case of the Vandermonde iden-
tity. Each subproblem involves a sum over N terms, lead-
ing to an overall running time O(NTN

2

). In the case
where the admissible transitions are restricted to the graph
G = ([N ], E), a similar development shows that the running
time reduces to O(davgT

|E|), where davg is the average node
degree. Even though this procedure is more efficient than
enumerating all paths of length T , it remains impractical for
all but the smallest problems.

B.3 CONVERGENCE OF ALGORITHM 1

We start by proving Proposition 2 in the main text, which
we recall here for convenience.

Proposition 2. For anyA,B, horizon T , and initial distri-
bution π0, let π̂T be the output of Algorithm 1. Then, for
any ε, δ > 0, we have

P[‖π̂T − π?T ‖ < ε] > 1− δ,

as long as L > 11
ε2 log N+1

δ .

Proof. The result follows from the matrix Bernstein inequal-
ity [Tropp, 2015, Thm. 1.6.2] applied to the random vectors
{z1, . . . ,zL}, where z` = π`,T − π?T . By construction,
{z`} are jointly independent and E[z`] = 0 for all `. Fur-
thermore, since z` is a difference of two probability vectors,
‖z`‖ ≤ 2 for all ` and ‖

∑
` z
>
` z`‖ = ‖

∑
` z`z

>
` ‖ ≤ 4L.

As a consequence, the matrix Bernstein inequality yields

P
[∥∥∥∑

`

z`

∥∥∥ ≥ Lε] ≤ (N+1) · exp

(
− L2ε2/2

4L+ 2Lε/3

)
,

and with some basic algebraic manipulations, we obtain the
result as formulated in the proposition.

Note that Proposition 2 holds for any algorithm that aver-
ages independent samples centered around the true state
distribution. However, we intuitively expect that, for a given
budget of samples L, Algorithm 1 returns a better estimate
than one obtained by naively sampling entire trajectories.
This is because Algorithm 1 first samples from the mixture
distribution, and then averages over all possible paths, in-
stead of sampling a single path. We verify this empirically
in the next section.

Continuous-Time Algorithm. For completeness, we
briefly review the continuous-time variant of the sampling
procedure introduced in Section 4 of the main text. We
present the procedure in Algorithm 2. The predictive state
distribution of a CTMC sampled from the mixture distri-
bution is computed on line 3. In practice, the matrix ex-
ponential often cannot be computed exactly, but it can be
approximated effectively [Al-Mohy and Higham, 2010].
Most numerical libraries and machine-learning frameworks
provide the matrix exponential as a primitive.1

Algorithm 2 Predictive state distribution.

Require: A,B, horizon T , init. dist. π0, num. samples L
1: for ` = 1, . . . , L do
2: Λ← sample from

∏
i6=j Γ(λij | αij ,βij)

3: π`,T ← π>0 e
TΛ

4: return π̂T = 1
L

∑
` π`,T

B.4 EMPIRICAL CONVERGENCE OF
ALGORITHM 1

A practical approach to computing the predictive state distri-
bution for any model is to sample a small set of trajectories
and estimate the distribution empirically by using the sam-
ples. We refer to this as the naive sampling scheme. In this
section, we compare Algorithm 1 to the naive scheme in
terms of the quality of the estimated distribution π̂T , for a
given budget of samples L.

We generate a synthetic problem instance as follows. Set-
ting the number of states to N = 5, we sample a matrix
H ∈ [0, ρ]N×N uniformly at random, for ρ ∈ {1, 10, 100}.
We interpret this matrix as the parameters of a product of
N Dirichlet distributions, a special case of the GDir dis-
tribution (see Appendix A). Informally, the larger ρ is, the
more the mixture distribution is concentrated around a sin-
gle DTMC transition matrix. We then sample an initial state
i0 uniformly at random, let π0 = [1i=i0 ], and we estimate
the predictive state distribution at horizon T = 10. Even
though we report results only on a specific experimental set-
ting, our findings appear to be robust to different choices of
N , T , and π0. We compare the empirical estimate obtained
by using L = 1, ..., 103 samples (collected through naive
sampling or Algorithm 1) to the ground truth by computing
the `2-norm of the difference vector. For each value of ρ,
we average the performance obtained on M = 20 instances
and present the results in Figure 1.

In all cases, the `2 distance to the ground truth appears
to decrease as 1/

√
L. This is expected: both our proposed

approach and naive sampling rely on averaging independent
samples centered around π?T . However, we observe that

1For example, scipy.linalg.expm in SciPy and
tf.linalg.expm in TensorFlow.
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Figure 1: Mean ± std. (20 instances) of the distance ‖π̂T −
π?T ‖ as a function of L for the naive sampling scheme and
Algorithm 1. For naive sampling, the performance is nearly
identical for every value of ρ and we thus draw a single line.

Algorithm 1, which samples from the mixing distribution
but then averages over all paths, results in samples with
lower variance. This, in turn, leads to better estimates for
any given sampling budget L. In fact, Algorithm 1 requires
10–1000× fewer samples than naive sampling in order to
reach a given accuracy. The gains depend on the shape of
the mixture distributions; For ρ = 1 (strongly multimodal
mixture distribution) the advantage is relatively modest,
whereas for larger values of ρ it becomes important.

C EXPERIMENTAL EVALUATION

In this Appendix, we provide more details on the datasets
and baselines presented in the main text. In addition, we
provide (as part of the supplementary material) an archive
that contains a small software library written in the Python
language and computational notebooks (using the Jupyter
Notebook format) that enable reproducing the experiments
of Sections 5 and B.4 from raw data.

C.1 DATASETS

We provide additional information on the datasets studied in
Section 5 of the main text. Summary statistic including the
number of states N , the number of admissible transitions
|E| and the number of sequences M is provided in Table 1.

SLEEP. The dataset is studied by Kneib and Hennerfeind
[2008] and is available on Thomas Kneib’s webpage.2 Each
sequence captures the sleep patterns of an individual. There
are three states representing rapid eye-movement (REM)
sleep, non-REM sleep, and awake.

2See: https://www.uni-goettingen.de/de/
551628.html.

VENTICU. The dataset is studied by Grundmann et al.
[2005] and is available on Richard J. Cook’s webpage.2

Each sequence represents a patient in an intensive care unit.
The four states capture ventilation (on and off), discharge,
and death, respectively.

EBMT. The dataset is studied by Fiocco et al. [2008] and
is available on Richard J. Cook’s webpage.2 Each sequence
captures patient outcomes after blood and marrow transplan-
tation. The six states represent outcomes such as remission,
adverse events, relapse, death, and combinations thereof.

CUSTOMERS. This dataset is not available publicly at this
time. Each sequence represents a customer and their rela-
tionship to a business over time. The three states represent:
using the free service, subscribing to the paid service, and
not using the service, respectively.

C.2 FINITE MIXTURES OF MARKOV CHAINS

In order to train finite mixture models, we follow Cadez
et al. [2003]. We stop the EM algorithm as soon as the log-
likelihood increases by less than 0.1% during one iteration.
In order to select the number of mixture components, we
perform a search over L ∈ {2, 3, 5, 10, 20}. We report the
results corresponding to the value of L which minimizes the
log-likelihood on the hold-out set.

C.3 COMPUTATIONAL SETUP

Our experiments are run on a Google cloud
n1-standard-32 instance with 32 vCPUs and
120 GB RAM. Our code relies on the following versions of
popular Python packages:

• jax==0.2.13

• jaxlib==0.1.67

• numpy==1.19.5

• scipy==1.6.3

Bibliography

A. H. Al-Mohy and N. J. Higham. A new scaling and
squaring algorithm for the matrix exponential. SIAM
Journal on Matrix Analysis and Applications, 31(3):970–
989, 2010.

I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White.
Model-based clustering and visualization of navigation
patterns on a web site. Data Mining and Knowledge
Discovery, 7:399–424, 2003.

R. J. Connor and J. E. Mosimann. Concepts of independence
for proportions with a generalization of the Dirichlet dis-

https://www.uni-goettingen.de/de/551628.html
https://www.uni-goettingen.de/de/551628.html


Table 1: Summary statistics of the four datasets.

Dataset Reference Type N |E| M

SLEEP Kneib and Hennerfeind [2008] Continuous 3 6 70
VENTICU Grundmann et al. [2005] Continuous 4 6 747
EBMT Fiocco et al. [2008] Continuous 6 12 2279
CUSTOMERS — Discrete 3 9 144 510

tribution. Journal of the American Statistical Association,
64(325):194–206, 1969.

W. Feller. An Introduction to Probability Theory and Its
Applications, volume 1. Wiley, third edition, 1968.

M. Fiocco, H. Putter, and H. C. van Houwelingen. Reduced-
rank proportional hazards regression and simulation-
based prediction for multi-state models. Statistics in
Medicine, 27(21):4340–4358, 2008.

H. Grundmann, S. Bärwolff, A. Tami, M. Behnke,
F. Schwab, C. Geffers, E. Halle, U. B. Göbel, R. Schiller,
D. Jonas, et al. How many infections are caused by
patient-to-patient transmission in intensive care units?
Critical Care Medicine, 33(5):946–951, 2005.

C. H. Jones. Generalized hockey stick identities and N-
dimensional block walking. Fibonacci Quarterly, 34(3):
280–288, 1996.

T. Kneib and A. Hennerfeind. Bayesian semiparametric
multi-state models. Statistical Modelling, 8(2):169–198,
2008.

J. R. Norris. Markov Chains. Cambridge University Press,
1998.

J. A. Tropp. An introduction to matrix concentration in-
equalities. Foundations and Trends in Machine Learning,
8(1-2):1–230, 2015.


	Discrete-Time Model
	Properties of the Compound Process
	Simplified Discrete-Time Model

	Predictive State Distribution
	Directed Acyclic Graphs with Self-Loops
	Exact Algorithm for the General Case
	Convergence of Algorithm 1
	Empirical Convergence of Algorithm 1

	Experimental Evaluation
	Datasets
	Finite Mixtures of Markov chains
	Computational Setup


