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A PROOF OF COROLLARY 1

The following inequalities hold ∀x ∈ X , ∀u ∈ U , ∀µ1 ∈
P(X ), and ∀ν1 ∈ P(U).

|r(x, u,µ1,ν1)| ≤ |aTµ1|+ |b
Tν1|+ |f(x, u)|

≤ |a|1|µ1|1 + |b|1|ν1|1 + |f(x, u)|
(a)
= |a|1 + |b|1 + |f(x, u)|

Equality (a) follows from the fact that both µ1 and ν1 are
probability distributions. As the sets X , U are finite, there
must exist MF > 0 such that, |f(x, u)| ≤ MF , ∀x ∈ X ,
∀u ∈ U . Taking MR = |a|1 + |b|1 +MF , we can establish
proposition (a).

Proposition (b) follows from the fact that ∀x ∈ X , ∀u ∈ U ,
∀µ1,µ2 ∈ P(X ), ∀ν1,ν2 ∈ P(U), the following relations
hold.

|r(x, u,µ1,ν2)− r(x, u,µ2,ν2)|
≤ |aT (µ1 − µ2)|+ |bT (ν1 − ν2)|
≤ |a|1|µ1 − µ2|1 + |b|1|ν1 − ν2|1

Taking LR = max{|a|1, |b|1}, we conclude the result.

B PROOF OF THEOREM 1

The following results are necessary to establish the theorem.

B.1 LIPSCHITZ CONTINUITY

In the following three lemmas, we shall establish that the
functions, νMF, PMF and rMF defined in (8), (9) and (10)
are Lipschitz continuous. In all of these lemmas, the term Π
denotes the set of policies that satisfies Assumption 3. The
proofs of these lemmas are delegated to Appendix C, D, and
E respectively.

Lemma B.1. If νMF(., .) is defined by (8), then ∀µ1,µ2 ∈
P(X ), ∀π ∈ Π, the following inequality holds.

|νMF(µ1, π)− νMF(µ2, π)|1 ≤ (1 + LQ)|µ1 − µ2|1

where LQ is defined in Assumption 3.

Lemma B.2. If PMF(., .) is defined by (9), then ∀µ1,µ2 ∈
P(X ), ∀π ∈ Π, the following inequality holds.

|PMF(µ1, π)− PMF(µ2, π)|1 ≤ SP |µ1 − µ2|1
where SP , (1 + LQ) + LP (2 + LQ).

The terms LP , and LQ are defined in Assumption 1, and 3
respectively.

Lemma B.3. If rMF(., .) is defined by (10), then ∀µ1,µ2 ∈
P(X ), ∀π ∈ Π, the following inequality holds.

|rMF(µ1, π)− rMF(µ2, π)|1 ≤ SR|µ1 − µ2|1
where SR ,MR(1 + LQ) + LR(2 + LQ).

The terms MR, LR, and LQ are defined in Corollary 1 and
Assumption 3 respectively.

B.2 APPROXIMATION RESULTS

The following Lemma B.5, B.6, B.7 establish that the state,
action distributions and the average reward of an N -agent
system closely approximate their mean-field counterparts
when N is large. All of these results use Lemma B.4 as the
key ingredient.

Lemma B.4. [Mondal et al., 2022] Assume that ∀m ∈ [M ],
{Xm,n}n∈[N ] are independent random variables that lie
in the interval [0, 1], and satisfy the following constraint:∑

m∈[M ] E[Xm,n] = 1, ∀n ∈ [N ]. If {Cm,n}m∈[M ],n∈[N ]

are constants that obey |Cm,n| ≤ C, ∀m ∈ [M ], ∀n ∈ [N ],
then the following inequality holds.∑

m∈[M ]

E
∣∣∣Cm,n(Xm,n − E[Xm,n])

∣∣∣ ≤ C√MN
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The proofs of Lemma B.5, B.6, and B.7 have been delegated
to Appendix F, G, and H respectively.

Lemma B.5. Assume {µN
t ,ν

N
t }t∈T are empirical state

and action distributions of an N -agent system defined by
(1), and (2) respectively. If these distributions are generated
by a sequence of policies π = {πt}t∈T, then ∀t ∈ T the
following inequality holds.

E|νN
t − νMF(µN

t , πt)|1 ≤
√
|U|√
N

where νMF is defined in (8).

Lemma B.6. Assume {µN
t ,ν

N
t }t∈T are empirical state

and action distributions of an N -agent system defined by
(1), and (2) respectively. If these distributions are generated
by a sequence of policies π = {πt}t∈T, then ∀t ∈ T the
following inequality holds.

E|µN
t+1 − PMF(µN

t , πt)|1 ≤
CP√
N

[√
|X |+

√
|U|
]

where PMF is defined in (9), CP , 2 + LP , and LP is
given in Assumption 1.

Lemma B.7. Assume {µN
t ,ν

N
t }t∈T are empirical state

and action distributions of an N -agent system defined by
(1), and (2) respectively. Also, ∀i ∈ [N ], let {µi,N

t ,νi,N
t } be

weighted state and action distributions defined by (3), (4).
If these distributions are generated by a sequence of policies
π = {πt}t∈T, then ∀t ∈ T the following inequality holds.

E

∣∣∣∣∣ 1

N

N∑
i=1

r(xit, u
i
t,µ

i,N
t ,νi,N

t )− rMF(µN
t , πt)

∣∣∣∣∣
≤ CR

√
|U|√
N

where rMF is given in (10), CR , |b|1 + MF and MF is
such that |f(x, u)| ≤ MF , ∀x ∈ X , ∀u ∈ U . The function
f(., .) and the parameter b are defined in Assumption 2. We
would like to mention that MF always exists since X ,U are
finite.

B.3 PROOF OF THE THEOREM

Note that,

|vMARL(x0,π)− vMF(µ0,π)|

(a)
=

∣∣∣∣∣
∞∑
t=0

1

N

N∑
i=1

γtE[r(xit, u
i
t,µ

i,N
t ,νi,N

t )]

−
∞∑
t=0

γtrMF(µt, πt)

∣∣∣∣∣ ≤ J1 + J2

Equality (a) directly follows from the definitions (7) and
(10). The first term J1 can be written as follows.

J1 ,
∞∑
t=0

γtE

∣∣∣∣∣ 1

N

N∑
i=1

[r(xit, u
i
t,µ

i,N
t ,νi,N

t )]− rMF(µN
t , πt)

∣∣∣∣∣
(a)

≤ CR

√
|U|√
N

1

1− γ

Equation (a) is a result of Lemma B.7. The second term can
be expressed as follows.

J2 ,
∞∑
t=0

γtE|rMF(µN
t , πt)− rMF(µt, πt)|

(a)

≤ SR

∞∑
t=0

γt|µN
t − µt|1

Inequality (a) follows from Lemma B.3. Observe that, ∀t ∈
T,

|µN
t+1 − µt+1|1
≤ |µN

t+1 − PMF(µN
t , πt)|1 + |PMF(µN

t , πt)− µt+1|1
(a)

≤ CP√
N

[√
|X |+

√
|U|
]

+ |PMF(µN
t , πt)− PMF(µt, πt)|1

(b)

≤ CP√
N

[√
|X |+

√
|U|
]

+ SP |µN
t − µt|1

(c)

≤ CP√
N

[√
|X |+

√
|U|
] (St+1

P − 1)

SP − 1

Inequality (a) follows from Lemma B.6 and Eq. (9) while
(b) is a result of Lemma B.2. Finally, inequality (c) can be
derived by recursively applying (b). Therefore, the term J2

can be upper bounded as follows.

J2 ≤
1√
N

[√
|X |+

√
|U|
] SRCP

SP − 1

[
1

1− γSP
− 1

1− γ

]

This concludes the theorem.



C PROOF OF LEMMA B.1

The following inequalities hold true.

|νMF(µ1, π)− νMF(µ2, π)|1

=

∣∣∣∣∣∑
x∈X

π(x,µ1)µ1(x)−
∑
x∈X

π(x,µ2)µ2(x)

∣∣∣∣∣
1

=
∑
u∈U

∣∣∣∣∣∑
x∈X

π(x,µ1)(u)µ1(x)−
∑
x∈X

π(x,µ2)(u)µ2(x)

∣∣∣∣∣
≤
∑
u∈U

∣∣∣∣∣∑
x∈X

π(x,µ1)(u)µ1(x)−
∑
x∈X

π(x,µ2)(u)µ1(x)

∣∣∣∣∣
+
∑
u∈U

∣∣∣∣∣∑
x∈X

π(x,µ2)(u)µ1(x)−
∑
x∈X

π(x,µ2)(u)µ2(x)

∣∣∣∣∣
≤
∑
x∈X

µ1(x)
∑
u∈U
|π(x,µ1)(u)− π(x,µ2)(u)|

+
∑
x∈X
|µ1(x)− µ2(x)|

∑
u∈U

π(x,µ2)(u)

(a)

≤ LQ|µ1 − µ2|1
∑
x∈X

µ1(x) + |µ1 − µ2|1

(b)
= (1 + LQ)|µ1 − µ2|1

Inequality (a) is a consequence of the fact that π ∈ Π and
π(x,µ2) is a distribution. Finally, the equality (b) follows
because µ1 is a distribution. This concludes the result.

D PROOF OF LEMMA B.2

Note the following inequalities.

|PMF(µ1, π)− PMF(µ2, π)|1

=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

P (x, u,µ1, ν
MF(µ1, π))π(x,µ1)(u)µ1(x)

−
∑
x∈X

∑
u∈U

P (x, u,µ2, ν
MF(µ2, π))π(x,µ2)(u)µ2(x)

∣∣∣∣∣
1

≤ J1 + J2

where the term J1 is as follows.

J1 ,
∑
x∈X

∑
u∈U

π(x,µ1)(u)µ1(x)

×
∣∣∣P (x, u,µ1, ν

MF(µ1, π))− P (x, u,µ2, ν
MF(µ2, π))

∣∣∣
1

(a)

≤
∑
x∈X

∑
u∈U

π(x,µ1)(u)µ1(x)

× LP

{
|µ1 − µ2|1 + |νMF(µ1, π)− νMF(µ2, π)|1

}
(b)

≤ LP (2 + LQ)|µ1 − µ2|1

Inequality (a) follows from Assumption 1 whereas (b) uses
Lemma B.1 and the fact that µ1, π(x,µ1) are distributions.
The term J2 is given as follows.

J2 ,
∑
x∈X

∑
u∈U

∣∣P (x, u,µ2, ν
MF(µ2, π))

∣∣
1

×
∣∣∣π(x,µ1)(u)µ1(x)− π(x,µ2)(u)µ2(x)

∣∣∣
(a)
=
∑
x∈X

∑
u∈U

∣∣∣π(x,µ1)(u)µ1(x)− π(x,µ2)(u)µ2(x)
∣∣∣

≤
∑
x∈X

µ1(x)
∑
u∈U
|π(x,µ1)(u)− π(x,µ2)(u)|

+
∑
x∈X
|µ1(x)− µ2(x)|

∑
u∈U

π(x,µ2)(u)

(b)

≤ LQ|µ1 − µ2|1
∑
x∈X

µ1(x) + |µ1 − µ2|1

(c)
= (1 + LQ)|µ1 − µ2|1

Equality (a) uses the fact that P (x, u,µ2, ν
MF(µ2, π)) is

a distribution. Inequality (b) follows from Assumption 3
while equation (c) holds because µ1 is a distribution.

E PROOF OF LEMMA B.3

The following inequalities hold true.

|rMF(µ1, π)− rMF(µ2, π)|1

=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

r(x, u,µ1, ν
MF(µ1, π))π(x,µ1)(u)µ1(x)

−
∑
x∈X

∑
u∈U

r(x, u,µ2, ν
MF(µ2, π))π(x,µ2)(u)µ2(x)

∣∣∣∣∣
1

≤ J1 + J2

where the term J1 is given as follows.

J1 ,
∑
x∈X

∑
u∈U

π(x,µ1)(u)µ1(x)

×
∣∣∣r(x, u,µ1, ν

MF(µ1, π))− r(x, u,µ2, ν
MF(µ2, π))

∣∣∣
(a)

≤
∑
x∈X

∑
u∈U

π(x,µ1)(u)µ1(x)

× LR

{
|µ1 − µ2|1 + |νMF(µ1, π)− νMF(µ2, π)|1

}
(b)

≤ LR(2 + LQ)|µ1 − µ2|1

Inequality (a) follows from Corollary 1(b) whereas (b) uses
Lemma B.1 and the fact that µ1, π(x,µ1) are distributions.



The term J2 is given as follows.

J2 ,
∑
x∈X

∑
u∈U

∣∣r(x, u,µ2, ν
MF(µ2, π))

∣∣
×
∣∣∣π(x,µ1)(u)µ1(x)− π(x,µ2)(u)µ2(x)

∣∣∣
(a)

≤ MR

∑
x∈X

∑
u∈U

∣∣∣π(x,µ1)(u)µ1(x)− π(x,µ2)(u)µ2(x)
∣∣∣

≤MR

∑
x∈X

µ1(x)
∑
u∈U
|π(x,µ1)(u)− π(x,µ2)(u)|

+MR

∑
x∈X
|µ1(x)− µ2(x)|

∑
u∈U

π(x,µ2)(u)

(b)

≤ MRLQ|µ1 − µ2|1
∑
x∈X

µ1(x) +MR|µ1 − µ2|1

(c)
= MR(1 + LQ)|µ1 − µ2|1

Inequality (a) uses Corollary 1(a). Inequality (b) follows
from Assumption 3 while equation (c) holds because µ1 is
a distribution. This concludes the lemma.

F PROOF OF LEMMA B.5

Applying the definitions of νN
t and νMF, we can write the

following.

E|νN
t − νMF(µN

t , πt)|1
=
∑
u∈U

E|νN
t (u)− νMF(µN

t , πt)(u)|

=
∑
u∈U

E

∣∣∣∣∣ 1

N

N∑
i=1

δ(uit = u)−
∑
x∈X

πt(x,µ
N
t )(u)µN

t (x)

∣∣∣∣∣
(1)

Similarly, using the definition of µN
t , we get,

∑
x∈X

πt(x,µ
N
t )(u)µN

t (x)

=
∑
x∈X

πt(x,µ
N
t )(u)

1

N

∑
i=1

δ(xit = x)

=
1

N

N∑
i=1

∑
x∈X

πt(x,µ
N
t )(u)δ(xjt = x)

=
1

N

N∑
i=1

πt(x
j
t ,µ

N
t )

(2)

Substituting into (1), we obtain the following.

E|νN
t − νMF(µN

t , πt)|1

=
1

N

∑
u∈U

E

∣∣∣∣∣
N∑
i=1

δ(ujt = u)− πt(xit,µN
t )(u)

∣∣∣∣∣
(a)

≤
√
|U|√
N

Inequality (a) is a consequence of Lemma B.4. Particu-
larly, we use the fact that ∀u ∈ U , the random variables
{δ(uit = u)}i∈[N ] lie in [0, 1], are conditionally indepen-
dent given xt , {xit}i∈[N ] (thereby given µN

t ), and satisfy
the following constraints.

E
[
δ(uit = u)|xt

]
= πt(x

i
t,µ

N
t )∑

u∈U
E
[
δ(uit = u)|xt

]
= 1, ∀i ∈ [N ]

G PROOF OF LEMMA B.6

Using the definition of PMF, we get the following.

PMF(µN
t , πt)

=
∑
x∈X

∑
u∈U

P (x, u,µN
t , ν

MF(µN
t , πt))πt(x,µ

N
t )(u)µN

t (x)

=
∑
x∈X

∑
u∈U

P (x, u,µN
t , ν

MF(µN
t , πt))πt(x,µ

N
t )(u)µN

t (x)

× 1

N

N∑
i=1

δ(xit = x)

=
1

N

N∑
i=1

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µN
t , πt))πt(x

i
t,µ

N
t )(u)

Using the definition of L1 norm, we can write the following.

E
∣∣µN

t+1 − PMF(µN
t , πt)

∣∣
1

=
∑
x∈X

E
∣∣µN

t+1(x)− PMF(µN
t , πt)(x)

∣∣
1

=
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

δ(xit+1 = x)

−
N∑
i=1

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µN
t , πt))(x)πt(x

i
t,µ

N
t )(u)

∣∣∣∣∣
≤ J1 + J2 + J3

The first term, J1 is given as follows.

J1 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

δ(xjt+1 = x)− P (xit, u
i
t,µ

N
t ,ν

N
t )(x)

∣∣∣∣∣
(a)

≤
√
|X |√
N



Inequality (a) follows from Lemma B.4. Specifically, we
use the fact that, ∀x ∈ X , the random variables {δ(xit+1 =
x)}i∈[N ] lie in [0, 1], are conditionally independent given
xt , {xit}i∈[N ], ut , {uit}i∈[N ], (thereby given µN

t , νN
t )

and satisfy the following.

E[δ(xit+1 = x)|xt,ut] = P (xit, u
i
t,µ

N
t ,ν

N
t ),∑

x∈X
E[δ(xit+1 = x)|xt,ut] = 1, ∀i ∈ [N ]

The second term J2 can be expressed as follows.

J2 ,
1

N

∑
x∈X

E
∣∣∣ N∑
i=1

P (xit, u
i
t,µ

N
t ,ν

N
t )(x)

− P (xit, u
i
t,µ

N
t , ν

MF(µN
t , πt))(x)

∣∣∣
≤ 1

N

N∑
i=1

E
∣∣∣P (xit, u

i
t,µ

N
t ,ν

N
t )

− P (xit, u
i
t,µ

N
t , ν

MF(µN
t , πt))

∣∣∣
1

(a)

≤ LPE|νN
t − νMF(µN

t , πt)|
(b)

≤ LP

√
|U|√
N

Inequality (a) follows from Assumption 1 whereas (b) re-
sults from Lemma B.5. Finally, the term J3 is defined as
follows.

J3 ,
1

N

∑
x∈X

E

∣∣∣∣∣
N∑
i=1

P (xit, u
i
t,µ

N
t , ν

MF(µN
t , πt))(x)

−
N∑
i=1

∑
u∈U

P (xit, u,µ
N
t , ν

MF(µN
t , πt))(x)πt(x

i
t,µ

N
t )(u)

∣∣∣∣∣
(a)

≤
√
|X |√
N

Relation (a) results from Lemma B.4. Particularly we use the
fact that ∀x ∈ X , {P (xit, u

i
t,µ

N
t , ν

MF(µN
t , πt))(x)}i∈[N ]

lie in the interval [0, 1], are conditionally independent given
xt , {xit}i∈[N ] (therefore, given µN

t ), and satisfy the fol-
lowing constraints.

E[P (xit, u
i
t,µ

N
t , ν

MF(µN
t , πt))(x)|xt]

=
∑
u∈U

P (xit, u,µ
N
t , ν

MF(µN
t , πt))(x)πt(x

i
t,µ

N
t )(u),

and
∑
x∈X

E[P (xit, u
i
t,µ

N
t , ν

MF(µN
t , πt))(x)|xt] = 1

This concludes the Lemma.

H PROOF OF LEMMA B.7

Note that,

rMF(µN
t , πt)

=
∑
x∈X

∑
u∈U

r(x, u,µN
t , ν

MF(µN
t , πt))πt(x,µ

N
t )(u)µN

t (x)

=
∑
x∈X

∑
u∈U

r(x, u,µN
t , ν

MF(µN
t , πt))πt(x,µ

N
t )(u)

× 1

N

N∑
i=1

δ(xit = x)

=
1

N

∑
u∈U

N∑
i=1

r(xit, u,µ
N
t , ν

MF(µN
t , πt))πt(x

i
t,µ

N
t )(u)

(a)
=

1

N

∑
u∈U

N∑
i=1

[
aTµN

t + bT νMF(µN
t , πt) + f(xit, u)

]
× πt(xit,µN

t )(u)

(b)
= aTµN

t + bT νMF(µN
t , πt)

+
1

N

∑
u∈U

N∑
i=1

f(xit, u)πt(x
i
t,µ

N
t )(u)

Equality (a) follows from Assumption 2 while (b) uses the
fact that πt(xit,µ

N
t ) is a distribution. On the other hand,

1

N

N∑
i=1

r(xit, u
i
t,µ

i,N
t ,νi,N

t )

=
1

N

N∑
i=1

[
aTµi,N

t + bTνi,N
t + f(xit, u

i
t)
]

=
1

N

N∑
i=1

[∑
x∈X

a(x)µi,N
t (x) +

∑
u∈U

b(u)νi,N
t (u)

]

+
1

N

N∑
i=1

f(xit, u
i
t)

Now the first term can be simplified as follows.

1

N

∑
x∈X

a(x)

N∑
i=1

N∑
j=1

W (i, j)δ(xjt = x)

=
1

N

∑
x∈X

a(x)

N∑
j=1

δ(xjt = x)

N∑
i=1

W (i, j)

(a)
=
∑
x∈X

a(x)
1

N

N∑
j=1

δ(xjt = x) = aTµN
t

Equality (a) follows as W is doubly-stochastic (Assumption
4). Similarly, the second term can be simplified as shown



below.

1

N

∑
u∈U

b(u)

N∑
i=1

N∑
j=1

W (i, j)δ(ujt = u)

=
1

N

∑
u∈U

b(u)

N∑
j=1

δ(ujt = u)

N∑
i=1

W (i, j)

(a)
=
∑
u∈U

b(u)
1

N

N∑
j=1

δ(ujt = u) = bTνN
t

Equality (a) follows from Assumption 4. Therefore, we get,

E

∣∣∣∣∣ 1

N

N∑
i=1

r(xit, u
i
t,µ

i,N
t ,νi,N

t )− rMF(µN
t , πt)

∣∣∣∣∣
≤ |b|1E|νN

t − νMF(µN
t , πt)|1

+
1

N
E

∣∣∣∣∣
N∑
i=1

f(xit, u
i
t)−

N∑
i=1

∑
u∈U

f(xit, u)πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
Using Lemma B.5, the first term can be upper bounded by
|b|1
√
|U|/N . The second term can be bounded as follows.

1

N
E

∣∣∣∣∣
N∑
i=1

f(xit, u
i
t)−

N∑
i=1

∑
u∈U

f(xit, u)πt(x
i
t,µ

N
t )(u)

∣∣∣∣∣
≤ 1

N

∑
u∈U

E

∣∣∣∣∣
N∑
i=1

f(xit, u)
[
δ(uit = u)− πt(xit,µN

t )(u)
]∣∣∣∣∣

(a)

≤ MF

√
|U|√
N

The term MF > 0 is such that |f(x, u)| ≤ MF , ∀x ∈ X ,
∀u ∈ U . Such MF always exists since X , and U are finite.
Equality (a) is a result of Lemma B.4. In particular, we
use the following facts to prove this result. The random
variables {δ(uit = u)}i∈[N ] are conditionally independent
given xt , {xit}i∈[N ] (therefore, given µN

t ), ∀u ∈ U and
they lie in the interval [0, 1]. Moreover,

|f(xit, u)| ≤MF ,∀i ∈ [N ],∀u ∈ U ,
E[δ(uit = u)|xt] = πt(x

i
t,µ

N
t ),∑

u∈U
E[δ(uit = u)|xt] = 1

I SAMPLING PROCEDURE
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Algorithm 1 Sampling Algorithm
Input: µ0, πΦj , P , r

1: Sample x0 ∼ µ0.
2: Sample u0 ∼ πΦj (x0,µ0)
3: ν0 ← νMF(µ0, πΦj ) where νMF is defined in (8).
4: t← 0
5: FLAG← FALSE
6: while FLAG is FALSE do
7: FLAG← TRUE with probability 1− γ.
8: Execute Update
9: end while

10: T ← t
11: Accept (xT ,µT , uT ) as a sample.
12: V̂Φj

← 0, Q̂Φj
← 0

13: FLAG← FALSE
14: SumRewards← 0
15: while FLAG is FALSE do
16: FLAG← TRUE with probability 1− γ.
17: Execute Update
18: SumRewards← SumRewards + r(xt, ut,µt,νt)
19: end while
20: With probability 1

2 , V̂Φj ← SumRewards. Otherwise
Q̂Φj

← SumRewards.
21: ÂΦj

(xT ,µT , uT )← 2(Q̂Φj
− V̂Φj

).

Output: (xT ,µT , uT ) and ÂΦj
(xT ,µT , uT )

Procedure Update:
1: xt+1 ∼ P (xt, ut,µt,νt).
2: µt+1 ← PMF(µt, πΦj

) where PMF is defined in (9).
3: ut+1 ∼ πΦj

(xt+1,µt+1)
4: νt+1 ← νMF(µt+1, πΦj

)
5: t← t+ 1

EndProcedure
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