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A PROOF OF COROLLARY

The following inequalities hold Vo € X, Vu € U, YV, €
P(X),and Vvq € P(U).

r(z,u, g, v1)| < la” | + [0 w1 | + | f (2, u)|
<lali|p]r + [Bl1|vi]r + [ f (7, u)]

(a)
= laly + |by + | f(z, u)|

Equality (a) follows from the fact that both p; and v; are
probability distributions. As the sets X, U{ are finite, there
must exist My > 0 such that, |f(z,u)| < Mp, Vo € X,
Vu € U. Taking M = |aly + |bl1 + Mp, we can establish
proposition (a).

Proposition (b) follows from the fact that Vx € X', Vu € U,
Vi, py € P(X), Y, vs € P(U), the following relations
hold.

|7’(1‘7u,/,1,1,112) - T(m,u, H27V2)|
<la"(py = po)| + b7 (1 — v2)|
<lalilpy — pol1 +|bl1|v1 —vafs

Taking Lr = max{|al1, |b|1}, we conclude the result.

B PROOF OF THEOREM

The following results are necessary to establish the theorem.

B.1 LIPSCHITZ CONTINUITY

In the following three lemmas, we shall establish that the
functions, vMF | PMF and +MF defined in , @ and
are Lipschitz continuous. In all of these lemmas, the term 11
denotes the set of policies that satisfies Assumption [3] The
proofs of these lemmas are delegated to Appendix[C] [D] and
[E] respectively.

Lemma B.1. IfvMY(.,.) is defined by , then Yy, py €
P(X), Vr € 11, the following inequality holds.

M (g, 1) = M (g, )1 < (14 L) by — pala
where Lq is defined in Assumption

Lemma B.2. [f PMF(.,.) is defined by (9)), then Vpuy, pry €
P(X), Vr € 11, the following inequality holds.

|PMF (py, ) — PMF (pg, )1 < Splpy — pah
where Sp = (14 Lg) + Lp(2 + Lg).

The terms Lp, and Lq are defined in Assumption|l} and[3|
respectively.

Lemma B.3. IfrM¥ (., .) is defined by , then ¥y, py €
P(X), Y € 11, the following inequality holds.

PME (g, ) — MF (g, 7)1 < Skl — pol

where Sg = Mr(1+ Lg) + Lr(2+ Lg).

The terms Mg, Lg, and Lq are defined in CorollaryE]and
Assumption 3| respectively.

B.2 APPROXIMATION RESULTS

The following Lemma[B.5] [B.6] [B.7] establish that the state,
action distributions and the average reward of an N-agent

system closely approximate their mean-field counterparts
when N is large. All of these results use Lemma [B.4]as the
key ingredient.

Lemma B.4. [Mondal et al.|2022] Assume that Vm € [M],
{Xon,n}ne(n) are independent random variables that lie
in the interval [0, 1], and satisfy the following constraint:
Zme[]\/[] ]E[Xm,n] =1Vne [N} I](‘{Cm,n}me[lw],ne[N]
are constants that obey |Cy, | < C, ¥Ym € [M], Vn € [N],
then the following inequality holds.

Z E‘Cm,n(Xm,n - E[Xm,n]) S OV MN
me[M]
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The proofs of Lemmal[B.5] [B-6] and[B.7]have been delegated
to Appendix [F [G] and [H]respectively.

Lemma B.5. Assume {ulY,vN}cr are empirical state
and action distributions of an N-agent system defined by
(1), and (2) respectively. If these distributions are generated
by a sequence of policies ® = {m }iet, then ¥Vt € T the
following inequality holds.

1%

Elvy — M (u, m)1 <

£

where vM

¥ is defined in .

Lemma B.6. Assume {pulY,vN}cr are empirical state
and action distributions of an N-agent system defined by
(1), and (2) respectively. If these distributions are generated
by a sequence of policies © = {7t }ier, then ¥Vt € T the
following inequality holds.

C
= PN m)h < L [VIAT+ V]

where PMY is defined in @, Cp £ 2+ Lp, and Lp is
given in Assumption|[I}

N
E|Nt+1

Lemma B.7. Assume {pulY, v} are empirical state
and action distributions of an N-agent system defined by
, and respectively. Also, Vi € [N, let {u"™ , v} be
weighted state and action distributions defined by , .
If these distributions are generated by a sequence of policies
7 = {7t }rer, then Vt € T the following inequality holds.

N
1 i i i,N _i,N
E Nzr(mtvut’“t ) — MF(HinWt)
i=1

<OR\/\/?

where r™M¥ is given in , Cgr £ |bly + My and My is
such that | f(x,u)| < Mp, Vo € X, Vu € U. The function
f(.,.) and the parameter b are defined in Assumption |2} We
would like to mention that M always exists since X ,U are
finite.

B.3 PROOF OF THE THEOREM
Note that,

— vmF (K, )]
00 1 N

i1 i, N i, N
ZNZ’Yt]E[T(xpuuﬂt Uy )}
ZH

|UMARL(w0a ﬂ')

Mt,ﬂt < J1 +J2

Equality (a) directly follows from the definitions and
(10)). The first term J; can be written as follows.

[eS) N
Ji & ZVtE NZ r(ag up, py ™ o™ = M (Y )

t=0

@ Ul 1
Y e, YU

VN 1—v

Equation (a) is a result of Lemmam The second term can
be expressed as follows.

J2 = Z’ytE|TMF(uiV77rt) - TMF(I“’t77rt)|
t=0
(a) e
< SeY_Alud = ph
t=0

Inequality (a) follows from Lemma [B.3] Observe that, V¢ €

Ts
|l"i]\£r1 _Nt+1|1
<ppvy — PME ()l + [PMF (Y me) — iy
< EP 1A+ u}
= [V Vi
+ |PMF(M1{V7 )_PMF(H'taﬂ-t)h
(b)
< O 4 V] + Sl —

t+1 _ 1)

['X+ }géiT*

ﬂ%ﬁé\

Inequality (a) follows from Lemma[B.6 and Eq. () while
(b) is a result of Lemma@ Finally, inequality (c) can be
derived by recursively applying (b). Therefore, the term J5
can be upper bounded as follows.

g\/iﬁ[ ]+ u]SRCP{ S

Sp—1[1—~vSp 1-—7

This concludes the theorem.



C PROOF OF LEMMA

The following inequalities hold true.

VMF(IJ’%W)‘I

Z (2, po)po(2)

‘VMF(H’DW) -

Z (@, py)py () —

reX x€EX 1

=D > ) @ () = Y w(@, o) (1) o ()
ueU lzeXx TeX

< Z Z z, py) (W) py () — Z m(z, po) (w) py (2)
ueU lxeX rzeX

+ Z Z (@, po)(w)py () — Z (@, po) (w) o ()
ueU |lzeXx TEX

< Z p(z) Z |7 (2, py) (u) = 7 (@, py) ()]
zeX ueU

+ 3 (@) = (@) D (s o) (w)
reX ueU

(<) Lglpy — poh Zlﬁ )+ 1 — Hola

reX
2 (14 Lo)lp — pals

Inequality (a) is a consequence of the fact that = € II and
m(x, o) is a distribution. Finally, the equality (b) follows
because pt; is a distribution. This concludes the result.

D PROOF OF LEMMA

Note the following inequalities.

|PYE (g ) = PMF (g, )
Z Z P, u, oy, v (pg, m)) (i, p) () py ()
TEX ueld
- Z Z P, gy VM (pag, )7 (2, pg) () po ()
<htn |

where the term J; is as follows.

Z Z 7“1 (x)

rzeX ueU
X ‘P(x7u7M1>VMF(H177r)) _P(CE>’U/7IJ’2’VMF(N277T>)‘1
(a)
< D 2w m) (@)
reX ueU

xLP{|u1—u2|1+|uMF<um— MP (pag, ) |

(b)
< Lp(2+ Lg)lpy — m2lr

Inequality (a) follows from Assumptionwhereas (b) uses
Lemma|[B.1|and the fact that pu,, 7(x, pt, ) are distributions.
The term J; is given as follows.

Jy & Z Z ‘P(m,u,ug,yMF

rEX ueld
(2, ) () ()|

[, ) () (@)
(2, 1) (W) 2 ()|

NS [ ) w0 -

(I‘L277T))|1

TEX uelU

<Y (@) Y (s ) (u) — 7, o) (w)]
reX ueld

+ 3 (@) = po(@)] Y 7w, o) (w)
TeX ueU

(b)

< Lolpy — polr Z By () + [y — pali

zeX
©)
= (1+ Lo)|lmy — polr

Equality (a) uses the fact that P(z, u, py, v™F (uy, 7)) is
a distribution. Inequality (b) follows from Assumption [3|
while equation (c) holds because p; is a distribution.

E PROOF OF LEMMA

The following inequalities hold true.

|TMF(I"'1’7T) - MF(:“277T)|1
2; z;{ r(@,u, py, VM (g, 7)) (@, o) () g (@)

=)D s g, M (i, ), ) () o ()

reX ueld 1
<J+ e

where the term J; is given as follows.

Ji & Z Zﬂ(x,ul)(u)ul(x)

r€X uel

VM ()
S S e ) (w)ans ()

reX uel

X T(I7uﬁu’17 —T(I,’U,, Mo

)]

x La{ I = palt + M7 (12, m) = M (g, 7)1 }

(b)
< Lr(2+ Lq)|py — mal1

Inequality (a) follows from Corollary [T[b) whereas (b) uses
Lemma|B.1|and the fact that pt,, 7(z, p; ) are distributions.



The term J; is given as follows.

2 Z Z ‘T(x7u>“2ayMF(“2’W))|

reX ueld
% [, ) (W () = (e, u2><u>u2<x>\
L0 33 |l )@ () — () (o)

reX uel

< M S () 3 el ) ) — (o))
reX ucl

"‘MRZ |y (2) — |Z T, po)(
TeEX ucl

(b)

< MprLg|py — paly Z pi(z) + Mplpy — poli

rzeX

()
= Mgp(1+ Lg)|py — polr

Inequality (a) uses Corollary [I(a). Inequality (b) follows
from Assumption [3| while equation (c) holds because ; is
a distribution. This concludes the lemma.

F PROOF OF LEMMA

Applying the definitions of v and vMF, we can write the

following.
Elvy — M (g 77Tt)|1
= ZE|Vt (/J't s ) ()]
ueU
1 s .
=3B\ Y0 = w = 3wl ) ()l (@)
ueld i=1 TeX
ey
Similarly, using the definition of ¥, we get,
> mla, u ) (w)ny (z)
TEX
1 .
=3 w5 D6 =)
reX =1
| X @
- 2 X e e o
i=1 z€X
1 & :
= N Zﬂ- (x?t?l"’t )

Substituting into , we obtain the following.

E|Viv_ MF(HiVWt)h

NZIE Z ul = u) — m(x), puy ) (u)

uel i=1
(2) VIU|
- VN
Inequality (a) is a consequence of Lemma [B.4] Particu-
larly, we use the fact that Vu € U, the random variables
{6(ut = u)}zE[N] lie in [0, 1], are conditionally indepen-
dent given @, £ {x}},c[n) (thereby given p}¥), and satisfy
the following constraints.

E [6(u} = u>|mt} = mi(x, 1y
> E[5(uf = u)la;] =1, Vi € [N]

u€eU

G PROOF OF LEMMA

Using the definition of PMF, we get the following.

PMF(IJ’inTrt)

= > > Plouu Ml m))m

reX ueld

= Z ZP zyu, g VM () (o, ) (u)pd (2)

zeX ueU

(, ) (W)t ()

LS Pt M () )

=1 ueld

Using the definition of L; norm, we can write the following.

E|Hﬁ-1 —PMF(Nivvﬂ't |1
- ZE|H’1‘+1 PMF(uﬁ{Vaﬂ—t)(x)’l
rzeX
N Z E Z xt+1 =)
CL‘GX =1

72213(‘%57“ u’iva MF(u’z]SVaWt))(x)ﬂt(xia“ﬁ{v)(u)

=1 ueld
<Ji+Jo+ J3

The first term, J; is given as follows.

1 N
3NZE Zé(xiﬂzx)—

TEX i=1

(2 VIX|
- VN

(ﬁtaut»l"iNvViv)(w)




Inequality (a) follows from Lemma [B:4] Specifically, we
use the fact that, Va € X, the random variables {6(z},, =
x)}ieny lie in [0, 1], are conditionally independent given

@, £ {2 }ieiny, we = {ui}ieny, (thereby given plY, v)Y)
and satisfy the following.

E[é(‘rz+1 = x)|wt7ut] = P(‘rivuivuivayiv)a

> E[(xfyy = x)|@e, ] =1, Vi € [N]
TxEX

The second term J» can be expressed as follows.

Jo = NZE‘ZPmt’utvutayt )(z)

zeX 1=1

— Plap,up, u M (7)) @)

N
1
S N;E‘P(mtautaui\]7’ji\f)
P(xt?uta”ivv MF(uivart))‘l
(a) (b) U
< LpEY — M ()| < £p Y

VN

Inequality (a) follows from Assumption |I| whereas (b) re-
sults from Lemma [B.3] Finally, the term J; is defined as
follows.

N
1
J3 2 N ZE Zp(xtvut,“’ivv MF(/"’iNvﬂt))(m>
reEX i=1
N .
_Zzp(xtvu /’l’iva MF(/"’z]SVaWt))(x)ﬂt(xzvuiv)(u)
=1 ueld

(i) VIX|
- VN

Relation (a) results from Lemma[B.4] Particularly we use the
fact that Vo € X, {P(xf,uf, pui" , v™M (1Y, 7)) (2) Yicrn
lie in the interval [0, 1], are conditionally independent given
@, £ {zi},c(n (therefore, given p]), and satisfy the fol-
lowing constraints.

E[P(xtvutvuiva MF(H’ivvﬂ—t))(m)‘xt]

=3 Py, M (] ) (@) (e, ] ) (w),
ueU

and Z E[P(

reX

xtauhu’iN7 MF(p’iVﬂTt))(‘r”wt} =1

This concludes the Lemma.

H PROOF OF LEMMA

Note that,

(AR

= > > rlau M (), ) ) (W)l (x)

rEX ueU

= > > rleup M

reX ueld
1 N
[
X N i_E - (S(It =

(1t me))me(w, 1) (u)

N MF
7H’t vV

=
M=

(md' s me))me(p, pr ) (u)

(@, u

weU i=1

@ 1 al

. )

Y 3N [aT kel + 6T (Y w) + flatw)
weld =1

x oy, ) (u)
b
© a’pulY + T ME ()

N
n % SN fah wymlal, ml ) (w)

uel i=1

Equality (a) follows from Assumption@while (b) uses the
fact that 7 (2%, Y ) is a distribution. On the other hand,

1T
NZr(xz,u;,uz’ )
I N
= 2 [aTu N+ v+ fat )|
=1
1 N
Nz[ )+ 3 b )
=1 TEX weEU

Z\H
™M=

f(mhut)

i=1

Now the first term can be simplified as follows.

~ Z ) D> Wi, )i} = x)

N = i=1 j=1
1 N ‘ N
=5 Z a(x) Zé(mi =1x) Z W (i, )
zeX j=1 i=1
@ Ry
D3 ala) e > ot = 2) = o
reX j=1

Equality (a) follows as W is doubly-stochastic (Assumption
M). Similarly, the second term can be simplified as shown



below.

1 N N 4
N 2 bW > Wi =)

ueU i=1 j=1

N N
S ) S ot = 0 W)
= j=1 i=1
1N
@ Z b(u)ﬁ S(ul =u) =b"vN
ueU j=1

Equality (a) follows from Assumption[d] Therefore, we get,

N
1 L N
B | Sl ut ™ wp ) = M ()

< |b|1E|V£V - VMF(HinWt)h
1 N S N ) )
+ B D flatud) = D0 D flat wm(at, ) (u)
=1 1=1 ueld

Using Lemma|[B.5] the first term can be upper bounded by
|bl1+/|U|/N. The second term can be bounded as follows.

B )~ 03 Fad et ) (w)
i=1 i=1 uel
Z E Z (z3,u) [6(uf = u) — Wt($§7uiv)(u)]|
uEZ/l i=1

( 2 ,\/>/|]Z|

The term Mg > 0 is such that |f(z,u)| < Mp, Vo € X,
Vu € U. Such M always exists since X, and I/ are finite.
Equality (a) is a result of Lemma [B.4] In particular, we
use the following facts to prove this result. The random
variables {(u} = u)};e[n7 are conditionally independent
given z¢ £ {z}};cn (therefore, given pf), Vu € U and
they lie in the interval [0, 1]. Moreover,

|f(xi,u)| < Mp,Vi € [N],Yu € U,

B[ (uf = )] = mi(a, o),

Z E[6(uf = u)|z] = 1

ueU

I SAMPLING PROCEDURE
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Algorithm 1 Sampling Algorithm
Input: p, T, P,r

1: Sample z¢ ~ py.
2: Sample ug ~ 7, (20, o)
3: v+ vMF(py, 7%<1>j) where vM¥ is defined in (8).
4: t+0
5: FLAG + FALSE
6: while FLAG is FALSE do
7.  FLAG < TRUE with probability 1 — ~
8:  Execute Update
9: end while
10: T+t
11: Accept (z7, g, ur) as a sample.
12: Vo, + 0, Qp, < 0
13: FLAG « FALSE
14: SumRewards < 0
15: while FLAG is FALSE do
16: FLAG <+ TRUE with probability 1 — ~
17:  Execute Update
18:  SumRewards < SumRewards + r(x¢, us, py, V1)
19: end while
20: With probability &, Vi, + SumRewards. Otherwise

Qq>j + SumRewards.
21: Acbj (xT, uT,uT) — Q(Qq)j - Vq>j).
Output: (7, pup, ur) and Ag, (7, pop, ur)
Procedure Update:

I @1 ~ P(@, ue, gy, V).

Moy < PMP(p,,mo,) where PMF s defined in (9).
Uy ~ T, (Teg1, Hyyr)

Vigt < V0 (Byg, To,)

t—t+1

EndProcedure
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