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Abstract

We study settings where gradient penalties are used alongside risk minimization with the goal of obtaining
predictors satisfying different notions of monotonicity. Specifically, we present two sets of contributions. In the
first part of the paper, we show that different choices of penalties define the regions of the input space where
the property is observed. As such, previous methods result in models that are monotonic only in a small volume
of the input space. We thus propose an approach that uses mixtures of training instances and random points to
populate the space and enforce the penalty in a much larger region. As a second set of contributions, we introduce
regularization strategies that enforce other notions of monotonicity in different settings. In this case, we consider
applications, such as image classification and generative modeling, where monotonicity is not a hard constraint but
can help improve some aspects of the model. Namely, we show that inducing monotonicity can be beneficial in
applications such as: (1) allowing for controllable data generation, (2) defining strategies to detect anomalous data,
and (3) generating explanations for predictions. Our proposed approaches do not introduce relevant computational
overhead while leading to efficient procedures that provide extra benefits over baseline models.

A ILLUSTRATIVE EXAMPLES ON THE SPHERE: MIXUP HELPS TO POPULATE THE
SMALL VOLUME INTERIOR REGION

To further illustrate the issue discussed in the item 2 of Section [3.T]as well the effect of our proposal, we discuss a simple
example considering random draws from the unit n-sphere, shown in Figure[l] i.e., the set of points B = {z € R" : ||z]|2 <
1}. We further consider a concentric sphere of radius 0 < 7 < 1 given by B, = {x € R" : ||z||2 < r}. We are interested in
the probability of a random draw from 5 to lie outside of B,, i.e.: P(||z||2 > 1), 2 ~ D(B), for some distribution D. We
start by defining D as the Uniform(B), which results in P(||z||2 > ) = 1 — r™. In Figure 2a| we can see that for growing
n, P(||x||2 > r) is very large even if r &~ 1, which suggests most random draws will lie close to ’s boundary.

We now evaluate the case where mixup is applied and random draws are taken in two steps: we first observe y ~ Uniform(B),
and then we perform mixup between y and the origirﬂ i.e.,, x = Ay, A ~ Uniform([0, 1]). In this case, P(||z|]2 > r) =
(1 —7™)(1 — r), which is shown in Figure [2b|as a function of r for increasing n. We can then observe that even for large n,
P(]|x||2 > 7) decays linearly with r, i.e., we populate the interior of 5 and z in this case follows a non-uniform distribution
such that its norms histogram is uniform.
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Figure 1: Illustration unit spheres B and B, on the plane.
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(a) P(||z|]|]2 > r) as a function of r for various n and x ~ (b) P(||z|]2 > r) as a function of r for various n. In this case,

Uniform(B). x = Ay, A ~ Uniform([0, 1]), y ~ Uniform(53).

Figure 2: [llustrative example showing that uniformly distributed draws on a unit sphere in R™ concentrate on its boundary
for large n. Applying mixup populates the interior of the space.

B PROOF-OF-CONCEPT EVALUATION

We start by describing the approach we employ to generate data containing the properties required by our evaluation. Denote
a design matrix by Xy p such that each of its V rows corresponds to a feature vector within R”. In order to ensure the
data lies in some manifold, we first obtain a low-dimensional synthetic design matrix given by X, ;, where each entry is
sampled randomly from Uniform([—10, 10]). We then expand it to R” by applying the following transformation:

X = X'A, (1
where the expansion matrix given by Agx p is such that each of its entries are independently drawn from Uniform([0, 1]).
Throughout our experiments, d = |0.3D] was employed.

Target values for the function f to be approximated are defined as sums of functions of scalar arguments applied independently
over each dimension. We thus select a set of dimensions M € [D] with respect to which f is to be monotonic, i.e.:

f(x) = Z gi(xi) + Z hj(z;), 2
ieM jEM
and every g; : R — R is increasing monotonic, while every h; : R — R is not monotonic.

We then create two evaluation datasets. One of them, referred to as the validation set, is identically distributed with respect
to X since it is obtained following the same procedure discussed above. In order to simulate covariate-shift, we create a test



set by changing the expansion matrix A to a different one.

Xval = Xll;alAu Xtest = XéestAtesta (3)

where A;.s; will be given by entry-wise linear interpolations between A, used to generate the training data, and a newly
sampled expansion matrix A’: Asest = @A’ + (1 — a)A. The parameter o € [0, 1], set to 0.8 in the reported evaluation,
controls the shift between A;..; and A;..; in terms of the Frobenius norm, which in turn enables the control of how much
the test set shifts relative to the training data.

We thus trained models to approximate f for spaces of increasing dimensions as well as for an increasing number of
dimensions with respect to which f is monotonic. Results are reported in Table[I]in terms of RMSE on the two evaluation
datasets, and in terms of monotonicity in Table 2] where / is computed both on random points and on the shifted test set.
Entries in the tables correspond to the centers of 95% confidence intervals resulting from 20 independent training runs.

We highlight the two following observations regarding the prediction performances shown in table[T} different models present
consistent performances across evaluations, which suggests different monotonicity-enforcing penalties do not significantly
affect prediction accuracy. Moreover, the proposed approach used to generate test data under covariate-shift is effective given
the gap in performance consistently observed between the validation and the test partitions. In terms of monotonicity, results
in Table@] suggest that ,.4,dom and Qy.qir, are only effective on either random or data points, which seems to aggravate
when the dimension D grows. €2,,;z.p, on the other hand, is effective on both sets of points, and continues to work well for
growing D. Furthermore, covariate-shift significantly affects €24,.q,, for higher-dimensional cases, while €2, performs
well in such a case.

[M|/D 20/100 40/200 80/400 100/500
Valid. RMSE  Test RMSE _ Valid. RMSE  Test RMSE _ Valid. RMSE  Test RMSE _ Valid. RMSE  Test RMSE
Non-mon. 0.007 0.107 0.006 0.082 0.007 0.087 0.011 0.146
Qrandom 0.008 0.117 0.006 0.081 0.007 0.093 0.012 0.125
Qirain 0.008 0.115 0.006 0.086 0.007 0.089 0.012 0.134
Qnizup 0.008 0.114 0.007 0.084 0.008 0.088 0.012 0.134

Table 1: Prediction performance of models trained on generated data in spaces of growing dimension (D) and number of
monotonic dimensions (|M|). Different regularization strategies do not affect prediction performance. The performance gap
consistently observed across the evaluation sets highlights the shift between the two sets of points. The lower the values of
RMSE the better.

|M|/D 20/100 40/200 80/400 100/500
ﬁrandom ﬁtest ﬁrandom ﬁtest ﬁrandom ﬁtest ﬁrandom ﬁtest
Non-mon. 99.90% 99.99% 97.92% 94.96% 98.47% 96.56% 93.98% 90.01%
Qrandom 0.00% 3.49% 0.00% 4.62% 0.01% 11.36% 0.02%  19.90%
Qirain 1.30% 0.36% 4.00% 0.58% 9.67% 0.25% 9.25% 5.57%
Qmizup 0.00% 0.35% 0.00% 0.44% 0.00% 0.26% 0.00% 0.42%

Table 2: Fraction of monotonic points p for models trained on generated data in spaces of growing dimension (D) and
number of monotonic dimensions (| M ). Different regularization strategies is effective on only one of prandom O Prests
while €,,5.up seems effective throughout conditions. The lower the values of p the better.

C MODELS AND TRAINING DETAILS FOR EXPERIMENTS REPORTED IN SECTION

For the case of CIFAR-10, WideResNets [Zagoruyko and Komodakis, [2016] are used. The models are initialized randomly
and trained both with and without the monotonicity penalty. Standard stochastic gradient descent (SGD) implements the
parameters update rule with a learning rate starting at 0.1, being decreased by a factor of 10 on epochs 10, 150, 250, and 350.
Training is carried out for a total of 600 epochs with a batch size of 64. For ImageNet, on the other, training consists of
fine tuning a pre-trained ResNet-50, where the fine-tuning phase included the monotonicity penalty. We do so by training
the model for 30 epochs on the full ImageNet training partition. In this case, given that the label set ) is relatively large,
using the standard ResNet-50 would result in small slices Si. To avoid that, we add an extra final convolution layer with



Model argmax,cy h(v)r  argmaxyey Tr ()

10%
WideResNet 85.68% 16.35%
MonoWideResNet 85.77% 82.21%
30%
WideResNet 92.12% 14.51%
MonoWideResNet 92.42% 88.88%
60%
WideResNet 94.51% 10.08%
MonoWideResNet 94.86% 93.81%

Table 3: Top-1 accuracy obtained by both standard and group monotonic models on sub-samples of CIFAR-10. Predicition
performance obtained by classifiers defined by the total activations is upper bounded by the performance obtained at the
output layer for monotonic models.

W = 15K. Training is once more carried out with SGD using a learning rate set to 0.001 in this case, and reduced by a
factor of 5 at epoch 20. In both cases, the group monotonicity property is enforced at the last convolutional layer. Other
hyperparameters such as the strength v of the monotonicity penalty as well as the inverse temperature p used to compute
Qgroup are set to 1 and 50 for the case of CIFAR-10, and to 5 and 10 for the case of ImageNet. Both momentum and weight
decay are further employed and their corresponding parameters are set to 0.9 and 0.0001. For MNIST classifiers, training is
performed for 20 epochs using a batch size of 64 and the Adadelta optimizer [Zeiler, 2012]] with a learning rate of 1.

D ENFORCING GROUP MONOTONICITY UNDER SMALL SAMPLES

Using CIFAR-10, we further evaluate how the proposed group monotonicity penalty behaves in data-constrained settings,
i.e., we check whether or not the property can be enforced under small sample regimes. We do so by sub-sampling the
original training data by randomly selecting a fraction of the training images uniformly across classes. We then train the
same WideResNet for the same computation budget in terms of number of iterations as the models trained in the complete set
of images. The learning rate schedule also matches that of the training on the full dataset in that the learning rate is reduced
at exactly the same iterations across all training cases. Results are reported in Table [3| for sub-samples corresponding to 10%,
30%, and 60% of CIFAR-10. Results are consistent across the three sets of results in showing that predictions obtained from
the total activation of feature slices approximate the prediction performance of the underlying model for the case of group
monotonic predictors, i.e., the extent to which the underlying model is able to accurately predict correct classes upper bound
the resulting “level of monotonicity”. In simple terms, the better the classifier, the more group monotonic it can be made.

E SELECTING FEATURE MAPS TO COMPUTE VISUAL EXPLANATIONS

Approaches based on Class Activation Maps (CAM) such as Grad-CAM and its variations [Selvaraju et al., 2017, |Chattopad+
hay et al.| 2018]| seek to extract explanations from convolutional models. By explanation we mean to refer to indications
of properties of the data implying the predictions of a given model. Under such a framework, one can obtain so-called
explanation heat-maps through the following steps: (1) Compute a weighted sum of activations of feature maps in a chosen
layer; (2) Upscale the results in order to match the dimensions of the input data; (3) Superimpose results onto the input
data. Specifically for the case of applications to image data, following those steps results in highlighting the patches of the
input that were deemed relevant to yield the observed predictions. Different approaches were then introduced in order to
define the weights used in the first step. A very common choice is to use the total gradient of the output corresponding to the
prediction with respect to activations of each feature map.

For the case of group monotonic classifiers, we are interested in verifying whether one can define useful explanation
heat-maps by considering only the feature slices corresponding to the predicted class, i.e., for a given input pair (z, y),
we compute explanation heat-maps considering only its corresponding feature activation slice S, (z). We thus design an
experiment to evaluate the effectiveness of such an approach by using external auxiliary classifiers to perform predictions
from test data that was occluded using explanation heat-maps obtained using different models and sets of representations. In
other words, we use the explanation maps to remove from the data the parts that were not indicated as relevant. We then
assume that good explanation maps will be such that classifiers are able to correctly classify occluded data since relevant
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Figure 3: Example of explanation heat-map and corresponding occlusion obtained with Grad-CAM and a ResNet-50 trained
on ImageNet. The example belongs to the validation set and corresponds to the class snowmobile.

Aux. classifier

Model (h) ResNext-50 MobileNet-v3 VGG-16 SqueezeNet
Reference perf. 77.62% 74.04% 71.59% 58.09%
" ResNet:50 7294% 6831%  67.34%  4995%
MonoResNet-50 72.88% 68.75% 66.99% 48.92%
MonoResNet-50 (Constrained) 72.44% 66.55% 66.92% 45.83%

Table 4: Top-1 accuracy of auxiliary classifiers evaluated on data created by occluding patches deemed irrelevant by
explanation heat-maps given by different models. The performance of monotonic classifiers when constrained to consider
only the feature maps within the slice corresponding to their prediction is further reported and shown to closely math the
performance of cases where the full set of features is considered.

patches are conserved. In further details, occlusions are computed by first applying a CAM operator given a model h and
data z, which results in a heat-map with entries in [0, 1]. We then use such a heat-map as a multiplicative mask to get an
occluded version of x, denoted 2/, i.e.:

' = CAM(z, h) o z, 4

where the operator o indicates element-wise multiplication. An example of such a procedure is shown in Figure [3] We
apply the above procedure to all of the validation data, and use resulting points to then assess the prediction performance of
auxiliary classifiers.

Explanation maps are computed using the same models discussed in Section [4.2.1] for ImageNet. The CAM operator
corresponds to a variation of Grad-CAM++ [Chattopadhay et al} 2018]] where the model activations are directly employed
for weighing feature maps rather than the gradients. We consider 4 auxiliary pre-trained classifiers corresponding to ResNext-
50 [2017]], MobileNet-v3 [Howard et al.| [2019], VGG-16 [Simonyan and Zisserman, 2014]], and SqueezeNet
[Tandola et al.| 2016]. Results are reported in Table d] which also include the reference performance of the auxiliary classifiers
on the standard validation set in order to provide an idea of the gap in performance resulting from removing parts of test
images via occlusion. We highlight the performance reported in the last row of the Table. In that case, explanation maps for
the group monotonic model are computed from only the features of the class slice, which is enough to match the performance
of a standard ResNet-50 with full access to the features. This suggests that representations learned by group monotonic
models are such that all the information required to explain a given class is contained in the slice reserved for that class.




F EXAMPLES OF EXPLANATION HEAT-MAPS AND OCCLUDED DATA

In Figure ] we show examples of explanation heat-maps obtained using different approaches. Corresponding occlusions
resulting from the different approaches are shown in[3]

G ANALYSIS OF COLOR SEQUENCES FOR GENERATED DATA

We performed a set of experiments in order to evaluate whether some kind of ordering could be observed once we generate
data for increasing values of z, specifically on dimensions that correspond to colors. To do that, we created an increasing
sequence of values by defining a uniform grid in [0, 1] with 50 steps. We then encoded a particular image, but decoded latent
vectors after substituting the z value in the dimension corresponding to floor color by the values in the sequence.

Generated sequences of images are shown in Figures[7]and [§] for the base and monotonic models, respectively. In each such
a case, we plot the images on the left, and bottom-left patches of size 10x10 so as to highlight the color sequences that we
observe with such an approach. Surprisingly, we observed that monotonic models tend to generate colors in a sequence that
matches the HUE circle for RGB images, represented in Figure|[6|for reference. Besides visually verifying that to be the case
across a number of generated examples, in Table[3]in Section [4.T]we check the fraction of the dataset where such sequences
of patches are sorted in terms of their HUE angles.

H EXAMPLES OF DATA GENERATED WITH STANDARD AND MONOTONIC MODELS

We illustrate data generated for linear trajectories in the latent space of standard and monotonic models. To do that, we start
from a fixed image, and modify one generative factor at a time. We then generate images by feeding the decoder with points
in the linear trajectory between the outputs of the encoder for the pair of images. Generated data for each modified factor are

shown in Figures[9} [I0] [TT} [T2] [T3] and[14]



100 200 100 200 200

Figure 4: Examples of explanation heat-maps superimposed onto images. From left to right we have the original image,
results obtained from a ResNet-50, a monoResNet-50, and a monoResNet-50 where the CAM operator only access the slice
corresponding to the underlying class. All are obtained with Grad-CAM.
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Figure 5: Examples of occluded data using explanation heat-maps. From left to right we have the original image, results
obtained from a ResNet-50, a monoResNet-50, and a monoResNet-50 where the CAM operator only access the slice
corresponding to the underlying class. All are obtained with Grad-CAM.



Figure 6: HUE circle of RGB images. Original image from: https://en.wikipedia.org/wiki/Hue.
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(a) Data for increasing values for the latent dimension

associated to floor color (b) Bottom-left 10x10 patches of generated images.

Figure 7: Data generated by standard model for traversals of z on the dimension corresponding to floor color
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(a) Data for increasing values for the latent dimension

associated to floor color (b) Bottom-left 10x10 patches of generated images.

Figure 8: Data generated by monotonic model for traversals of z on the dimension corresponding to floor color
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(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 9: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: floor color.



(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 10: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: wall color.
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(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 11: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: object color.
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(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 12: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: scale.
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(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 13: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: shape.
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(b) Data generated by standard model. (c) Data generated by monotonic model.

Figure 14: Generating data by moving along the line passing over latent representation for inputs for which a single factor is
different. Generative factor changing: orientation.
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