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Abstract

In this paper, we consider the setting of piecewise
i.i.d. bandits under a safety constraint. In this piece-
wise i.i.d. setting, there exists a finite number of
changepoints where the mean of some or all arms
change simultaneously. We introduce the safety
constraint studied in Wu et al. [2016] to this set-
ting such that at any round the cumulative reward is
above a constant factor of the default action reward.
We propose two actively adaptive algorithms for
this setting that satisfy the safety constraint, detect
changepoints, and restart without the knowledge
of the number of changepoints or their locations.
We provide regret bounds for our algorithms and
show that the bounds are comparable to their coun-
terparts from the safe bandit and piecewise i.i.d.
bandit literature. We also provide the first matching
lower bounds for this setting. Empirically, we show
that our safety-aware algorithms perform similarly
to the state-of-the-art actively adaptive algorithms
that do not satisfy the safety constraint.

1 INTRODUCTION

Consider a startup XYZ that wants to maximize revenue
collection from ad placements when users land on their
webpage. Revenue is generated when users click on the
ads. The user preferences change over time but not quickly
enough so that XYZ can focus on maximizing the revenue
collection for some time before changing its strategy again.
To do this XYZ must detect the user’s new preferences
and modify its suggestions. Due to budget constraints XYZ
must make sure that the aggregate revenue collection must
not fall below a certain threshold. The difficulty is that
XYZ does not know placing which ads will surely result
in revenue above the threshold. This constrains XYZ from
randomly placing different ads on their landing webpage.

On consultation with the industry experts XYZ comes up
with a default action that is known historically to be a highly
favored by users. Hence, XYZ comes up with a new safety
constraint such that when their algorithm is unsure of which
ad to place for some user it can fall back on this default
action. The learning algorithm now has to balance between
exploration under safety constraints and exploitation in this
slowly changing environment.

The dilemma faced by XYZ can be modeled as a sequen-
tial decision making problem in the piecewise i.i.d. ban-
dit setting under safety constraints. In the piecewise i.i.d.
bandit setting the learner is provided with a set of arms
i ∈ {0, 1, 2, . . . ,K} where we index the default arm (base-
line) as i = 0, and there exists a finite number of change-
points where the mean µi of one or more arms may change
simultaneously. At every round s ∈ {1, 2, . . . , T} the
learner selects an action Is ∈ {0, 1, 2, . . . ,K} and observes
the feedback XIs(s) where E[XIs(s)] =: µIs(s). Define i∗

as the optimal arm such that µi∗(s) > µi(s) for all i. The
goal of the learner is to maximize reward by quickly finding
the optimal arm i∗ under the following safety constraint

t∑
s=1

XIs(s) ≥ (1− α)

t∑
s=1

X0(s) (1)

for all t ∈ {1, . . . , T}, where α ∈ (0, 1] is the risk parame-
ter, and T is the horizon. The constraint in eq. (1) represents
how much the learner is allowed to risk in conducting the
exploration. For example, if α → 0 the learner is expected
to sample arms that are at least better than the baseline arm
0. The baseline arm represents expert’s belief over the cur-
rent user preferences and may change over time. Similar to
the setting of Wu et al. [2016] we assume that the mean of
the baseline arm is not known to the learner. Note that Wu
et al. [2016] is not suited for the piecewise i.i.d setting. By
change of belief of the expert we mean that only the value
of the baseline arm changes and not the index.

The challenge in our setting is three-fold: 1) Ensure that
the safety constraint (1) on cumulative reward is satisfied.
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Consider the scenario where the risk parameter α = 1. In
this case satisfying the eq. (1) is easy as choosing any arm
satisfies the constraint. However as α → 0 maintaining the
safety constraint becomes difficult as exploration becomes
limited or it will violate the safety constraints. 2) Adapt to
the piecewise i.i.d. nature of the environment. Observe that
as the means of arms change abruptly at changepoints the
algorithm must adapt or the safety constraint will be violated.
Further, to detect changepoints the algorithm must conduct
additional exploration without violating the eq. (1). Note
that Wu et al. [2016] do not consider any such piecewise
i.i.d. setting. 3) Finally, minimize the cumulative regret by
quickly finding the optimal arm for each of the time segment
between two changepoints. Our contributions are as follows:

1) We formulate the novel piecewise i.i.d. bandit setting
under safety constraints. We show that the current state-of-
the-art conservative algorithms [Wu et al., 2016] as well as
the changepoint detection algorithms are not equipped to
handle the safety constraint in eq. (1) in this setting.

2) We propose two actively adaptive algorithms that detect
changepoints and restart by erasing past history of inter-
actions. Simultaneously these algorithms ensure that the
safety constraint is satisfied. The current changepoint detec-
tion algorithms [Besson and Kaufmann, 2019, Mukherjee
and Maillard, 2019, Besson et al., 2020] do not take into
account the safety constraint and hence are not suited for
our setting.

3) We provide theoretical guarantees for both of our al-
gorithms and uncover new problem dependent terms that
depends on the optimality gaps, changepoint gaps, the gap of
the baseline arm, and the risk parameter α. We also provide
the first matching lower bounds for this setting. Empirically
we show that our proposed methods perform comparably
against safety oblivious changepoint detection algorithms.

2 RELATED WORKS

Our work lies at the intersection of two interesting areas:
1) Changepoint detection in piecewise i.i.d bandits, and 2)
Safe Sequential Decision Making. In piecewise i.i.d bandits
it is assumed that the change of mean (drift) of an arm are
well separated and significant enough to be detected. The
previous works in this setting are broadly classified into two
groups, viz. passively adaptive and actively adaptive algo-
rithms. Passively adaptive algorithms such as Discounted
UCB (D-UCB ) [Kocsis and Szepesvári, 2006], Sliding Win-
dow UCB (SW-UCB ) [Garivier and Moulines, 2011], and
Discounted Thompson Sampling (D-TS ) [Raj and Kalyani,
2017] do not try to detect the changepoints and only fo-
cus on minimizing the regret over a short window of the
time horizon. On the contrary, actively adaptive algorithms
such as EXP3.R [Allesiardo et al., 2017], CD-UCB [Liu
et al., 2017], CUSUM [Liu et al., 2017], M-UCB [Cao et al.,

2018], GLR-UCB [Besson and Kaufmann, 2019, Besson
et al., 2020], Ad-Switch [Auer et al., 2019], and UCB-CPD
[Mukherjee and Maillard, 2019] try to detect the change-
points and restart by erasing all the past history of interac-
tions. Actively adaptive algorithm like GLR-UCB, M-UCB,
UCB-CPD has several advantages over passively adaptive
algorithms. In environments where the changepoint gaps
are large and well-separated the passively adaptive algo-
rithms perform poorly (see [Besson and Kaufmann, 2019]).
The EXP3.R (an adaptive version of EXP3.S [Auer et al.,
2002b]) is more pessimistic than other actively adaptive al-
gorithms like UCB-CPD, GLR-UCB as it uses the conserva-
tive exponential weighting algorithm EXP3 for changepoint
detection, and hence, performs poorly in practice. GLR-
UCB uses the Bernoulli generalized likelihood ratio test
involving Kullback Leibler (KL) based divergence function
as changepoint detector. The KL divergence function of
GLR-UCB better exploits the geometry of (sub-)Bernoulli
distributions and so it outperforms M-UCB, Ad-Switch .
Note that none of the above algorithms are safety aware.

The safe sequential decision making setup has recently gar-
nered a lot of attention in machine learning [Amodei et al.,
2016, Turchetta et al., 2019]. Closer to our setting are the
works that study regret minimization in bandits under safety
constraints such as Wu et al. [2016], Kazerouni et al. [2017],
Amani et al. [2019], Garcelon et al. [2020]. These works
encode their safety requirements in the form of constraints
on the cumulative rewards observed by the learner. This
setup also called conservative bandits as the exploration is
constrained by the constraints on the cumulative reward.
Note that while Wu et al. [2016] studies the unstructured
stochastic and adversarial bandit setting, the Kazerouni et al.
[2017], Amani et al. [2019], Garcelon et al. [2020] study
the linear bandit (structured) setting. Another line of re-
lated work [Moradipari et al., 2020, Pacchiano et al., 2020,
Khezeli and Bitar, 2020] focuses on the idea of stagewise
safety constraint where at every stage (round) the reward
should be higher than a predetermined safety threshold with
high probability. Note that our setting of safety constraints
on cumulative rewards cannot be directly applied to the
stagewise setting. None of the above works deal with the
setting of piecewise i.i.d bandits with slow drift (change
of means). Note that while Wu et al. [2016] studies an ad-
versarial setting, they do not take any assumption on the
reward distributions and hence their exploration scheme is
highly conservative for piecewise i.i.d. bandits. Similarly,
conservative bandits studying the contextual (structured)
bandit setting [Kazerouni et al., 2017] do not use the known
information about slow drift of means. Finally note that
our setting is different than the thresholding bandit problem
[Locatelli et al., 2016, Mukherjee et al., 2017] where the
goal is to find all the arms above a fixed threshold B under
the fixed budget setting.

Notations: Denote [n] := {1, 2, . . . , n}. Define the set of
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arms as [K] indexed from i = 1, 2, . . . ,K. The baseline
arm is denoted by the index 0. Note that the learner knows
the index of the baseline arm but it does know the mean
of the baseline arm. This is similar to the setting in Wu
et al. [2016]. We define the set [K]+ := [K] ∪ {0} to indi-
cate that baseline arm 0 is included as well. We define the
mean of the arm i at round s as µi(s), and the empirical
mean of the arm till round t as µ̂i(t). We denote the opti-
mal arm as i∗ and the mean of the optimal arm at round
s as µi∗(s). The reward of the arm i sampled at round s
is denoted by Xi(s). We assume that the rewards are com-
ing from a bounded distribution supported on [0, 1]. We
further denote the distribution of the i-th arm with mean
µi(t) as ν(µi(t)). We denote the horizon (total rounds) as
T . The safety threshold is denoted by B and the risk pa-
rameter is denoted by α ∈ [0, 1]. For brevity we denote
the sequence of rounds between s to t as s : t. For clarity
of presentation we overload the notation µi(·) to denote
either the mean at round s as µi(s) or the mean over the
rounds 1 : t as µi(1 : t). Similarly, N(1 : t) denotes that
number of pulls of i from 1 : t. Define the empirical mean
µ̂i(1 : t) :=

∑t
s=1 XIs I{Is=i}∑t

s=1 I{Is=i} =
∑t

s=1 XIs I{Is=i}
Ni(1:t)

where Is
denotes the arm pulled at round s.

3 GLOBAL CHANGEPOINT DETECTION

We now define the setup for the Global Changepoint Setting
(GCS). Let the total number of changepoints till round T be
denoted by GT such that

GT :=#
{
1 ≤ s ≤ T | ∃i ∈ [K]+ : µi(s− 1) ̸=µi(s)

}
.

(2)

We define the global changepoints tc0 < tc1 < tc2 < . . . <
tcGT

such that the g-th global changepoint is defined as:

tcg := inf{s > tcg−1
: ∀i ∈ [K]+, µi(s− 1) ̸= µi(s)}.

Hence at a global changepoint tcg the mean of all the arms
i ∈ [K]+ change simultaneously. Let tc0 = 1 by convention.
Note, that the baseline mean changes at changepoints to
signify the new belief of the experts based on updated user
preferences. We define the changepoint segment between
tcg to tcg+1 − 1 as ρg. Note that the optimal arm for each
changepoint segment ρg may or may not be same. We further
define a few notations. Let the confidence width of arm i for
rounds 1 : t be defined as

βi(1 : t, δ) =

√
2 log(4 log2(t+ 1)/δ)

Ni(1 : t)
(3)

with the standard condition that if Ni(1 : t) = 0
then βi(1 : t, δ) = ∞. In our case it suffices to
take the leading constant of βi(1 : t, δ) as 2, though
tighter bounds are known and can be used in practice,
e.g. Balsubramani [2014], Tanczos et al. [2017], Howard

et al. [2021]. These type of anytime bounds constructed
with βi(1 : t, δ) are known to be tight in the sense
that P (

⋃∞
t=1 {|µ̂i(1 : t)− µi(1 : t)| ≥ βi(1 : t, δ)}) ≤ δ

and that there exists an absolute constant C ∈ (0, 1)
such that P ({|µ̂i(1 : t)− µi(1 : t)| ≥ Cβi(1 : t, δ) for in-
finitely many t ∈ N}) = 1 by the Law of the Iterated Log-
arithm [Hartman and Wintner, 1941]. Next we define the
upper confidence bound for i as

Ui(1 : t) := µ̂i(1 : t) + βi(1 : t, δ) (4)

and the lower confidence bound from 1 : t as

Li(1 : t) := µ̂i(1 : t)− βi(1 : t, δ). (5)

We define the UCB arm ut at round t as

ut := argmax
i∈[K]

Ui(1 : t) (6)

which is the arm with the highest uncertainty and needs to
be explored more to get a better estimate of its true mean
[Agrawal, 1995, Auer et al., 2002a]. Finally, we define the
empirical safety budget as

Ẑ(1 : t):=

t−1∑
s=1

LIs(1 :s)+Lut
(1 : t)−(1−α)

t∑
s=1

U0(1 : t)(7)

which quantifies by how much the safety constraint is being
violated. Also recall that the baseline arm is indexed as 0,
and the learner does not know the mean of the baseline arm.
This is similar to the second setting in Wu et al. [2016].

3.1 SAFE GLOBAL RESTART ALGORITHM

In this section we introduce the Safe Global Restart (SGR)
algorithm which is a safety aware global changepoint detec-
tion algorithm. SGR is an actively adaptive algorithm and
so it restarts by erasing the history of interactions once it
detects a changepoint. We define the parameter ri for the
i-th arm as the last restart round when a changepoint was
detected and the arm i history was erased. We define the last
restart vector

r := {r1, r2, . . . , rK} ∪ {r0}.

The safety budget for the GCS is Ẑ(1 : t)

:=

t−1∑
s=1

LIs(1 : s)+Uut(1 : t)−(1− α)

t∑
s=1

U0(1 : t)

(a)
=

t−1∑
s=1

LIs(rIs : s)+Uut
(rut

: t)−(1− α)

t∑
s=1

U0(r0 : t)

(8)

where, (a) follows because when a changepoint is detected
the history is erased for that arm i ∈ [K+].

We now state the main aspects of SGR . SGR is initialized by
sampling each arm once. Then at every round SGR decides
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to pull the UCB arm ut if Ẑ(1 : t) ≥ 0 or the baseline arm 0

if Ẑ(1 : t) < 0. Then SGR samples the next arm, observes
the reward XIt(t) and updates the problem parameters. Fi-
nally SGR calls the CPD changepoint detector sub-routine
to detect any changepoint. If a changepoint is detected at
round t by CPD then it erases the history of interactions for
all arms (including baseline arm) and sets the restarting time
for all arms i ∈ [K]+ as ri = t. We state the pseudo-code
of the policy SGR in Algorithm 1 and the key idea behind
CPD in the following Section 3.2.

Algorithm 1 Safe Global Restart (SGR)

1: Input: Risk parameter α ∈ [0, 1)
2: Set ri=1,∀i ∈ [K]+. Pull each arm once.
3: for t = K+ + 1,K+ + 2, . . . do
4: if Ẑ(t) ≥ 0 then
5: Set It = ut from eq. (6) ▷Pull UCB arm
6: else if Ẑ(t) < 0 then
7: Set It = 0 ▷Baseline arm
8: Pull It and observe XIt(t).
9: Update µ̂It(rIt : t), NIt(rIt : t), and Ẑ(rIt : t) in

eq. (7).
10: Call CPD (r, t, global) ▷Call CPD

3.2 CHANGEPOINT DETECTION

The sequential changepoint detection has a long history
in the statistical community [Basseville et al., 1993, Wu,
2007]. We explain the sequential changepoint detection
through the following example: Consider a single arm i.
Let at some round t we have a collection of i.i.d. samples
Xi(1), Xi(2), . . . , Xi(t) from a bounded distribution that
is supported on [0, 1]. The goal of changepoint detection is
to find out whether all the t samples have come from the
same distribution with mean µi(1 : t) or there exist a change-
point τcg ∈ N such that Xi(1), Xi(2), . . . , Xi(τcg−1) have
mean µi(1 : τcg−1) while Xi(τcg ), Xi(τcg + 1), . . . , Xi(t)
have a different mean µi(τcg : t) ̸= µi(1 : τcg − 1).
For notational convenience let us denote µi(1 : τcg ) as
µ′ and µi(τcg + 1 : t) as µ

′′
respectively. Hence, a se-

quential changepoint detector is defined as a stopping time
τ chg < ∞ that rejects the null hypothesis H0 : (∃µ′ :
∀i ∈ N,E[Xi] = µ′) in favor of the alternate hypothesis
H1 : (∃µ′′ ̸= µ′, τcg ∈ N : Xi(1), Xi(2), . . . , Xi(τcg ) ∼
ν(µ′), and Xi(τcg+1), Xi(τcg+2),. . . ,Xi(t) ∼ ν(µ

′′
)).

Previous works have studied the Generalized Likelihood
Ratio Test (GLRT) to detect the changepoints using this
hypothesis testing idea. Many of the previous works [Wilks,
1938, Siegmund and Venkatraman, 1995, Maillard, 2019,
Besson and Kaufmann, 2019, Besson et al., 2020] that have
studied this setting used Generalized Likelihood Ratio Test
(GLRT) to detect changepoints. The GLRT test works as

follows: We first calculate the GLRT statistic defined by

log
supµ′,µ′′ ,τcg<t L

(
Xi(1), . . . , Xi(t);µ

′, µ
′′
, τcg

)
supµ′ L (Xi(1), . . . , Xi(t);µ′)

where we denote the term L(Xi(1), . . . , Xi(t);µ
′) and

L(Xi(1), . . . , Xi(t);µ
′, µ

′′
, τ) as the likelihood of the first

t observations under hypothesis H0 and H1 respectively.
Now if the GLRT statistic crosses a threshold β̃(t, δ) then
it indicates that there exists a changepoint and the null hy-
pothesis H0 is rejected. A similar type of test, called the
CUSUM test [Page, 1954, Liu et al., 2017] has also been
studied where the distributions ν(µ1) and ν(µ2) are com-
pletely known. Note that GLRT works in the case when
both distributions are unknown but they come from the
same canonical exponential family. A detailed discussion
on this can be found in Maillard [2019].

Confidence-based scan statistic: An alternative to the
GLRT based scan statistics is the confidence-based scan
statistic that have been studied in Mukherjee and Maillard
[2019]. In the confidence based scan statistic the total num-
ber of samples of arm i from 1 : t is divided into slices, and
for each slice s a confidence interval is built of the form

µ̂i(1 : s)± βi(1 : s, δ) and µ̂i(s+ 1 : t)± βi(s+ 1 : t, δ)
(9)

where βi(1 : s, δ) is from eq. (3). Now if there exists some
s at which the confidence intervals do not overlap such that

τcg:=inf

{
t ∈ N :∃i∈ [K]+,∃s ∈ [1, t], |µ̂i(1 :s)−µ̂i(s+ 1: t)|

> βi(1 : s, δ) + βi(s+ 1 : t, δ)

}
(10)

then report a changepoint at s. Besson et al. [2020] show
that GLRT outperforms the confidence-based scan statistic
as it better exploits the geometry of the Bernoulli distribu-
tions. In our work we use the confidence-based scan statistic
as our goal is not to compete in the vanilla changepoint
detection setting but to derive novel bounds for the safety
aware piecewise i.i.d. setup proposed in this work.

Finally, we propose the CPD changepoint detector sub-
routine which is similar to the UCB-CPD algorithm in
Mukherjee and Maillard [2019]. The CPD takes input
the restart vector r, current time t, and the type ∈
{global, local} indicating whether it is a global or a local
changepoint setting. In this section we only discuss the
global setting while the local setting is discussed in Section
5. The CPD divides the total rounds ri : t into (t − ri)
slices for each arm i ∈ [K]+ and then proceeds to conduct
the confidence-based scan statistics as discussed in (10). If
there is a disjoint slice s then CPD reports a changepoint at s,
then erases the history of interactions (including the baseline
arm) and resets the restarting round counter ri,∀i ∈ [K]+
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to the current time t. We also reset the safe budget Ẑ(1 : t)
to 0. Ideally in practice we can still continue the accrued
safe budget to the next changepoint section from τcg+1

+ 1
without setting it to 0, but this makes our theoretical analysis
more tedious.

Algorithm 2 CPD (r, t, type)

1: for i = 1, 2, . . . ,K+ do
2: for t′ = ri, ri + 1, . . . , t do
3: if Li(ri : t

′) < Ui(t
′ + 1 : t) or Ui(ri : t

′) >
Li(t

′ + 1 : t) then
4: if type = global then
5: {̂µj(ri : s), Nj(ri : s)}ts=rj={0, 0}ts=rj ,

∀j ∈ [K+]. Set rj = t,∀j ∈ [K+]. Set
Ẑ(1 : t) = 0.

6: else
7: {µ̂i(ri :s), Ni(ri : s)}ts=ri ={0, 0}ts=ri ,

ri= t. Set Ẑ(1 : t) = 0.

3.3 REGRET ANALYSIS FOR SGR

We denote the time interval segment ρg := [tcg , tcg+1
−1] so

that the segment ρg starts at round tcg and ends at tcg+1−1.
Let µi,g denote the mean of arm i for the segment ρg. Let
the changepoint gap between the segments ρg and ρg+1 be
∆chg

i,g := |µi,g − µi,g+1|. We redefine the optimality gap for
the segment ρg as ∆opt

i,g := µi∗,g − µi,g. Let τcg denote the
first round when the changepoint tcg is detected and SGR is
restarted. Then we define the quantity N chg

0,g as the number
of times the baseline arm is sampled from rounds tcg till the
detection of changepoint at τcg . Finally, we define the delay
of detection of the g-th changepoint as

dg:=

⌈
K+

(
max
i∈[K]

B(T,δ)

(∆chg
i,g )2

+
B(T,δ)

(∆chg
0,g )

2
+N bse

0,g

)
4K

⌉
(11)

such that SGR detects the change at tcg within tcg + 1 till
tcg+dg rounds with probability greater than 1−δ. We define
the quantity B(T, δ) = 16 log(4 log2(T/δ)). The quantity
N chg

0,g denotes the number of samples of the baseline arms
after the changepoint tcg has occurred but not detected and
is defined by

N bse
0,g :=

1

αµ0,g

∑
i∈[K]

B(T, δ)

max{∆opt
i,g ,∆

opt
0,g −∆opt

i,g }
.

Intuitively, N chg
0,g is the number of samples required after

tcg has occurred and the safe budget Ẑ(1 : t) falls below 0.
In N chg

0,g if α is very small, we can still explore other arms
as long as the baseline arm 0 is close to the optimal arm
µ∗
i,g (so that ∆opt

0,g is small) while the other arms are clearly
sub-optimal (i.e. the ∆opt

i,g are large). If this happens then the

sub-optimal arms are quickly discarded, while the Ẑ(1 : t)
stays positive and the regret penalty is small. We now define
a mild assumption on separation of changepoints which
is standard in changepoint detection settings (see Besson
and Kaufmann [2019], Besson et al. [2020]). Without this
assumption the changepoints can be too frequent and cannot
be detected before the next change happens. We require this
assumption for our theoretical guarantees. Note that in the
experiments we show that even when this assumption does
not hold our proposed algorithms performs well.

Assumption 1. (Separation of changepoints for GCS )
We assume that the for all g ∈ {0, 1, 2, . . . , GT } two

consecutive changepoints tcg and tcg+1 are separated as
tcg+1

− tcg ≥ 2max{dg, dg+1}, where dg is stated in (11).

The Assumption 1 assumes that two consecutive change-
points are separated enough to be detected by the change-
point detector. Note that our detection delay dg is larger
than Besson et al. [2020] because between tcg : τcg the
budget Ẑ(1 : t) may fall below 0 and SGR may need to
sample the baseline arm from the next segment ρg+1. We
denote an event by ξ and its complement by ξ. Define the
good event ξdelg that all changepoints g′ ≤ g have been
detected with delay at most dg′ . Let the safe budget time

set Q(1 : t) :=
{
s ∈ [1 : t] : Ẑ(1 : s) ≥ 0

}
be the set of

all rounds 1 : t when Ẑ(1 : s) ≥ 0. We can decompose the
expected regret as
GT∑
g=1

[ K∑
i=1

∑
s∈Q(τcg−1

:tcg−1)

∆opt
i (s)E[Ni(s)|ξdelg (s)]P

(
ξdelg (s)

)
︸ ︷︷ ︸

Part (A), UCB arm pulled, Safe budget Ẑ(τcg−1
: s) ≥ 0

+
∑

s∈Q(τcg−1
:tcg−1)

∆opt
0 (s)E[N0(s)|ξdelg (s)]P

(
ξdelg (s)

)
︸ ︷︷ ︸

Part (B), Baseline arm pulled, Safe budget Ẑ(τcg−1
: s) < 0

+

K∑
i=1

∑
s∈Q(tcg :τcg−1)

∆opt
i (s)E[Ni(s)|ξdelg (s)]P

(
ξdelg (s)

)
︸ ︷︷ ︸

Part (C), Changepoint Pulls, Safe budget Ẑ(τcg−1
: s) ≥ 0

+
∑

s∈Q(tcg :τcg−1)

∆opt
0 (s)E[N0(s)|ξdelg (s)]P

(
ξdelg (s)

)
︸ ︷︷ ︸
Part (D), Changepoint Baseline Pulls, Safe budget Ẑ(τcg−1

: s) < 0

+

T∑
s=τcg−1

P(ξdelg (s))︸ ︷︷ ︸
Part (E), Total Detection Delay Error

]
, (12)

which follows by dividing the total rounds till T into GT

segments when the changepoint tcg is detected at τcg . We
then further subdivide it into two parts τcg−1 : tcg − 1
(rounds before tcg ) and tcg : τcg − 1 (rounds before de-
tection of tcg . The four parts (A)-(D) further divides the
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two time segments τcg−1 : tcg − 1 and tcg : τcg − 1
based on the available safe budget and using the defini-
tion of Q(1 : t). Now using Assumption 1 we can show
that two consecutive changepoints are separated enough to
correctly control the pulls of the baseline arm, and detect
the optimal arm given that ξdelg holds. The main difference
from previous changepoint detection works like Besson
and Kaufmann [2019], Mukherjee and Maillard [2019] lies
in controlling the detection delay and false alarm under
the safety budget constraint. Using the Assumption 1 and
changepoint detection Lemma 3 we can show that the de-
tection delay is bounded by 2max{dg, dg+1} with high
probability. We now define a few problem dependent pa-
rameters which is key to analyze the regret of SGR. We de-

fine the quantity H
(1)
i,g := max

{
1

∆opt
i,g−1

,
∆opt

i,g−1

(∆chg
i,g−1)

2

}
as the

hardness of discarding the sub-optimal arm i and avoiding

false detection, the quantity H
(2)
i,g := maxj∈[K]+

∆opt
i,g

(∆chg
j,g )

2

as the hardness for detecting the changepoint tcg due to i
after the changepoint has happened. Finally, the quantity

H
(3)
i,g :=

∆opt
max,g

max{∆opt
i,g ,∆opt

0,g−∆opt
i,g } captures the trade-off of se-

lecting the baseline arm 0 once the changepoint tcg occurred.
The regret of SGR is shown below.

Theorem 2. Let H(1)
i,g , H

(2)
i,g , H

(3)
i,g is defined above for the

segment ρg. Then the expected regret of SGR is upper
bounded by

E[RT ]≤O

((GT∑
g=1

K+∑
i=1

(
H

(1)
i,g−1+H

(2)
i,g

)
+

GT∑
g=1

1

αµ0,g−1

K∑
i=1

H
(3)
i,g−1

+K

GT∑
g=1

1

αµ0,g

K∑
i=1

H
(3)
i,g

)
log

(
log2 T

δ

))
. (13)

In the result of (13) the first term is the optimality regret
suffered before discarding the arm i when the safety budget
Ẑ(1 : t) ≥ 0. The second term denotes the regret suffered
for the changepoint detection due to arm i. The third term
is the regret suffered for the section ρg−1 when the safety
budget Ẑ(1 : t) < 0. Finally, the fourth term is the regret
suffered due to the changepoint tcg and safety budget Ẑ(1 :
t) < 0. SGR conducts no forced exploration which results
in a fully gap-dependent bound. This result is different than
the gap-dependent bound in Mukherjee and Maillard [2019]
which does not contain the third and fourth terms in (13).
The bound in (13) is more informative than Corollary 1 as
it correctly captures the dependence with respect to gaps for
each segment ρg .

4 LOCAL CHANGEPOINT DETECTION

In the Local Changepoint Setting (LCS) at any changepoint
at least one arm has a change of mean. Recall GT from (2).

We then define the local changepoints tc0 < tc1 < . . . <
tcGT

such that the g-th local changepoint is defined as

tcg := inf{s > tcg−1
: ∃i ∈ [K], µi(s− 1) ̸= µi(s)}.

So at a local changepoint the mean of one or
more arms may change simultaneously. Let Gi

T :=
# {1 ≤ s ≤ T | µi(s− 1) ̸= µi(s)} denote the number of
changepoints only for the i-th arm. It follows that Gi

T ≤ GT

but for some arms there could be arbitrary difference be-
tween these two quantities. Note that JT :=

∑K
i=1 G

i
T ≤

KGT . Define ticg := inf{s > ticg−1
: µi(s − 1) ̸= µi(s)}

as the g-th changepoint for the i-th arm. Again tic0 =1 for
all arms i ∈ [K]+ by convention. We denote the segment
between rounds ticg and ticg+1

−1 as ρig .

Consider the scenario that a learner has figured out the best
arm i in a segment ρig but then at a local changepoint tjcg , an
arm j ̸= i becomes the new optimal arm (but arm i does not
change). So it will not be able to detect tjcg and will continue
sampling arm i. Hence the leaner need to conduct forced
exploration of all arms to have a good estimate of all arms.
This idea is shown in Algorithm 3 where at every round
SLR first checks that the safety budget is positive and then
either conducts forced exploration of arms with exploration
parameters γ (to be defined later) or samples the UCB arm
ut. If the safety budget is negative then SLR samples the
baseline arm so that the budget becomes positive and SLR
can explore again. Finally SLR calls the CPD sub-routine
with type as "local" to detect local changepoints for an arm.
Once the changepoint is detected it restarts only that arm
as this is the local changepoint setting. The crucial thing to
note is that we conduct forced exploration only when safety
budget is available (positive).

Algorithm 3 Safe Local Restart (SLR)

1: Input: Risk parameter α, exploration factor γ
2: Set ri=1,∀i ∈ [K+]. Pull each arm once.
3: for t = K+ + 1,K+ + 2, . . . do
4: if Ẑ(t) ≥ 0 then
5: if t mod ⌊K

γ ⌋ /∈ [K] then
6: Set It = ut from eq. (6) ▷Pull UCB arm
7: else if t mod ⌊K

γ ⌋∈ [K] then
8: Set It = t mod ⌊K

γ ⌋ ▷Forced Exploration

9: else if Ẑ(t) < 0 then
10: Set It = 0 ▷Baseline arm
11: Pull It and observe XIt(t).
12: Update µ̂It(rIt : t), NIt(rIt : t),and Ẑ(rIt : t) in

eq. (7).
13: Call CPD (r, t, local) ▷Call CPD

4.1 REGRET ANALYSIS FOR SLR

We can extend the analysis of SGR to also bound the re-
gret for SLR. The key difference between the two analysis
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is that SLR needs to bound the regret for each segment
ρig for all arms i ∈ K+. To this effect we first redefine
changepoint gap for any arm i between the segments ρig and
ρig+1 as ∆chg

i,g := |µi,g − µi,g+1|, and the optimality gap as
∆opt

i,g := µi∗,g − µi,g. Let τ icg denote the first round when
the changepoint ticg is detected and SLR is restarted for the
arm i. Then we define detection delay for the changepoint
at ticg as

di,g :=

⌈
K

γ
+
4

γ

(
B(T, δ)

(∆chg
i,g )2

+
B(T, δ)

(∆chg
0,g )

2
+N bse

0,g

)⌉
. (14)

such that ticg is detected within ticg + 1 : ticg + di,g rounds
and γ is the exploration rate of SLR . Again we denote
B(T, δ) = 16 log(4 log2(T/δ)). Note that the delay di,g
scales with the exploration rate γ so that SLR while conduct-
ing forced exploration can detect ticg . Similar assumption
has also been taken in Besson and Kaufmann [2019], Besson
et al. [2020]. We then define the following assumption for
the separation of changepoints between ticg and ticg+1

. Again
note that this assumption is only required for theoretical
guarantees. Empirically we show that SLR performs well
even when the Assumption 2 is violated.

Assumption 2. (Separation of changepoints for LCS )
We assume that the for all g ∈ {0, 1, 2, . . . , Gi

T } two
consecutive changepoints ticg and ticg+1

are separated as
ticg+1

− ticg ≥ 2max{di,g, di,g+1}, where di,g is defined in
(14).

Next we introduce the quantity H
(2)
i,g :=

∆opt
i,g

(∆chg
i,g )

2 as the

hardness for detecting the g-th changepoint for the arm i.
Note that in the LCS setting the SLR algorithm is restarted
only for the arm i and so in the hardness we do not see the
max over all arms like the SGR setting. Finally using the
Assumption 2 and the same analysis as in Theorem 2 but
for each segment ρig and each arm i ∈ [K+] we bound the
regret for SLR in Theorem 3.

Theorem 3. Let H(1)
i,g , H

(2)
i,g , H

(3)
i,g is defined above for the

segment ρg . Then the expected regret of SLR is bounded by

E[RT ]≤O

((K+∑
i=1

Gi
T∑

g=1

(
H

(1)
i,g−1+H

(2)
i,g

)
+

K∑
i=1

Gi
T∑

g=1

1

αµ0,g−1

K∑
i=1

H
(3)
i,g−1

+K

GT∑
g=1

1

αµ0,g

K∑
i=1

H
(3)
i,g

)
log

(
log2 T

δ

))
+γT. (15)

The result in (15) has a similar interpretation to (13) (but
with respect to each arm segment ρig instead of global seg-
ment ρg) except the gap-independent term of γT which
results from the forced exploration of arms. We state the
following corollary to summarize the result of SGR and
SLR in the "easy" case when all the gaps are same.

Corollary 1. (Gap independent bound) Setting ∆opt
i,g =

∆chg
i,g =

√
K log T

T for all i ∈ [K]+ and exploration rate

γ =
√

log T
T we obtain the gap independent regret upper

bound of SGR and SLR as

E[RT ]≤O

(
GTK

√
KT log T+

GT log T

αµ0,min

)
, (SGR )

E[RT ]≤O

(
GT

√
KT log T+

GT log T

αµ0,min

)
, (SLR)

where α is the risk parameter.

Comparing the above result with GLR-UCB (see Proposi-
tion 4) we see that SGR (or SLR ) picks up an additional
factor of 1/(µ0,minα) per changepoint which signifies the
hardness of finding the safe set of actions for maintaining
the safety constraint (1). Further note that SGR suffers an
extra factor of K in its bound compared to SLR . This is
because in the GCS setting the algorithm restarts by erasing
the history of interactions for all arms. Hence, our result mir-
rors a similar observation in Besson et al. [2020]. Moreover
as α → 0 (risky setting) the regret increases proportionally.
This is similar to the gap-independent bound in Wu et al.
[2016] shown in Proposition 2 which holds for the stochastic
setting without any changepoints. The key takeaway from
this result is that the piecewise i.i.d. setting under safety
constraints is no harder than the conservative stochastic set-
ting of Wu et al. [2016] and piecewise i.i.d. setting given
the changepoints are sufficiently separated. Finally we state
the lower bound in the safe GCS setting.

Theorem 3. (Lower Bound) Let E , E be two bandit envi-
ronment and there exits a global changepoint at tc1 = T/2.
Let α > 0 be the safety parameter and µ0,min be the
mean of the minimum safety mean over the changepoint
segments. Then the lower bound is given by EE,E [RT ] ≥{

K
(16e+8)αµ0,min

+
log T

αµ0,min
,

√
KT√

32e+16
+

log T

αµ0,min

}
.

The proof is given in Appendix .6 and follows from the
change of measure argument. Additionally, we use the lower
bound results from safe bandit setting of Wu et al. [2016]
and changepoint detection setting of Gopalan et al. [2021] to
arrive at the final result. Note that both of these works do not
take into account the safe GCS setting. Finally, comparing
the results of Theorem 3 and Corollary 1 we see that SGR
matches the lower bound when GT = 1 except a factor
of O(K

√
log T ). Similarly, since GCS is a special case of

LCS , we see that SLR also matches the lower bound except
a factor of O(K

√
log T ).

5 EXPERIMENTS

In this section we test SGR and SLR against safety oblivious
actively adaptive algorithms GLR-UCB , UCB-CPD as well
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as passive algorithm D-UCB , and safety aware algorithms
CUCB , and UMOSS . A detailed discussion on the algo-
rithms, hyper-parameter tuning, and time complexity of the
algorithms is given in Appendix .7. One further experiment
showing the performance of SGR , SLR under different
values of α is shown in Appendix .7. All codes are provided
in supplementary material.

Global Changepoint: In this setting all the arms (including
baseline) change at every changepoint. The environment
consist of 6 arms (including baseline) and the evolution of
means with respect to rounds is shown in Figure 1 (Left).
The three global changepoints are at t = 2000, 4000 and
6000. We set risk parameter α = 0.7. The performance of
all the algorithms is shown in Figure 2 (Left). The adaptive
algorithms like UCB-CPD , GLR-UCB perform well as they
detecting the changepoints and restart but they do not sat-
isfy the safety constraints. Note that SGR performs similar
to GLR-UCB , UCB-CPD as it also detects the change-
points and restarts as well as satisfy the safety constraint. It
outperforms passive algorithm D-UCB , and safety aware
algorithm CUCB . The safety aware algorithm CUCB is
not suited for the safety constraint (1) under piecewise i.i.d.
setting as it always chooses the baseline arm and fail to
achieve sub-linear regret.

Figure 1: (Left) Global changepoint environment with
T = 8000, K+ = 6 and changepoints at t = 2000, 4000
and 6000. (Middle) Local changepoint environment with
T = 8000, K+ = 6 and changepoints at t = 2000, 4000
and 6000. Note that some arms do not change at these
changepoints.

Figure 2: (Left) GCS setting with 3 changepoints and 6 arms.
(Right) LCS setting with 3 changepoints and 6 arms.
Local Changepoint: In this setting at least one arm changes
at every changepoint. We show that the environment in
Figure 1 (Right) and the performance of all the algorithms
in Figure 2 (Right). The three local changepoints are at t =

2000, 4000 and 6000. We set a constant baseline µ0 = 0.35,
and risk parameter α = 0.7. Again we see that the safety
aware algorithm CUCB fail to achieve sub-linear regret as it
always chooses the baseline arm. On the other hand adaptive
algorithms like UCB-CPDE , GLR-UCB performs well in
detecting the changepoints but they do not satisfy the safety
constraints. Note that SGR performs similar to GLR-UCB ,
UCB-CPD as it also detects the changepoints and restarts
as well as satisfy the safety budget. It outperforms passive
algorithm D-UCB , and safety aware algorithm CUCB .

Real Setting: We show a real world experiment on the
Movielens Dataset. In this experiment none of our model-
ing assumptions hold. We experiment with the Movielens
dataset from February 2003 [Harper and Konstan, 2016],
where there are 6k users who give 1M ratings to 4k movies.
We obtain a rank-4 approximation of the dataset over 128
users and 128 movies such that all users prefer either movies
7, 13, 16, or 20 (4 user groups). The movies are the arms
and we choose 30 movies that have been rated by all the
users. Hence, this testbed consists of 30 arms and is run over
T = 8000. The changepoints are at t = 2000, t = 4000,
and t = 6000. Note that at each changepoint the means of
some arms may or may not change so this is LCS . For every
changepoint segment, we uniform randomly sample an user
from different user groups to simulate the piecewise i.i.d
environment such that there is a change in the optimal arm.
In this environment each arm has has a Gaussian distribu-
tion associated with it, where its mean evolve as shown in
Figure 1 (Left). The baseline arm is set as 0.35. As shown
in Figure 1 (Right), in this environment SLR outperforms
all the other algorithms including CUCB and Adv-CUCB
. This is because the means of the arms are close to each
other and the baseline arm mean is close to them.

Figure 3: (Left) LCS setting with 3 changepoints and 30
arms. (Right) Regret in Movielens dataset.

6 CONCLUSION AND FUTURE WORKS

In this paper we studied the safety aware piecewise i.i.d. ban-
dits under a new safety constraint. We proposed two actively
adaptive algorithms SGR and SLR which satisfy the safety
constraints as well as detect changepoints and restart. We
provided regret bounds on our algorithms and showed how
the bounds compare with respect to safety aware bandits
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as well as adaptive algorithms. We also provided the first
matching lower bounds for this setting. Future works in-
clude extending our setting to the rested and sleeping bandit
setting under safety constraints. We also intend to explore
experimental design approaches to piecewise i.i.d settings as
in Pukelsheim [2006], Mason et al. [2021], Mukherjee et al.
[2022]. Finally, incorporating variance aware techniques
[Audibert et al., 2009, Mukherjee et al., 2018] may further
improve the the performance of our proposed algorithms.
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