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Abstract

This paper studies the problem of data collection
for policy evaluation in Markov decision processes
(MDPs). In policy evaluation, we are given a target
policy and asked to estimate the expected cumu-
lative reward it will obtain in an environment for-
malized as an MDP. We develop theory for optimal
data collection within the class of tree-structured
MDPs by first deriving an oracle data collection
strategy that uses knowledge of the variance of
the reward distributions. We then introduce the
Reduced Variance Sampling (ReVar ) algorithm
that approximates the oracle strategy when the re-
ward variances are unknown a priori and bound
its sub-optimality compared to the oracle strategy.
Finally, we empirically validate that ReVar leads to
policy evaluation with mean squared error compa-
rable to the oracle strategy and significantly lower
than simply running the target policy.

1 INTRODUCTION

In reinforcement learning (RL) applications, there is often
a need for policy evaluation to determine (or estimate) the
expected return (future cumulative reward) of a given pol-
icy. Policy evaluation is also required in other sequential
decision-making settings outside of RL. For example, test-
ing an autonomous vehicle stack or ad-serving system can
be seen as policy evaluation applications. Accurate and data
efficient policy evaluation is critical for safe and trust-worthy
deployment of autonomous systems.

This paper studies data collection for low mean squared
error (MSE) policy evaluation in sequential decision-making
tasks formalized as Markov decision processes (MDPs). The
objective of policy evaluation is to estimate the expected
return that will be obtained by running a target policy which
is a given probabilistic mapping from states to actions.

To evaluate the target policy, we require data from the en-
vironment in which it will be deployed. Collecting data
requires running a (possibly non-stationary) behavior pol-
icy to generate state-action-reward trajectories. Our goal
is to find a behavior policy that leads to a minimum MSE
evaluation of the target policy.

The most natural choice is on-policy sampling in which we
use the target policy as the behavior policy. However, we
show that in some cases this choice is far from optimal (e.g.,
Figure 2 in our empirical analysis) as it fails to actively take
actions from which the expected return is uncertain. Instead,
an optimal behavior policy should take actions in any given
state to reduce uncertainty in the current estimate of the
expected return from that state.

Our paper makes the following main contributions. We first
derive an optimal “oracle" behavior policy for finite tree-
structured MDPs assuming oracle access to the MDP transi-
tion probabilities and variances of the reward distributions.
Sampling trajectories according to the oracle behavior policy
minimizes the MSE of the estimator of the target policy’s
expected. As a special case (depth 1 tree MDPs), we re-
cover the optimal behavior policy for multi-armed bandits
Carpentier et al. [2015].

We then introduce a practical algorithm, Reduced Variance
Sampling (ReVar ), that adaptively learns the optimal be-
havior policy by observing rewards and adjusting the policy
to select actions that reduce the MSE of the estimator. The
main idea of ReVar is to plug-in upper-confidence bounds
on the reward distribution variances to approximate the ora-
cle behavior policy. We define a notion of policy evaluation
regret compared to the oracle behavior policy, and bound
the regret of ReVar . The regret converges rapidly to 0 as
the number of sampled episodes grows, theoretically guar-
anteeing that ReVar quickly matches the performance of
the oracle policy. Finally, we implement ReVar and show it
leads to low MSE policy evaluation in both a tree-structured
and a general finite-horizon MDP. Taken together, our con-
tributions provide a theoretical foundation towards optimal
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data collection for policy evaluation in MDPs.

The remainder of the paper is organized as follows. In Sec-
tion 3 we reformulate our problem in the bandit setting and
discuss related bandit works. In Section 4 we extend the
bandit formulation to the tree MDP. Finally we introduce
the more general Directed Acyclic Graph (DAG) MDP in
Section 5 and discuss some limitations of our sampling be-
havior. We show numerical experiments in Section 6 and
conclude in Section 7.

2 BACKGROUND

In this section, we introduce notation, define the policy
evaluation problem, and discuss the prior literature.

2.1 NOTATION

A finite-horizon Markov Decision Process, M, is the tu-
ple (S,A, P,R, γ, d0, L), where S is a finite set of states,
A is a finite set of actions, P : S × A × S → [0, 1]
is a state transition function, R is the reward distribution
(formalized below), γ ∈ [0, 1) is the discount factor, d0
is the starting state distribution, and L is the maximum
episode length. A (stationary) policy, π : S × A → [0, 1],
is a probability distribution over actions conditioned on a
given state. We assume data can only be collected through
episodic interaction: an agent begins in state S0 ∼ d0
and then at each step t takes an action At ∼ π(·|St) and
proceeds to state St+1 ∼ P (·|St, At). Interaction termi-
nates in at most L steps. Each time the agent takes ac-
tion at in state st it observes a reward Rt ∼ R(st, at).
We assume R(s, a) = P(µ(s, a), σ2(s, a)), where P de-
notes a parametric distribution with mean µ(s, a) and vari-
ance σ2(s, a). The entire interaction produces a trajectory
H := {(St, At, Rt)}Lt=1. We assume d0 is known but P and
the reward distributions are unknown. We define the value
of a policy as: v(π) := Eπ[

∑L
t=1 γ

t−1Rt], where Eπ is the
expectation w.r.t. trajectories sampled by following π.

We will make use of the fact that the value of a policy can
be written as: v(π) = E[vπ0 (S0)|S0 ∼ d0] where,

vπt (s) :=
∑
a

π(a|s)µ(s, a) + γ
∑
s′

P (s′|s, a)vπt+1(s
′)

for t ≤ L and vπt (s) = 0 for t > L.

2.2 POLICY EVALUATION

We now formally define our objective. We are given a tar-
get policy, π, for which we want to estimate v(π). To esti-
mate v(π) we will generate a set of K trajectories where
each trajectory is generated by following some policy. Let
Hk := {skt , akt , Rk

t (s
k
t , a

k
t )}Lt=1 be the trajectory collected

in episode k and let bk be the policy ran to produce Hk. The
entire set of collected data is given as D := {Hk, bk}Kk=1.

Once D is collected, we estimate v(π) with a certainty-
equivalence estimate Sutton [1988]. Suppose D consists
of n = KL state-action transitions. We define the random
variable representing the estimated future reward from state
s at time-step t as:

Yn(s, t) :=
∑
a

π(a|s)µ̂(s, a)+γ
∑
s′

P̂ (s′|s, a)Yn(s
′, t+1),

where Yn(s, t + 1) := 0 if t ≥ L, µ̂(s, a) is an estimate
of µ(s, a) and P̂ (s′|s, a) is an estimate of P (s′|s, a), both
computed fromD. Finally, the estimate of v(π) is computed
as Yn :=

∑
s d0(s)Yn(s, 0). In the policy evaluation litera-

ture, the certainty-equivalence estimator is also known as the
direct method Jiang and Li [2016] and, in tabular settings,
can be shown to be equivalent to batch temporal-difference
estimators Sutton [1988], Pavse et al. [2020]. Thus, it is
representative of two types of policy evaluation estimators
that often give strong empirical performance Voloshin et al.
[2019].

Our objective is to determine the sequence of behavior poli-
cies that minimize error in estimation of v(π). Formally,
we seek to minimize mean squared error which is defined
as: ED

[
(Yn − v(π))

2
]

where the expectation is over the
collected data set D.

2.3 RELATED WORK

Our paper builds upon work in the bandit literature for op-
timal data collection for estimating a weighted sum of the
mean reward associated with each arm. Antos et al. [2008]
study estimating the mean reward of each arm equally well
and show that the optimal solution is to pull each arm pro-
portional to the variance of its reward distribution. Since the
variances are unknown a priori, they introduce an algorithm
that pulls arms in proportion to the empirical variance of
each reward distribution. Carpentier et al. [2015] extend this
work by introducing a weighting on each arm that is equiv-
alent to the target policy action probabilities in our work.
They show that the optimal solution is then to pull each arm
proportional to the product of the standard deviation of the
reward distribution and the arm weighting. Instead of using
the empirical standard deviations, they introduce an upper
confidence bound on the standard deviation and use it to
select actions. Our work is different from these earlier works
in that we consider more general tree-structured MDPs of
which bandits are a special case.

In RL and MDPs, exploration is widely studied with the
objective of finding the optimal policy. Prior work attempts
to balance exploration to reduce uncertainty with exploita-
tion to converge to the optimal policy. Common approaches
are based on reducing uncertainty [Osband et al., 2016,

1414



O’Donoghue et al., 2018] or incentivizing visitation of novel
states [Barto, 2013, Pathak et al., 2017, Burda et al., 2018].
These works differ from our work in that we focus on eval-
uating a fixed policy rather than finding the optimal policy.
In our problem, the trade-off becomes balancing taking ac-
tions to reduce uncertainty with taking actions that the target
policy is likely to take.

Our work is similar in spirit to work on adaptive impor-
tance sampling [Rubinstein and Kroese, 2013] which aims
to lower the variance of Monte Carlo estimators by adapting
the data collection distribution. Adaptive importance sam-
pling was used by Hanna et al. [2017] to lower the variance
of policy evaluation in MDPs. It has also been used to lower
the variance of policy gradient RL algorithms [Bouchard
et al., 2016, Ciosek and Whiteson, 2017]. AIS methods at-
tempt to find a single optimal sampling distribution whereas
our approach attempts to reduce uncertainty in the estimated
mean rewards. In a similar spirit, Talebi and Maillard [2019]
adapt the behavior policy to minimize error in estimating
the transition model P .

3 OPTIMAL DATA COLLECTION IN
MULTI-ARMED BANDITS

Before we address optimal data collection for policy eval-
uation in MDPs, we first revisit the problem in the bandit
setting as addressed by earlier work Carpentier et al. [2015].
The bandit setting provides intuition for how a good data
collection strategy should select actions, though it falls short
of an entire solution for MDPs.

Observe that the policy value in a bandit problem is defined
as v(π) :=

∑A
a=1 π(a)µ(a) where the bandit consist of a

single state s and A actions indexed as a = 1, 2, . . . , A. In
this setting, the horizon L = 1 so we return to the same
state after taking an action a at time t. Hence, we drop the
state s from our standard notation.

Suppose we have a budget of n samples to divide between
the arms and let Tn(1), Tn(2), . . . , Tn(A) be the number
of samples allocated to actions 1, 2, . . . , A at the end of n
rounds. We define the estimate:

Yn :=

A∑
a=1

π(a)

Tn(a)

Tn(a)∑
h=1

Rh(a) =

A∑
a=1

π(a)µ̂(a). (1)

where, Rh(a) is the hth reward received after taking action a.
Note that, once all actions where π(a) > 0 have been tried,
Yn is an unbiased estimator of v(π) since µ̂(a) is an unbi-
ased estimator of µ(a). Thus, reducing MSE requires allocat-
ing the n samples to reduce variance. As shown by Carpen-
tier et al. [2015], the minimal-variance allocation is given
by pulling each arm with the proportion b⋆(a) ∝ π(a)σ(a).
Though this result was previously shown, we prove it for
completeness in Proposition 1 in Appendix A. Intuitively,

there is more uncertainty about the mean reward for actions
with higher variance reward distributions. Selecting these
actions more often is needed to offset higher variance. The
optimal proportion also takes π into account as a high vari-
ance mean reward estimate for one action can be acceptable
if π would rarely take that action.

Note that sampling according to eq. (1) introduces unnec-
essary variance compared to deterministically selecting ac-
tions to match the optimal proportion. Since the variances
are typically unknown, a number of works in the bandit
community propose different approaches to estimate the
variances for both basic bandits and several related exten-
sions [Antos et al., 2008, Carpentier and Munos, 2011, 2012,
Carpentier et al., 2015, Neufeld et al., 2014]. Finally, note
that incorporating variance aware techniques has been stud-
ied in multi-armed bandits [Audibert et al., 2009, Mukher-
jee et al., 2018]. However, these works tend to focus on
regret minimization, whereas we focus on MSE reduction.
However, none of of these works address the fundamental
challenge that MDPs bring – action selection must account
for both immediate variance reduction in the current state
as well as variance reduction in future states visited. In the
next section, we begin to address this challenge by deriv-
ing minimal-variance action proportions for tree-structured
MDPs.

4 OPTIMAL DATA COLLECTION IN
TREE MDPS

In this section, we derive the optimal action proportions
for tree-structured MDPs assuming the variances of the
reward distributions are known, introduce an algorithm that
approximates the optimal allocation when the variances
are unknown, and bound the finite-sample MSE of this
algorithm. Tree MDPs are a straightforward extension of the
multi-armed bandit model to capture the fact that the optimal
allocation for each action in a given state must consider the
future states that could arise from taking that action.

Figure 1: An L-depth tree with 2 actions at each state.

We first define a discrete tree MDP as follows:

Definition 1. (Tree MDP) An MDP is a discrete tree MDP
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T ⊂M (see Figure 1) if the following holds:

(1) There are L levels indexed by ℓ where ℓ = 1, 2, . . . , L.

(2) Every state is represented as sℓi where ℓ is the level of
the state s indexed by i.

(3) The transition probabilities are such that one can only
transition from a state in level ℓ to one in level ℓ+1 and each
non-initial state can only be reached through one other state
and only one action in that state. Formally, ∀s′, P (s′|s, a) ̸=
0 for only one state-action pair s, a and if s′ is in level ℓ+ 1
then s is in level ℓ. Finally, P (sL+1

j |sLi , a) = 0,∀a.

(4) For simplicity, we assume that there is a single starting
state s11 (called the root). It is easy to extend our results to
multiple starting states with a starting state distribution, d0,
by assuming that there is only one action available in the
root that leads to each possible start state, s, with probability
d0(s). The leaf states are denoted as sLi .

(5) The interaction stops after L steps in state sLi after taking
an action a and observing the reward RL(s

L
i , a).

Note that, because we assume a single initial state, s11, we
have that estimating v(π) is equivalent to estimating v(s11).
A similar Tree MDP model has been previously used in theo-
retical analysis by Jiang and Li [2016]; our model is slightly
more general as we consider per-step stochastic rewards
whereas Jiang and Li [2016] only consider deterministic
rewards at the end of trajectories.

4.1 ORACLE DATA COLLECTION

We first consider an oracle data collection strategy which
knows the variance of all reward distributions and knows the
state transition probabilities. After observing n state-action-
reward tuples, the oracle computes the following estimate
of vπ(s11) (or equivalently v(π)):

Yn(s
1
1) :=

A∑
a=1

π(a|s11)
(

1

Tn(s11, a)

Tn(s
1
1,a)∑

h=1

Rh(s
1
1, a)

+ γ
∑
sℓ+1
j

P (sℓ+1
j |s11, a)Yn(s

2
j )

)

=

A∑
a=1

π(a|s11)
(̂
µ(s11, a)+γ

∑
sℓ+1
j

P (sℓ+1
j |s11, a)Yn(s

2
j )

)
(2)

where Tn(s, a) denotes the number of times that the oracle
took action a in state s. Note that in Section 2 we define
Yn(s, t) but now we use Yn(s) as timestep is implicit in the
layer of the tree. Also (2) differs from the estimator defined
in Section 2.2 as it uses the true transition probabilities, P ,

instead of their empirical estimate, P̂ . The MSE of Yn is:

ED[
(
Yn(s

1
1)− vπ(s11)

)2
]

= Var(Yn(s
1
1)) + bias2(Yn(s

1
1)). (3)

The bias of this estimator becomes zero once all (s, a)-pairs
with π(a|s) > 0 have been visited a single time, thus we
focus on reducing Var(Yn(s

1
1)). Before defining the oracle

data collection strategy, we first state an assumption on D.

Assumption 1. The data D collected over n state-action-
reward samples has at least one observation of each state-
action pair, (s, a), for which π(a|s) > 0.

Assumption 1 ensures that Yn is an unbiased estimator of
v(π) so that reducing MSE is equivalent to reducing vari-
ance. Before stating our main result, we provide intuition
with a lemma that gives the optimal proportion for each
action in a 2-depth tree.

Lemma 1. Let T be a 2-depth stochastic tree MDP as
defined in Definition 1 (see Figure 1 in Appendix B). Let
Yn(s

1
1) be the estimated return of the starting state s11 after

observing n state-action-reward samples. Note that vπ(s11)
is the expectation of Yn(s

1
1) under Assumption 1. Let D be

the observed data over n state-action-reward samples. Min-
imal MSE, ED[(Yn(s

1
1)− vπ(s11))

2], is obtained by taking
actions in each state in the following proportions:

b∗(a|s2j ) ∝ π(a|s2j )σ(s2j , a)

b∗(a|s11)∝

√√√√π2(a|s11)
[
σ2(s11, a)+γ2

∑
s2j

P (s2j |s11, a)B2(s2j )

]
,

where, B(s2j ) =
∑

a π(a|s2j )σ(s2j , a).

Proof (Overview): We decompose the MSE into its vari-
ance and bias terms and show that Yn is unbiased under
Assumption 1. Next note that the reward in the next state
is conditionally independent of the reward in the current
state given the current state and action. Hence we can write
the variance in terms of the variance of the estimate in the
initial state and the variance of the estimate in the final layer.
We then rewrite the total samples of a state-action pair i.e
Tn(s

ℓ
i , a) in terms of the proportion of the number of times

the action was sampled in the state i.e b(a|sℓi). To do so, we
take into account the tree structure to derive the expected
proportion of times that action a is taken in each state in
layer 2 as follows:

b(a|s2i ) =
Tn(s

2
i , a)∑

a′ Tn(s2i , a
′)

(a)
=

Tn(s
2
i , a)/n

P (s2i |s11, a)Tn(s11, a)/n

where in (a) the action a is used to transition to state s2j
from s11 and so

∑
a Tn(s

2
i , a) = P (s2i |s11, a)Tn(s

1
1, a). We

next substitute the b(a|sℓi) for each state-action pair into

1416



the variance expression and determine the b values that
minimize the expression subject to ∀s,

∑
a b(a|s) = 1 and

∀s, b(a|s) > 0. The full proof is given in Appendix B. ■

Note that the optimal proportion in the leaf states, b∗(a|s2j ),
is the same as in Carpentier and Munos [2011] (see Proposi-
tion 1) as terminal states can be treated as bandits in which
actions do not affect subsequent states. The key difference
is in the root state, s11, where the optimal action proportion,
b∗(a|s11) depends on the expected leaf state normalization
factor B(s2j ) where s2j is a state sampled from P (·|s11, a).
The normalization factor, B(s2i ), captures the total contri-
bution of state s2i to the variance of Yn and thus actions
in the root state must be chosen to 1) reduce variance in
the immediate reward estimate and to 2) get to states that
contribute more to the variance of the estimate. We explore
the implications of the oracle action proportions in Lemma 1
with the following two examples.

Example 1. (Child Variance matters) Consider a 2-
depth, 2-action tree MDP T with deterministic P , i.e.,
P (s22|s11, 2) = P (s21|s11, 1) = 1 and γ = 1 (see Figure 2
(Left) in Appendix C). Suppose the target policy is the uni-
form distribution in all states so that ∀(s, a), π(a|s) = 1

2 .
The reward distribution variances are given by σ2(s11, 1) =
400, σ2(s11, 2) = 600, σ2(s21, 1) = 400, σ2(s21, 2) = 400,
σ2(s22, 1) = 4, and σ2(s22, 2) = 4. So the right sub-tree at
s11 has higher variance (larger B-value) than the left sub-
tree. Following the sampling rule in Lemma 1 we can show
that b∗(1|s11) > b∗(2|s11) (the full calculation is given in
Appendix C). Hence the right sub-tree with higher vari-
ance will have a higher proportion of pulls which allows
the oracle to get to the high variance s21. Observe that treat-
ing s11 as a bandit leads to choosing action 2 more often
as σ2(s11, 2) > σ2(s11, 1). However, taking action 2 leads
to state s22 which contributes much less to the total vari-
ance. Thus, this example highlights the need to consider the
variance of subsequent states.

Example 2. (Transition Model matters) Consider a
2-depth, 2-action tree MDP T in which we have
P (s21|s11, 1) = p, P (s21|s11, 1) = 1 − p, P (s23|s11, 2) = p,
and P (s24|s11, 2) = 1−p. This example is shown in Figure 2
(Right) in Appendix C. Following the result of Lemma 1 if
p≫ (1− p) it can be shown that the variances of the states
s21 and s23 have greater importance in calculating the optimal
sampling proportions of s11. The calculation is shown in
Appendix D. Thus, less likely future states have less impor-
tance for computing the optimal sampling proportion in a
given state.

Having developed intuition for minimal-variance action se-
lection in a 2-depth tree MDP, we now give our main result
that extends Lemma 1 to an L-depth tree.

Theorem 1. Assume the underlying MDP is an L-depth tree
MDP as defined in Definition 1. Let the estimated return

of the starting state s11 after n state-action-reward samples
be defined as Yn(s

1
1). Note that the vπ(s11) is the expecta-

tion of Yn(s
1
1) under Assumption 1. Let D be the observed

data over n state-action-reward samples. To minimize MSE
ED[(Yn(s

1
1))− µ(Yn(s

1
1)))

2] the optimal sampling propor-
tions for any arbitrary state is given by:

b∗(a|sℓi)∝
√√√√π2(a|sℓi)

[
σ2(sℓi , a)+γ2

∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)B2(sℓ+1

j )

]
,

where, B(sℓj) is the normalization factor defined as follows:

B(sℓi)=
∑
a

√√√√√√π2(a|sℓi)

σ2(sℓi , a)+γ2
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)B2(sℓ+1

j )


(4)

Proof (Overview): We prove Theorem 1 by induction.
Lemma 1 proves the base case of estimating the sampling
proportion for level L − 1 and L. Then, for the induction
step, we assume that all the sampling proportions from level
L till some arbitrary level ℓ+ 1 can be subsequently built
up using dynamic programming starting from level L. For
states in level L to the states in level ℓ + 1 we can com-
pute b∗(a|sℓ+1

i ) by repeatedly applying Lemma 1. Then we
show that at the level ℓ we get a similar recursive sampling
proportion as stated in the theorem statement. The proof is
given in Appendix E. ■

4.2 MSE OF THE ORACLE

In this subsection, we derive the MSE that the oracle will
incur when matching the action proportions given by Theo-
rem 1. The oracle is run for K episodes where each episode
consist of L length trajectory of visiting state-action pairs.
So the total budget is n = KL. At the end of the K-th
episode the MSE of the oracle is estimated which is shown
in Proposition 2. Before stating the proposition we intro-
duce additional notation which we will use throughout the
remainder of the paper. Let

T k
t (s, a) =

k−1∑
i=0

I
{(

sit, a
i
t

)
= (s, a)

}
,∀t, s, a (5)

denote the total number of times that (s, a) has been ob-
served in D (across all trajectories) up to time t in episode
k and I{·} is the indicator function. Similarly let

T k
t (s, a, s

′)=

k−1∑
i=0

I
{(
sit, a

i
t, s

i
t+1

)
=(s, a, s′)

}
,∀t, s, a, s′ (6)

denote the number of times action a is taken in s to tran-
sition to s′. Finally we define the state sample T k

t (s) =∑
a T

k
t (s, a) as the total number of times any state is vis-

ited and an action is taken in that state.
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Proposition 2. Let there be an oracle which knows the state-
action variances and transition probabilities of the L-depth
tree MDP T. Let the oracle take actions in the proportions
given by Theorem 1. Let D be the observed data over n
state-action-reward samples such that n = KL. Then the
oracle suffers an MSE of

L∗
n =

L∑
ℓ=1

[
B2(sℓi)

T ∗,K
L (sℓi)

+ γ2
∑
a

π2(a|sℓi)
∑
sℓ+1
j

P (sℓ+1
j |sℓi , a)

B2(sℓ+1
j )

T ∗,K
L (sℓ+1

j )

]
. (7)

where, T ∗,K
L (sℓi) denotes the optimal state samples of the

oracle at the end of episode K.

The proof is given in Appendix F. From Proposition 2 we
see that the MSE of the oracle goes to 0 as the number of
episodes K→∞, and T ∗,K

L (sℓi)→∞ simultaneously for
all sℓi ∈ S. Observe that if for every state s the total state
counts T ∗,K

L (s) = cn for some constant c > 0 then the loss
of the oracle goes to 0 at the rate O(1/n).

4.3 REDUCED VARIANCE SAMPLING

The oracle data collection strategy provides intuition for op-
timal data collection for minimal-variance policy evaluation,
however, it is not a practical strategy itself as it requires
σ and P to be known. We now introduce a practical data
collection algorithm – Reduced Variance Sampling (ReVar)
– that is agnostic to σ and P . Our algorithm follows the
proportions given by Theorem 1 with the true reward vari-
ances replaced with an upper confidence bound and the true
transition probabilities replaced with empirical frequencies.
Formally, we define the desired proportion for action a in
state sℓi after t steps as b̂kt+1(a|sℓi) ∝√√√√π2(a|sℓi)

[
σ̂u(2),k

t (sℓi , a)+γ2
∑
sℓ+1
j

P̂ k
t (s

ℓ+1
j |sℓi , a)B̂

(2),k)
t (sℓ+1

j )

]
,

(8)

The upper confidence bound on the variance σ2(sℓi , a),

denoted by σ̂u
(2),k

t−1 (sℓi , a) = (σ̂u
k

t (s
ℓ
i , a))

2, is defined as:

σ̂u
k

t (s
ℓ
i , a) := σ̂k

t (s
ℓ
i , a)+2c

√
log(SAn(n+1)/δ)

T k
t (s

ℓ
i , a)

(9)

where, σ̂k
t (s

ℓ
i , a) is the plug-in estimate of the standard devi-

ation σ(sℓi , a), c>0 is a constant depending on the bounded-
ness of the rewards to be made explicit later, and n = KL
is the total budget of samples. Using an upper confidence
bound on the reward standard deviations captures our un-
certainty about σ(sℓi , a) needed to compute the true optimal

proportions. The state transition model is estimated as:

P̂ k
t (s

ℓ+1
j |sℓi , a) =

T k
t (s

ℓ
i , a, s

ℓ+1
j )

T k
t (s

ℓ
i , a)

(10)

where, T k
t (s

ℓ
i , a, s

ℓ+1
j ) is defined in (6). Further in (8),

B̂k
t (s

ℓ+1
j ) is the plug-in estimate of B(sℓ+1

j ). Observe that
for all of these plug-in estimates we use all the past history
till time t in episode k to estimate these statistics.

Eq. (8) allows us to estimate the optimal proportion for all
actions in any state. To match these proportions, rather than
sampling from b̂kt+1(a|sℓi), ReVar takes action Ikt+1 at time
t+ 1 in episode k according to:

Ikt+1 = argmax
a

{
b̂kt (a|sℓi)
T k
t (s

ℓ
i , a)

}
. (11)

This action selection rule ensures that the ratio
b̂kt (a|sℓi)/Tt(s

L
i , a) ≈ 1. It is a deterministic action selec-

tion rule and thus avoids variance due to simply sampling
from the estimated optimal proportions. Note that in the
terminal states, sLi , the sampling rule becomes

Ikt+1 = argmax
a

{
π(a|sLi )σ̂u

k

t (s
L
i , a)

T k
t (s

L
i , a)

}
which matches the bandit sampling rule of Carpentier and
Munos [2011, 2012].

We give pseudocode for ReVar in Algorithm 1. The algo-
rithm proceeds in episodes. In each episode we generate
a trajectory from the starting state s11 (root) to one of the
terminal state sLj (leaf). At episode k and time-step t in
some arbitrary state sℓi the next action It+1 is chosen based
on (11). The trajectory generated is added to the dataset D.
At the end of the episode we update the model parameters,
i.e. we estimate the σ̂k

t (s
ℓ
i , a), and P̂ k

t (s
ℓ+1
i |sℓj , a) for each

state-action pair. Finally, we update b̂k+1
1 (a|siℓ) for the next

episode using eq. (9).

Algorithm 1 Reduced Variance Sampling (ReVar )

1: Input: Number of trajectories to collect, K.
2: Output: Dataset D.
3: Initialize D = ∅, b̂01(a|sℓi) uniform over all actions in

each state.
4: for k ∈ 0, 1, . . . ,K do
5: Generate trajectory Hk := {St, It, R(It)}Lt=1 by

selecting It according to (11).
6: D ← D ∪ {(Hk, b̂kL)}
7: Update model parameters and estimate b̂k+1

1 (a|sℓi)
for each (sℓi , a).

8: Update b̂k+1
1 (a|sℓi) from level L to 1 following (8).

9: Return Dataset D to evaluate policy π.
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4.4 REGRET ANALYSIS

We now theoretically analyze ReVar by bounding its regret
with respect to the oracle behavior policy. We analyze ReVar
under the assumption that P is known and so we are only
concerned with obtaining accurate estimates of the reward
means and variances. This assumption is only made for
the regret analysis and is not a fundamental requirement
of ReVar. Though somewhat restrictive, the case of known
state transitions is still interesting as it arises in practice
when state transitions are deterministic or we can estimate
P much easier than we can estimate the reward means.

We first define the notion of regret of an algorithm compared
to the oracle MSE L∗

n in (7) as follows:

Rn = Ln − L∗
n

where, n is the total budget, and Ln is the MSE at the end
of episode K following the sampling rule in (8). We make
the following assumption that rewards are bounded:

Assumption 2. The reward from any state-action pair has
bounded range, i.e., Rt(s, a) ∈ [−η, η] almost surely at
every time-step t for some fixed η > 0.

Note that this is a common assumption in the RL literature
[Munos, 2005, Agarwal et al., 2019]. The reward can also
be multi-modal as long as it is bounded. Then the regret
of ReVar over a L-depth deterministic tree is given by the
following theorem.

Theorem 2. Let the total budget be n = KL and n ≥ 4SA.
Then the total regret in a deterministic L-depth T at the
end of K-th episode when taking actions according to (8) is
given by

Rn ≤ Õ

B2
s11

√
log(SAn11/2)

n3/2b
∗,3/2
min (s11)

+γ

L∑
ℓ=2

max
sℓj ,a

π(a|s11)P (sℓj |s11, a)
B2

sℓj

√
log(SAn11/2)

n3/2b
∗,3/2
min (sℓj)


where, the Õ hides other lower order terms and Bsℓi

is
defined in (4) and b∗min(s) = mina b

∗(a|s).

Note that if L = 1, |S| = 1, we recover the bandit setting
and our regret bound matches the bound in Carpentier and
Munos [2011]. Note that MSE using data generated by any
policy decays at a rate no faster than O(n−1), the parametric
rate. The key feature of ReVar is that it converges to the
oracle policy. This means that asymptotically, the MSE
based on ReVar will match that of the oracle. Theorem 2
shows that the regret scales like O(n−3/2) if we have the
b∗min(s) over all states s ∈ S as some reasonable constant
O(1). In contrast, suppose we sample trajectories from a

suboptimal policy, i.e., a policy that produces an MSE worse
than that of the oracle for every n. This MSE gap never
diminishes, so the regret cannot decrease at a rate faster
than the oracle rate of O(n−1). Finally, note that the regret
bound in Theorem 2 is a problem dependent bound as it
involves the parameter b∗min(s).

Proof (Overview): We decompose the proof into several
steps. We define the good event ξδ based on the state-action-
reward samples D that holds for all episode k and time t
such that |σ̂k

t (s, a) − σ(s, a)| ≤ ϵ for some ϵ > 0 with
probability 1−δ made explicit in Corollary 1 . Now observe
that MSE of ReVar is

Ln=ED

[(
Yn(s

1
1))− vπ(s11))

)2]
=ED

[(
Yn(s

1
1))−vπ(s11))

)2 I{ξδ}]
+ ED

[(
Yn(s

1
1))− vπ(s11))

)2 I{ξCδ }]
(12)

Note that here we are considering a known transition func-
tion P .The first term in (12) can be bounded using

ED

[(
Yn(s

1
1))− vπ(s11))

)2 I{ξδ}] = Var[Yn(s
1
1)]E[T k

n (s
1
1)]

≤
∑
a

π2(a|s11)
[

σ2(s11, a)

T (2),k
n (s11, a)

]
E[T k

n (s
1
1, a)]

+ γ2
∑
a

π2(a|s11)
∑
s2j

P 2(s2j |s11, a)

·
∑
a′

π2(a′|s2j )
[

σ2(s2j , a
′)

T (2),k
n (s2j , a

′)

]
E[T k

n (s
2
j , a

′)]

where, T (2),k(s11, a) is a lower bound to T (2),k(s11, a) made
explicit in Lemma 6, and T (2),k(s2j , a) is a lower bound to
T (2),k(s11, a) made explicit in Lemma 5. We can combine
these two lower bounds and give an upper bound to MSE in
a two depth T which is shown Lemma 7. Finally, for the L
depth stochastic tree we can repeatedly apply Lemma 7 to
bound the first term. For the second term we set the δ = n−2

and use the boundedness assumption in Assumption 2 to get
the final bound. The proof is given in Appendix H. ■

5 OPTIMAL DATA COLLECTION
BEYOND TREES

The tree-MDP model considered above allows us to develop
a foundation for minimal-variance data collection in deci-
sion problems where actions at one state affect subsequent
states. One limitation of this model is that, for any non-
initial state, sℓi , there is only a single state-action path that
could have been taken to reach it. In a more general finite-
horizon MDP, there could be many different paths to reach
the same non-initial state. Unfortunately, the existence of
multiple paths to a state introduces cyclical dependencies
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between states that complicate derivation of the minimal-
variance data collection strategy and regret analysis. In this
section, we elucidate this difficulty by considering the class
of directed acyclic graph (DAG) MDPs.

In this section we first define a DAG G ⊂M. An illustrative
figure of a 3-depth 2-action G is in Figure 3 of Appendix I .

Definition 2. (DAG MDP) A DAG MDP follows the same
definition as the tree MDP in Definition 1 except P (s′|s, a)
can be non-zero for any s in layer ℓ, s′ in layer ℓ+ 1, and
any a, i.e., one can now reach s′ through multiple previous
state-action pairs.

Proposition 3. Let G be a 3-depth, A-action DAG de-
fined in Definition 2. The minimal-MSE sampling propor-
tions b∗(a|s11), b∗(a|s2j ) depend on themselves such that
b(a|s11) ∝ f(1/b(a|s11)) and b(a|s2j ) ∝ f(1/b(a|s2j ))
where f(·) is a function that hides other dependencies on
variances of s and its children.

The proof technique follows the approach of Lemma 1 but
takes into account the multiple paths leading to the same
state. The possibility of multiple paths results in the cycli-
cal dependency of the sampling proportions in level 1 and
2. Note that in T there is a single path to each state and
this cyclical dependency does not arise. The full proof is
given in Appendix I. Because of this cyclical dependency
it is difficult to estimate the optimal sampling proportions
in G. However, we can approximate the optimal sampling
proportion that ignores the multiple path problem in G by
using the tree formulation in the following way: At every
time t during a trajectory τk call the Algorithm 1 in Ap-
pendix J to estimate B0(s) where Bt′(s) ∈ RL×|S| stores
the expected standard deviation of the state s at iteration t′.
After L such iteration we use the value B0(s) to estimate
b(a|s) as follows:

b∗(a|s)∝
√
π2(a|s)

[
σ2(s, a)+γ2

∑
s′

P (s′|s, a)B2
0(s)

]
.

Note that for a terminal state s we have the transition prob-
ability P (s′|s, a) = 0 and then the b(a|s) = π(a|s)σ(s, a).
This iterative procedure follows from the tree formulation
in Theorem 1 and is necessary in G to take into account
the multiple paths to a particular state. Also observe that
in Algorithm 1 we use value-iteration for the episodic set-
ting [Sutton and Barto, 2018] to estimate the the optimal
sampling proportion iteratively.

6 EMPIRICAL STUDY

We next verify our theoretical findings with simulated policy
evaluation tasks in both a tree MDP and a non-tree Grid-
World domain. Our experiments are designed to answer the
following questions: 1) can ReVar produce policy value es-
timates with MSE comparable to the oracle solution? and 2)

does our novel algorithm lower MSE relative to on-policy
sampling of actions? Full implementation details are given
in Appendix J.

Figure 2: (Left) Deterministic 4-depth Tree. (Right) Stochas-
tic gridworld. The vertical axis gives MSE and the horizontal
axis is the number of episodes collected. Axes use a log-
scale and confidence bars show one standard error.

Experiment 1 (Tree): In this setting we have a 4-depth
2-action deterministic tree MDP T consisting of 15 states.
Each state has a low variance arm with σ2(s, 1) = 0.01
and high target probability π(1|s) = 0.95 and a high vari-
ance arm with σ2(s, 1) = 20.0 and low target probability
π(2|s) = 0.05. Hence, the Onpolicy sampling which sam-
ples according to π will sample the second (high variance)
arm less and suffer a high MSE. The CB-Var policy is a
bandit policy that uses an empirical Bernstein Inequality
[Maurer and Pontil, 2009] to sample an action without look-
ing ahead and suffers high MSE. The Oracle has access to
the model and variances and performs the best. ReVar lowers
MSE comparable to Onpolicy and CB-Var and eventually
matches the oracle’s MSE.

Experiment 2 (Gridworld): In this setting we have a 4× 4
stochastic gridworld consisting of 16 grid cells. Considering
the current episode time-step as part of the state, this MDP
is a DAG MDP in which there are multiple path to a single
state. There is a single starting location at the top-left corner
and a single terminal state at the bottom-right corner. Let
L,R,D,U denote the left, right, down and up actions in ev-
ery state. Then in each state the right and down actions have
low variance arms with σ2(s,R) = σ2(s,D) = 0.01 and
high target policy probability π(R|s) = π(D|s) = 0.45.
The left and top actions have high variance arms with
σ2(s,L) = σ2(s,U) = 0.01 and low target policy proba-
bility π(L|s) = π(U|s) = 0.05. Hence, Onpolicy which
goes right and down with high probability (to reach the ter-
minal state) will sample the low variance arms more and
suffer a high MSE. Similar to above, CB-Var fails to look
ahead when selecting actions and thus suffers from high
MSE. ReVar lowers MSE compared to Onpolicy and CB-
Var and actually matches and then reduces MSE compared
to the Oracle. We point out that the DAG structure of the
Gridworld violates the tree-structure under which Oracle
and ReVar were derived. Nevertheless, both methods lower
MSE compared to Onpolicy.
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7 CONCLUSION AND FUTURE WORKS

This paper has studied the question of how to take actions for
minimal-variance policy evaluation of a fixed target policy.
We developed a theoretical foundation for data collection
in policy evaluation by deriving an oracle data collection
policy for the class of finite, tree-structured MDPs. We then
introduced a practical algorithm, ReVar, that approximates
the oracle strategy by computing an upper confidence bound
on the variance of the future cumulative reward at each state
and using this bound in place of the true variances in the
oracle strategy. We bound the finite-sample regret (excess
MSE) of our algorithm relative to the oracle strategy. We
also present an empirical study where we show that ReVar
decreases the MSE of policy evaluation relative to several
baseline data collection strategies including on-policy sam-
pling. In the future, we would like to extend our derivation
of optimal data collection strategies and regret analysis of
ReVar to a more general class of MDPs, in particular, relax-
ing the tree structure and also considering infinite-horizon
MDPs. Finally, real world problems often require function
approximation to deal with large state and action spaces.
This setting raises new theoretical and implementation chal-
lenges for ReVar where we intend to incorporate experi-
mental design approaches [Pukelsheim, 2006, Mason et al.,
2021, Mukherjee et al., 2022]. Another interesting direction
is to incorporate structure in the reward distribution of arms
Gupta et al. [2021, 2020]. Addressing these challenges is an
interesting direction for future work.
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