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A PROOFS

A.1 PROOF OF THEOREM 1

For an address a define C and K as specified in Section 3. That is C is the set of address transitions we know are possible
and K is the set of newly encountered address transitions found in a sample of traces drawn from a reference simulator. Let
C = |C| and K = |K| be the size of each set respectively. We consider the set of previous unknown address transitions U
and denote the new set of unknown transitions Ũ = U \ K. Finally, define the probability measures P and P̃ both associated
with the sample space Ω and σ-algebra F according to

P(E) =
1

Z

{
evγ(c) , if E = {c} and c ∈ C
evC+1 if E = U

P̃(E) =
1

Z̃


evγ(c) , if E = {c} and c ∈ C
evC+1−log(K+1), if E = {k} and k ∈ K
evC+1−log(K+1), if E = Ũ ,

where v ∈ RC+1, Z and Z̃ are normalization constants, and γ : C → {1, . . . , C} is a mapping from observed addresses to a
unique “address index”.

Observe that the relationship between P̃ and P is equivalent to the relationship between Pζ̃at and Pζat defined in Section 3. In
particular, we consider the functional mapping h : G → G such that ζ̃ = h(ζ), where ζ̃, ζ ∈ G. The proof of Theorem 1
therefore reduces to proving that for all E ∈ B = 2C ∪ {U} ⊆ F , P̃(E) = P(E) holds.

We start by comparing the normalization constants:

Z̃ =
∑
c∈C

evγ(c) +
∑
k∈K

evC+1−log(K+1) + evC+1−log(K+1)

=
∑
c∈C

evγ(c) + (K + 1)evC+1−log(K+1)

=
∑
c∈C

evγ(c) + evC+1

= Z, (1)

leading to,
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Figure 1: Illustration of the equivalence between a simple generative model and a probabilistic surrogate network. The red
arrows represent what is extracted from the program and fed to the surrogate network during training. Generally, this would
be an address a and the distribution type da at that address. This extraction happens at every address encountered when
executing the program while training the surrogate. The dashed arrows represents possible extractions after one step of
running the PSN. Which extraction depends on the sampled value c. If c = 1 then a2 = α2 and the blue dashed arrow
extraction happens otherwise a2 = α3 and the green dashed arrow extraction happens.

P̃({c}) =
1

Z̃
evγ(c) =

1

Z
evγ(c) = P({c}) ∀c ∈ C (2)

P̃(K ∪ Ũ) = P̃(U) = P̃(Ũ) + P̃(K)

=
1

Z̃

(
evC+1−log(K+1) +

∑
k∈K

evC+1−log(K+1)

)

=
1

Z
evC+1 = P(U). (3)

Since all events {{c}|c ∈ C} are mutually exclusive, it follows from Eq. (2) that

P̃(E) =
∑
e∈E

P̃({e}) =
∑
e∈E

P({e}) = P(E), ∀E ∈ 2C . (4)

Combining Eq. (3) and Eq. (4), we arrive at the final result,

P̃(E) = P(E), ∀E ∈ B = 2C ∪ {U} ,

which completes the proof.

A.2 PROOF OF THEOREM 2

The proof of Theorem 2 only requires the consideration of two possible scenarios regarding a trace (x,a): (1) the trace
either contains address transitions observed during the training of s(x,a) in which case its evaluation is straightforward. (2)
(x,a) contains addresses and transitions not encountered during training. In the latter case, we would simply expand our
PSN to account for those new transitions according to Eq. (8).

B ALGORITHMS

The procedure we use to expand the address transition distribution at address at upon encountering a set of yet unseen
transitions Kat is outlined in Algorithm 1. The procedure is applied to the final layer of a neural network which follows



an intermediate layer of size nemb. The operation detach(·) denotes duplication without copying the gradient information,
hence detaching the argument from the computational graph. The concat(·, ·) operation concatenates the second argument
to the first, and re-attaches the newly created matrix or vector to the computational graph as a leaf.

Algorithm 1: PSN address transitions expansion. Definitions of the detach and concat operations are given in Ap-
pendix B
Input: A set Kat of new address transitions with size K = |Kat |
Input: Weights W ∈ R(C+1)×nemb and biases b ∈ RC+1, with C = |Cat |
wu = detach (wC+1) // wC+1 denotes row C + 1 of W
bu = detach (bC+1)− log(1 +K) // bC+1 denotes element C + 1 of b
W = W:C // W:C denotes the first C rows of W
b = b:C // b:C denotes the first C elements of b
for k = 0 to K + 1 do

W = concat(W ,wu)
b = concat(b, bu)

end

C SURROGATE NETWORK ARCHITECTURE

The PSN architecture is dynamically constructed during training and uses an LSTM core as well as embeddings of the
addresses, distribution types, and other random variables. These embeddings are referred to as ai, di, xi respectively. In
particular, each address is associated with a fixed distribution type. These deterministic and fixed pairings between addresses
and distribution types are stored and made part of the surrogate model. In other words, when constructing the PSN we
know the distribution type associated with each address. The dynamic construction is driven by the program, where the
embeddings are fed to the LSTM core whose output is then fed to so-called “distributions layers” ξat and ζat , that for each
unique address at produces the parameters for s(xat |ξat(x<at , a≤t, θ)) and s(at+1|ζat(x<at+1

, a≤t, θ)) respectively. Note
that the value sampled from s(xat |ξat(x<at , a≤t, θ)) is additionally fed to ζat . In practice, this means that all conditional
probabilities of the PSN are conditioned on the distribution types and therefore their embeddings di. While not part of
the problem formulation of PSN, as they are not theoretically necessary, we use them as additional inputs to the LSTM
as they might help training. This construction is illustrated in Fig. 1. New embeddings and distribution layers are created
upon encountering new addresses during training. In practice this is implemented by sweeping through the samples used
to calculate the gradient estimator. It is similarly during these sweeps that new address transitions are identified. For each
address at we construct Kat when new address transitions are found. Algorithm 1 is then used for each of those addresses.

When replacing the reference simulator with the PSN, it is initialized using h0 and embeddings x0, d0, and a0. These initial
values are typically set to zero, but could be learnable parameters. The unique first address a1 (which is guaranteed to be
unique as the first point of stochasticity in a program is always the same) is fed to the PSN and the surrogate program starts
its execution. At each subsequent time step t the PSN produces a sample xat and address at+1, which then propagates the
PSN forward where until an end-execution address is sampled. This process is illustrated in Fig. 1.

D EXPERIMENTS

Here we provide various model, training, and validation specifications, along with additional results and evidence that
support the claims made in the main paper.

D.1 MODEL SPECIFICATIONS

We largely use the default specifications found in PyProb [Baydin and Le, 2018]. We report the configurations whenever
they differ from those default values. We use the same configuration names found in PyProb, so that they can be directly
transferable from this paper. A description to each configuration will be given the first time the configuration appears and
only when the configuration is not obvious (such as learning rate and optimizer).



D.1.1 Stochastic Control Flow Experiment

Fig. 2 shows learning curves (training and validation) for (a) the PSN and (b) the inference network. For this experiment
we continuously generate traces during training in an online fashion. Therefore there is no risk of overfitting to a specific
dataset and no validation set is used.
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Figure 2: Learning curves for (a) the PSN and (b) the inference network associated with the stochastic control flow
experiment.



Table 1: Experiment configuration for the stochastic control flow experiment

Parameter/setting IC PSN Description

Optimizer Adam Adam
Learning rate 5× 10−4 5× 10−4

Training data size 500,000 500,000
Batch Size 512 512
sample_embedding_dim 10 10 The size of each variable

embedding
address_embedding_dim 24 24 The size of the address

embedding which are
learnable parameters

distribution_type_embedding_dim 24 24 The size of the distri-
bution type embedding
which are learnable pa-
rameters

observe_embedding {x: {{depth: 4,
dim: 10, hid-
den_dim: 10}}}

N/A depth is the number of
linear layers mapping
from the value x each
with hidden_dim
number of neurons. The
output size (going into
the LSTM) is dim

lstm_depth 1 1 Number of stacked
LSTMs

lstm_dim 150 150 Size of hidden state in
each LSTM

inf_variable_embedding {theta:
{{num_layers:
2, hidden_dim:
50}}}

N/A The names should
be self-explanatory
and are similar to
observe_embedding
except the input to these
layers are the output
from the LSTM

surr_variable_embedding N/A {theta:
{{num_layers:
2, hidden_dim:
50}}}

Same meaning as above
but for the PSN



D.1.2 Process Simulation of Composite Materials

Fig. 3 shows learning curves (training and validation) for (a) the PSN and (b) the inference network. In this experiment we
construct a training set containing 200,000 traces which is iterated through until the number of traces specified in Table 2
has been encountered. The validation set contains 7680 traces.
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Figure 3: Training and validation learning curves for (a) the PSN and (b) the inference network associated with the process
simulation of composite materials experiment.

Table 2: Experiment configuration for the process simulation of composite materials experiment

Parameter/setting IC PSN

Optimizer Adam Adam
Learning rate 10−3 10−4

Training data size 500,000 1,000,000
Batch Size 256 256
sample_embedding_dim 256 256
address_embedding_dim 24 24
distribution_type_embedding_dim24 24
observe_embedding {temps_bottom: {depth: 2,

dim: 500, hidden_dim: 500},
air_temp_bot: {depth: 2, dim: 500,
hidden_dim: 500}, air_temp_top:
{depth: 2, dim: 500, hidden_dim:
500}, temps_config: {dim: 10,
hidden_dim: 256}}

N/A

lstm_depth 2 2
lstm_dim 512 512
inf_variable_embedding {config: {{hidden_dim: 256}}} N/A
surr_variable_embedding N/A {latent_temps:

{{num_layers: 2,
hidden_dim: 500},
temps_config: {hid-
den_dim: 256}}}



D.1.3 Program synthesis Flow Experiment

The configurations used for training the surrogate in the program synthesis experiment are the same as those found in
Table 1, while Fig. 4 presents learning curves for the trained surrogate.
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Figure 4: Learning curves for the PSN.

D.2 RUNNING TIMES FOR PROCESS SIMULATION OF COMPOSITE MATERIALS

Table 3: Runtime [traces/s] comparisons. We calculate the number of traces produced per second when (1) running just the
simulator or PSN and (2) when performing SIS in either model. We see a slowdown in traces per second for the PSN when
performing inference, as the inference engine adds additional overhead. However, as the simulator is considerably slower, it
remains the computational bottleneck during inference. The reported run-times are achieved using an Intel(R) Xeon(R) CPU
E3-1505M v5 @ 2.80GHz.

Simulator (tsim[traces/s]) PSN (tPSN[traces/s]) Speedup [tPSN/tsim]

PSN 0.32 28.87 90.16
IC in PSN 0.31 4.75 15.32



D.3 RESULTS FOR THE PROCESS SIMULATION OF COMPOSITE MATERIALS EXPERIMENT

Figure 5: Illustration of a process simulation of composite materials. Each subfigure shows a temperature profile in degrees
Celsius as a function of time along the x axis and depth along the y-axis. (a) shows the output of the Convergent Composite
material simulator RAVEN [Convergent Manufacturing Technologies, 2019], simulating the curing process of a particular
part. (b) shows the same process but originating from our probabilistic surrogate network. We perform inference in this
process, where we infer the expected temperature in a specific time window (black box) conditioned on observed surface
temperature measurements (blue boxes).

Fig. 5 compares output from our PSN and the reference simulator. As these outputs are indistinguishable, it provides further
evidence that our PSN accurately models the reference simulator.



D.4 STOCHASTIC CONTROL FLOW ADDRESS TRANSITIONS

def control_flow_program(x):

d1 = Beta(50, 7)

θ = sample(dist=d1)
µ = 0

while True:

d2 = Categorical(prob=[1/5, 4/5])

b = sample(dist=d2)
if b:

d3 = Normal(mean=0, std=1/2)

z = sample(dist=d3)
else:

d3 = Normal(mean=2, std=1/2)

z = sample(dist=d3)
µ += z

d4 = Categorical(prob=[1-θ,θ])
c = sample(dist=d4)
if c:

break

d5 = Normal(mean=µ, std=1)

observe(x, likelihood=d5)
return θ

Figure 6: Program containing stochastic control flow in the form of a for-loop with a nested if-else statement. The task here
would be to perform posterior inference of θ given the observed value of x.

For reference we re-illustrate the program Fig. 6 also shown in the main paper. The program contains two nested layers of
stochastic control flow, allowing for an assessment of PSNs’ capacity to learn the associated address transitions. Fig. 7(a)
and (b) complements the results reported in the main paper by showing that the address transition paths and their associated
estimated probabilities (using 50,000 traces each) of the program and the trained PSN are near indistinguishable. Only for
long traces does small deviations begin to appear. It is reasonable to expect slight discrepancies between the address transition
probabilities for increasingly long traces. The address occurrence probability decreases exponentially in the number of times
n the original program stays in the for-loop – i.e. θn. Therefore we can expect (with reasonable probability) either the PSN
or the program to produce addresses not produced by the other, when those addresses originate from executions with large
for loop iterations. We conclude that these results show that the PSN indeed has learned accurate address transitions and
support the claim made in the main paper.
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Figure 7: (a) Address transitions sampled from the original model shown in Fig. 6 with Table 4 mapping the address id A[i]
to the actual address. (b) Address transitions sampled from the PSN, with Table 5 mapping the address id A[i] to the actual
address allowing us to compare (a) and (b). For each plot the address transition probabilities are estimated across 50,000
traces.



Table 4: Address ID to address name for Fig. 7.

Address ID Address

A1 30__forward__theta__Beta__1
A2 bern_0__Categorical(len_probs:2)__1
A3 z_1_0__Normal__1
A4 c_0__Categorical(len_probs:2)__1
A5 280__forward__?__Normal__1
A6 z_2_0__Normal__1
A7 bern_1__Categorical(len_probs:2)__1
A8 z_1_1__Normal__1
A9 c_1__Categorical(len_probs:2)__1
A10 bern_2__Categorical(len_probs:2)__1
A11 z_1_2__Normal__1
A12 c_2__Categorical(len_probs:2)__1
A13 bern_3__Categorical(len_probs:2)__1
A14 z_2_3__Normal__1
A15 c_3__Categorical(len_probs:2)__1
A16 z_2_1__Normal__1
A17 z_1_3__Normal__1
A18 bern_4__Categorical(len_probs:2)__1
A19 z_1_4__Normal__1
A20 c_4__Categorical(len_probs:2)__1
A21 z_2_2__Normal__1
A22 bern_5__Categorical(len_probs:2)__1
A23 z_1_5__Normal__1
A24 c_5__Categorical(len_probs:2)__1
A25 z_2_4__Normal__1
A26 z_2_5__Normal__1



Table 5: Address ID to address name for Fig. 7.

Address ID Address

A1 30__forward__theta__Beta__1
A2 bern_0__Categorical(len_probs:2)__1
A3 z_1_0__Normal__1
A4 c_0__Categorical(len_probs:2)__1
A5 bern_1__Categorical(len_probs:2)__1
A6 z_1_1__Normal__1
A7 c_1__Categorical(len_probs:2)__1
A8 280__forward__?__Normal__1
A9 z_2_0__Normal__1
A10 bern_2__Categorical(len_probs:2)__1
A11 z_1_2__Normal__1
A12 c_2__Categorical(len_probs:2)__1
A13 bern_3__Categorical(len_probs:2)__1
A14 z_1_3__Normal__1
A15 c_3__Categorical(len_probs:2)__1
A16 z_2_1__Normal__1
A17 z_2_2__Normal__1
A18 bern_4__Categorical(len_probs:2)__1
A19 z_1_4__Normal__1
A20 c_4__Categorical(len_probs:2)__1
A21 bern_5__Categorical(len_probs:2)__1
A22 z_1_5__Normal__1
A23 c_5__Categorical(len_probs:2)__1
A24 bern_6__Categorical(len_probs:2)__1
A25 z_1_6__Normal__1
A26 c_6__Categorical(len_probs:2)__1
A27 z_2_3__Normal__1
A28 z_2_5__Normal__1
A29 z_2_4__Normal__1



D.5 PROGRAM SYNTHESIS DETAILS

The python code describing the generative model we approximate with a surrogate is given in Fig. 8. Note that the
depth_allow_else data structure is in effect a stack that keeps track of the nesting of if and else statements. To
generate valid programs, the surrogate has to learn that valid programs can only sample an else statement if an if
statement has preceded it on the same nesting level. Furthermore, in our generative model, a valid program can only end
at the lowest nesting level. Expanding on the results presented in the main text, additional example programs for both the
original and the surrogate are displayed in Fig. 10. Address transitions for the synthetic programs can be found in Fig. 9. The
structure of these transitions makes it clear that the program can only finish from specific addresses, corresponding to those
sampled at the lowest nesting level. It is evident from the transitions presented for the surrogate that these dependencies are
accurately captured.



def synthetic_programs():

control_flow = {0: 'if',

1: 'else',

2: 'for',

3: 'body',

4: 'end'}

nlines = 2

depth = 1

maxdepth = depth

# set up probs

probs_with_else = [1.0, 2.5, 1.0, 2.5, 1.0]

probs_with_else = [p / sum(probs_with_else) \

for p in probs_with_else]

probs_no_else = [1.0, 0, 1.0, 2.5, 1.0]

probs_no_else = [p / sum(probs_no_else) \

for p in probs_no_else]

depth_allow_else = {depth: False}

while True:

if depth_allow_else[depth]:

probs = probs_with_else

else:

probs = probs_no_else

# sample the statement type

s = sample(Categorical(probs),

address=f"stat_{depth}_{nlines}")

statement = control_flow[s]

if statement == 'body':

s = sample(Categorical([0.33, 0.33, 0.34]),

address=f"op_{depth}_{nlines}")

num = sample(Normal(0.0, 1.0),

address=f"mod_{depth}_{nlines}")

nlines += 1

probs[0] *= 0.5

probs[1] *= 0.5

probs[2] *= 0.5

probs[3] *= 0.5

probs = [p / sum(probs) for p in probs]

elif statement == 'if':

s = sample(Categorical([0.5, 0.5]),

address=f"cond_{depth}_{nlines}")

num = sample(Normal(0.0, 1.0),

address=f"comp_{depth}_{nlines}")

depth += 1

nlines += 1

if depth > maxdepth:

maxdepth = depth

probs[0] *= 0.5

probs[1] *= 0.5

probs[2] *= 0.5

probs = [p / sum(probs) for p in probs]

depth_allow_else[depth] = True

elif statement == 'else':

if depth > maxdepth:

maxdepth = depth

probs[0] *= 0.5

probs[1] *= 0.5

probs[2] *= 0.5

probs = [p / sum(probs) for p in probs]

depth_allow_else[depth] = False

elif statement == 'for':

depth += 1

nlines += 1

range_val = sample(Categorical([1,5,2,8,4,2,5,7,98]),

address=f"range_{depth}_{nlines}")

depth_allow_else[depth] = False

if depth > maxdepth:

maxdepth = depth

probs[0] *= 0.5

probs[1] *= 0.5

probs[2] *= 0.5

probs = [p / sum(probs) for p in probs]

else: # is end

probs[0] *= 0.5

probs[1] *= 0.5

probs = [p / sum(probs) for p in probs]

del depth_allow_else[depth]

depth -= 1

if depth == 0:

break

return maxdepth

Figure 8: Model describing the program synthesis generative model.
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a) b)

Figure 9: (a) Address transitions sampled from the original model shown in Fig. 8 (b) Address transitions sampled from the
PSN. For each plot the address transition probabilities are estimated across 50,000 traces.



def function(x):

x = x - -0.4087

for y in range(8):

pass

x = x - 0.4198

x = x * 0.1882

return x

def function(x):

for y in range(8):

pass

x = x + -0.2114

x = x * 0.3071

return x

def function(x):

for y in range(5):

pass

x = x * -2.2118

return x

def function(x):

for y in range(8):

pass

x = x * 0.9308

return x

def function(x):

for y in range(8):

pass

x = x + 0.7492

x = x - -0.0710

return x

def function(x):

for y in range(8):

pass

x = x * -1.4855

x = x + 0.2987

if x < -0.9295:

pass

return x

def function(x):

x = x - 0.5329

x = x + -1.3560

for y in range(8):

pass

x = x + 0.5513

return x

def function(x):

x = x + -0.4373

for y in range(8):

pass

if x > -0.6187:

pass

for y in range(7):

pass

x = x * -0.6503

x = x - 0.2484

return x

def function(x):

x = x - 0.7312

if x > 0.0509:

pass

for y in range(4):

pass

x = x - -0.4496

else:

pass

return x

def function(x):

if x > -0.6631:

pass

for y in range(8):

pass

else:

pass

return x

def function(x):

if x > -0.7258:

pass

x = x * 0.4430

for y in range(8):

pass

x = x + 1.1464

else:

pass

return x

def function(x):

for y in range(8):

pass

x = x + -0.2186

return x

def function(x):

for y in range(8):

pass

if x < 1.8181:

pass

x = x - -0.2057

x = x + 0.0787

x = x - -0.9475

return x

def function(x):

if x > 1.8695:

pass

x = x - 0.9109

for y in range(3):

pass

x = x + 0.5025

return x

def function(x):

for y in range(8):

pass

return x

def function(x):

for y in range(8):

pass

for y in range(8):

pass

x = x - 1.3633

return x

def function(x):

for y in range(8):

pass

if x < 0.6867:

pass

for y in range(8):

pass

x = x + 0.0118

x = x - 1.1458

return x

def function(x):

for y in range(8):

pass

return x

def function(x):

if x < -0.2176:

pass

x = x * -0.1251

if x < 0.1617:

pass

else:

pass

for y in range(8):

pass

if x < -1.8860:

pass

if x < 0.0689:

pass

return x

def function(x):

if x > -0.8971:

pass

for y in range(8):

pass

x = x + 0.9104

else:

pass

x = x * -0.1137

return x

def function(x):

x = x * 1.7570

if x < 1.2314:

pass

for y in range(8):

pass

x = x - 0.2301

if x < -0.5254:

pass

x = x - -1.7400

else:

pass

return x

a) b)

Figure 10: (a) Example programs sampled from the original model shown in Fig. 8 (b) Example programs sampled from the
learned surrogate.
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