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For clearer presentation of materials and equations in this supplement, we switch to a single-column format. Appendix A
contains a brief overview of inference in semiparametric models. Appendix B contains additional discussion on how to
ensure the nuisance models are trained in a congenial manner. Appendix C contains additional results with simulated data
and real data application. Appendix D contains all the proofs.

A BRIEF OVERVIEW OF SEMIPARAMETRIC ESTIMATION

Let Z1, . . . , Zn, be iid samples from a general class of probability densities p(Z; θ) parameterized by θT = (βT , ηT ),
where β ∈ Rq denotes the set of target parameters, and η denotes a possibly infinite dimensional set of nuisance parameters.
The goal of statistical inference in semiparametric models is to find “the best" estimator of β in the model, denoted by β̂.
We will consider regular asymptotically linear (RAL) estimators, which are estimators of the form

√
n(β̂ − β) =

1√
n

n∑
i=1

φ(Zi) + op(1),

where φ ∈ Rq with mean zero and finite variance, op(1) denotes a term that approaches to zero in probability, and φ(Zi) is
the influence function (IF) of the ith observation for the parameter vector β. RAL estimators are consistent and asymptotically
normal, with the variance of the estimator given by its IF,

√
n(β̂ − β)

D−→ N
(
0,E[φφT ]

)
.

There is a bijective correspondence between RAL estimators and IFs. IFs provide a geometric view of the behavior
of RAL estimators. Consider a Hilbert space H of all mean-zero q−dimensional functions, equipped with an inner
product, defined between two arbitrary elements of the Hilbert space h1 and h2 as E[hT1 h2]. The nuisance tangent space
Λ in the semiparametric model is defined to be the mean square closure of elements of the nuisance tangent spaces
Λβ = {Bq×rSη(Z; θ)} of every parametric submodel. A parametric submodel is defined as a subset of densities in the
semiparametric model parameterized by θTβ = (βT , ηTβ ), where ηTβ ∈ Rr, such that the subset contains the density p(Z; θ0)
in the semiparametric model evaluated at the true parameter values θ0. The space Λ is important because it is known all
influence functions lie in the orthogonal complement Λ⊥ of Λ with respect toH. For this reason, recovering Λ⊥ is often the
first step for constructing RAL estimators in semiparametric models. Out of all IFs in Λ⊥ there exists a unique one which
lies in the tangent space, and which yields the most efficient RAL estimator by recovering the semiparametric efficiency
bound, see Tsiatis [2007] for details.

B ADDITIONAL DISCUSSIONS

“Inverted” Structural Nested Mean Model. In order to deal with the issue of congeniality, we may opt to specify
Eq[Y | g(A;β)] and f̃(A,C, β) = Eq[Y | A,C]− Eq[Y | g(A;β)], which yield a variationally independent specification
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of Eq[Y | g(A;β)] and Eq[Y | A,C] = Eq[Y | g(A;β)] + f̃(A,C, β). Consequently, the four variationally independent
models we need to specify are as follows: `(g(A;β)), ν(g(A;β)), p(A|C), and f̃(A,C, β). The last term in (8) can
be evaluated empirically without additional modeling. Thus, we need to specify the additional nuisance model f̃ . We
propose to fit f̃ by borrowing ideas from the theory of structural nested mean models (SNMMs) in [Vansteelandt and
Joffe, 2014, Robins, 1999]. Unlike MSMs, which are regression models for causal relationships, SNMMs directly model
the so called “blip effects,” namely counterfactual differences between the response to a particular treatment, and a
response to a reference treatment, given a particular observed trajectory. For a single treatment, this difference simplifies
to γ(A,C;ψ) = E[Y (A) | A,C]− E[Y (0) | A,C]. Let Usn(ψ) := Y − γ(A,C;ψ). Consequently, E[Usn(ψ) | A,C] =
E[Y (0) | A,C] = E[Y (0) | C] = E[Usn(ψ)|C] (by conditional ignorability). This estimating equation then leads to a
consistent estimation of parameters ψ:

Pn
[
{d(A,C)− E[d(A,C) | C]} × {Usn(ψ)− E[Usn(ψ) | C]}

]
= 0,

where d(A,C) is a function of A and C with the same cardinality as ψ [Vansteelandt and Joffe, 2014]. Assuming f̃ is
parameterized by ψ, we now show that estimating ψ can be viewed as an estimation problem for a kind of “inverted SNMM.”

Lemma 1. Let Udim(ψ) = Y − f̃(A,C, β;ψ), and fix any d(A,C). If either E[d(A,C) | g(A;β)] or E[Udim(ψ) | g(A;β)]
are correctly specified, the following estimating equations yield a consistent estimator of ψ,

Pn
[{
d(A,C)− E[d(A,C) | g(A;β)]

}
×
{
Udim(ψ)− E[Udim(ψ) | g(A;β)]

}]
= 0.

For the purposes of robustness, specifying both E[f̃ | g(A;β)] and E[Udim(ψ) | g(A;β)] correctly is part of the correct
specification of E[U(β) | A,C], given the type of estimation strategy we use.

The implementation provided in Section 4 can be modified to take advantage of modeling congenial models. Right before

step (c), we need to estimate ̂̃f (j)(A,C, β(j); ψ̂
)

using Lemma 1, and modify step (c) by letting E[Uq(β(j)) | A,C] =̂̃
f (j) ×

{
α(A)− ν̂(g(A;β(j)))

}
. A downside of estimating congenial models is that the overall procedure becomes quite

computationally intensive.

C ADDITIONAL EXPERIMENTS

In light of an anonymous reviewer’s suggestion, we provide the steps for numerical computation of the first derivative.
Computing the second derivative follows similarly.

• Step 1. Define a function that takes as input a vector-valued β and computes ζ(β) as defined in Step 4 of the
implementation discussion.

• Step 2. Let K be the length of β, that is (# of rows) × (# of columns)

• Step 3. Let deriv be the vector that collects the derivatives of ζ(β) with respect to β[i, j]. Thus deriv is a vector of size
K.

• Step 4. For k ∈ 1 : K do:

– (i) Let the kth element in the matrix β be perturbed by δ, as follows

* (a) Let e be a matrix of all zeros with the same number of rows and columns as β

* (b) e[k] = 1

* (c) β+
k = β + δ × e

* (d) β−k = β − δ × e
– (ii) Compute ζ(β+

k ) and ζ(β−k )

– (iii) deriv[k] = {
∑
ζ2(β+

k )−
∑
ζ2(β−k )}/{2× δ}

C.1 SIMULATIONS

Simulation 1. The boxplots in Fig. 1(a) illustrate the performance of different estimation strategies for β for both Case 1
and Case 2, when sample size is set for 200 and p = 12.



(a) (b) (c)

Figure 1: (a) Boxplots of Frobenius norms between true and estimated parameters in simulations (p = 12); (b) Illustration of
the effect of sample size on the Frobenius norms between true and estimated parameters using data generated from Case 2
with p = 6. (c) Boxplots to illustrate the robustness property of our AIPW-style estimator.

Simulation 2. The relative frequency of the selected dimension are reported in the table below, which reveals that the
bootstrap procedure reliably recovers the true structural dimension, namely 2.

Model (p = 6) d̂ = 1 d̂ = 2 d̂ = 3 d̂ = 4 d̂ = 5
Case 1 0% 98% 2% 0% 0%
Case 2 0% 90% 10% 0% 0%

Simulation 3. In the third set of simulations, we demonstrated the effect of sample size on IPW and AIPW estimators of β
in the causal SDR model. Results are shown in Fig. 1(b). While both estimators are consistent under our model specification,
AIPW exhibits favorable convergence rates compared to IPW, as expected.

Simulation 4. In light of an anonymous reviewer’s suggestion, we ran simulation to illustrates the robustness property
of our AIPW-style estimator. For such illustration, we focused on Case 2 with p = 6 and fix the sample size to 200. We
computed the Frobenius norms between true and estimated parameters under four different scenarios: (1) miss-no where
all model are correctly specified, (2) miss-A where only the propensity model is misspecified, (3) miss-Y where only the
outcome model is misspecified, and (4) miss-AY where both models are misspecified. For miss-specification of outcome
model, we excluded the dependency of Y on C3 and C4. For miss-specification of the propensity model, we changed the
mean of the multivariate normal distribution by altering the dependency of A on the baseline factors. We performed 100
iterations and the boxplots are provided in Fig. 1(c).

We assure the reviewer to include demonstrations of the robustness property in the camera ready revision.

C.2 REAL DATA

Assume treatment is collected using p equally spaced percentages of volume. In other words, treatment is assumed to be a
vector in Rp where the i-th element corresponds to the radiation dose on p percentages of the parotid glands. The effect
of radiation on weight loss is illustrated in Fig. 2 by allowing p to be 10 and 20, and reducing the size of treatment to one
dimension. We use IPW estimators to calculate the effects. Both plots agree with our stated conclusion in the main body of
the manuscript, i.e., radiation has a negative effect on weight loss.



Figure 2: Heatmaps to illustrate the causal effect of radiation on weight loss. Treatment is collected using (right) 10 and
(left) 20 equally spaced percentages of volume in parotid glands.

D PROOFS

Lemma 1.

Proof. Choosing φ(A,C) = 0 in Theorem 1 yields (7). All elements of the orthocomplement of the nuisance tangent space
are mean zero under the true distribution (we give an argument for elements of Λ̃⊥η in Proposition 1). Since Ũ(β) exhibits
double robustness, i.e. remaining consistent if either `(g(A;β)) or ν(g(A;β)) is correctly specified [Ma and Zhu, 2012],
the correct specification of p(A | C) yields our conclusion.

Proposition 1. For all Ũ(β∗) ∈ Λ̃⊥η , E[Ũ(β∗)] = 0.

Proof. The second and third terms of Ũ(β∗) are mean zero by construction. The first term, under truth with the property
that Eq[Y | A] = Eq[Y | g(A;β)], is

E
[ p∗(A)

p(A | C)
× Ũ(β)

]
=

∫
Ũ(β)× p(Y | A,C)× p∗(A)× p(C) dµY,A,C

=

∫ {
Y − `(g(a;β))

}
×
{
α(A)− ν(g(a;β))

}
× q(Y,A,C) dµY,A,C

= Eq
[{
Y − `(g(a;β))

}
×
{
α(A)− ν(g(a;β))

}]
= Eq

[{
α(A)− ν(g(a;β))

}
× Eq

[{
Y − `(g(a;β))

}
| A = a

]]
= Eq

[{
α(A)− ν(g(a;β))

}
×
{
Eq[Y | A = a]− `(g(a;β))

}]
= 0.

since `(g(a;β)) := Eq[Y | A = a]. Note that even if `(g(a;β)) is miss-specified, the expectation will still be zero if
ν(g(a;β)) is correctly specified, shown by iterative expectations.

Theorem 1.

Proof. This is a direct consequence of Theorems 3.1 and 3.2 in Robins [1999], and results in Appendix 3 of Ma and Zhu
[2012].

Lemma 2.



Proof. Plugging in the optimal φ(A,C) yields Ũ(β∗) to be

p∗(A)

p(A | C)
× Ũ(β)− E

[
p∗(A)

p(A | C)
Ũ(β)

∣∣∣∣A,C]+ E
[
E
[
p∗(A)

p(A | C)
Ũ(β)

∣∣∣∣A,C]∣∣∣∣C] .

The conclusion follows, since

E
[
E
[
p∗(A)

p(A | C)
Ũ(β)

∣∣∣∣A,C]∣∣∣∣C]
= E

[
p∗(A)

p(A | C)
E
[
Ũ(β)

∣∣∣A,C]∣∣∣∣C]
=

∫
p∗(A)

p(A | C)
E[Ũ(β) | A,C] p(Y,A | C) dµY,A

=

∫
E[Ũ(β) | A,C] p(Y | A,C) p∗(A) dµY,A

=

∫
E[Ũ(β) | A,C] q(Y,A | C) dµY,A

= Eq
[
E
[
Ũ(β) | A,C

]∣∣∣C].

Lemma 3.

Proof. Assume either `(g(A;β)) or ν(g(A;β)), and p(A | C) are correctly specified. Consequently, the second and third
terms in the expression of Ũ(β∗) are both mean zero, even under an incorrect specification of E[Ũ(β) | A,C]. Following
the same the argument in Proposition 1, the first term is zero if either `(g(A;β)) or ν(g(A;β)) is correctly specified.

Assume either `(g(A;β)) or ν(g(A;β)), and E[Ũ(β) | A,C] are correctly specified. Consequently, the first two terms in
the expression of Ũ∗ are both mean zero, even under an incorrect specification of p∗(A | C). For the last term, we have:

E
[
Eq
[
E
[
Ũ(β)

∣∣ A,C] ∣∣∣ C]]
= E

[
Eq
[ ∫

Ũ(β)× p(Y | A,C) dµY

∣∣∣ C]]
= E

[ ∫ (∫
Ũ(β)× p(Y | A,C) dµY

)
× p∗(A) dµA

]
=

∫ (∫ ∫
Ũ(β)× p(Y | A,C)× p∗(A) dµY dµA

)
× p(C) dµC

=

∫
Ũ(β)× p(Y | A,C)× p∗(A)× p(C) dµY,A,C

=

∫
Ũ(β)× q(Y,A,C) dµY,A,C

= Eq
[
Ũ(β)

]
.

We conclude the proof by noting that E
[
Ũ(β)

]
is mean zero if either `(g(A;β)) or ν(g(A;β)) is correctly specified. Note

that the normalized version of Ũ(β∗), that is E[∂Ũ(β∗)
∂β ]−1 × Ũ(β∗), is an influence function that lives in the orthogonal

complement of the tangent space Λ̃⊥η . Therefore, the estimator obtained by solving E[Ũ(β∗)] = 0 is RAL and is consistent
and asymptotically normal with mean zero and variance equal to the variance of the influence function [Van der Vaart, 2000,
Tsiatis, 2007].

Theorem 2.



Proof. Let β ∈ Rq and let η be infinite dimensional. We prove this theorem for the parametric submodel in the semipara-
metric model of {p(Z;β, η)}. With a slight abuse of notation, we denote η ∈ Rr to be the nuisance parameters within the
parametric submodel. The Taylor series expansion of Ũ(Z; β̂(η̂), η̂) around β0 is

0 =
1√
n

n∑
i=1

Ũ(zi; β̂(η̂), η̂) (1)

=
1√
n

n∑
i=1

Ũ(zi;β0, η̂)︸ ︷︷ ︸
(a)

+
∂

∂β

{
1

n

n∑
i=1

Ũ(zi;β0, η̂)

}
︸ ︷︷ ︸

(b)

√
n(β̂ − β0) + op(1)

(a) =
1√
n

n∑
i=1

Ũ(zi;β0, η0)

+
1

n

n∑
i=1

(
∂Ũ(zi;β0, η0)

∂η

)
q×r

×
√
n(η̂ − η0)

+
1

2
n1/4(η̂ − η0)′︸ ︷︷ ︸

1×1×r

(
1

n

n∑
i=1

∂2Ũ(zi;β0, η0)

∂2η

)
︸ ︷︷ ︸

r×q×r (tensor)

n1/4(η̂ − η0)︸ ︷︷ ︸
r×1×1

+ op(1)

(b) =
1

n

n∑
i=1

(
∂Ũ(zi;β0, η0)

∂β

)
q×q︸ ︷︷ ︸

(b1)

+
∂

∂β

{
1

n

n∑
i=1

(
∂Ũ(zi;β0, η0)

∂η

)
q×r︸ ︷︷ ︸

(b2)

× (η̂ − η0)r×1

}

(b1) :
1

n

n∑
i=1

(
∂Ũ

∂β

)
q×q

−→ Eθ0

[
∂Ũ

∂β

]
q×q

= −Eθ0
[
Ũ(Z; θ0)S

′
β(Z; θ0)

]

(b2) :
1

n

n∑
i=1

(
∂Ũ

∂η

)
q×r

−→ Eθ0

[
∂Ũ

∂η

]
q×r

= −Eθ0
[
Ũ(Z; θ0)S

′
η(Z; θ0)

]
= 000q×r

Since n1/4(η̂ − η0) and 1
n

∑n
i=1

(
∂Ũ(zi;β0,η0)

∂η

)
q×r

both converge in probability to zero, then

1√
n

n∑
i=1

Ũ(zi;β0, η̂) =
1√
n

n∑
i=1

Ũ(zi;β0, η0) + op(1).

Therefore, from equation 1

√
n(β̂ − β0) =

1√
n

n∑
i=1

{
−E−1

θ0

[
∂Ũ(zi;β0, η0)

∂β

]
Ũ(zi;β0, η0)

}
+ op(1)

Which concludes the proof. This procedure carries over to the case where the nuisance parameter is infinite dimensional,
Tsiatis [2007].

Lemma 1.

Proof. Define Udim(ψ) = Y − f̃(A,C, β;ψ). Therefore,

E[Udim(ψ) | A,C] = `(g(A;β)) = E[Udim(ψ) | g(A;β)].

This is a situation precisely isomorphic to single treatment SNMMs above, except with the roles of A and C reversed (hence
this is an “inverted SNMM”). Our conclusion will then follow by results in [Robins et al., 2000, Vansteelandt and Joffe,



2014]. We provide a more detailed proof as follows. We have that f̃(A,C, β;ψ) = E[Y | A = a,C = C] − `(g(a;β)).
Therefore,

E[Y | A = a,C = C] = `(g(a;β)) + f̃(a,C, β;ψ),

which we can rewrite as follows,

Y = `(g(a;β)) + f̃(a,C, β;ψ) + ε, s.t. E[ε | C, a] = 0.

Observed data are instances of the form Z = (C,A, Y ). The goal is to find semiparametric estimators for ψ in the
semiparametric model P = {p(z;ψ,ψ()), z = (C, a, y)} and the truth is p0(z) = p(z;ψ0, η0()). The observed data
likelihood can be written as follows,

p(c, a, y) = p(C, a)× p(y | a,C) := p(C, a)× p(ε | a,C) = η1(C, a)× η2(ε, a, C)

= η1(C, a)× η2
(
y − `(g(a;β))− f̃(a,C, β;ψ), a, C

)
,

where ε = Y − `(g(a;β))− f̃(a,C, β;ψ), η1(C, a) denotes the nuisance model for p(C, a), and η2(ε, a, C) denotes the
nuisance model for p(ε | a,C), which is any density such that E[ε | a,C] = 0. ψ is the parameter of interest and the
nuisance parameters are {η1, η2, `(g(a;β))}.

The nuisance tangent space of this semiparametric model, Λ, is defined as the mean-square closure of parametric submodel
nuisance tangent spaces:

Pψ,ζ =
{
p(z;ψ,ψζ) = p(c, a; ζ1)× p(ε | a,C; ζ2)

}
=
{
p(C, a; ζ1)× p

(
y − `(g(a;β))− f̃(a,C, β;ψ) | a,C; ζ2

)}
,

where ζ1, ζ2 are r1, r2 dimensional vectors. Thus nuisance parameters in parametric submode are finite dimensional,
ζ = {ζ1, ζ2, `(g(a;β))}.

Λζ = {B × Sζ ,∀B},

Sζ =
∂{log likelihood of the submodel evaluated at truth}

∂ζ

=

{(∂ log p(z;ψ, ζ)

∂ζ1

)
,
(∂ log p(z;ψ, ζ)

∂ζ2

)
,
(∂ log p(z;ψ, ζ)

∂`(g(a;β))

)}∣∣∣∣∣
ψ0,ζ0

=
{
Sζ1(z;ψ0, ζ0), Sζ2(z;ψ0, ζ0), S`(g(a;β))(z;ψ0, ζ0)

}
.

Hence, Λζ = Λζ1 + Λζ2 + Λ`(g(a;β)). Sζ1 should satisfy the density conditions. In addition, Sζ2 should satisfy the condition
that E[ε | a,C] = 0. We derive each of these subspaces using theorems in [Tsiatis, 2007] as a guideline.

(Theorem 4.6) Λζ1 = {f(C, a);E[f ] = 0}
(Theorem 4.7) Λζ2 = {f(ε, a, C);E[f | a,C] = 0,E[εf | a,C] = 0}
(Lemma 4.3) Λ⊥ζ1 = {g(ε, a, C);E[g | a,C] = 0}
(Theorem 4.8) (Λζ1 + Λζ2)⊥ = {g(C, a)ε}

(Equation 2) Λ`(g(a;β)) = {ψ
′
2ε(ε, C, a)

ψ2(ε, C, a)
f(g(a;β))}

In order to derive Λ`(g(a;β)), we write down the corresponding score function as follows.

S`(g(a;β)) =
∂ log p(z;ψ, ζ)

∂`(g(a;β))

∣∣∣
ψ0,ζ0

=
∂ log

(
ψ1(C, a; ζ10)× ψ2

(
y − `(g(a;β))− γ(C, a;ψ), C, a; ζ20

))
∂`(g(a;β))



=
∂ logψ2

(
y − `(g(a;β))− γ(C, a;ψ), l, a; ζ20

)
∂`(g(a;β))

=
∂ logψ2

(
ε, C, a; ζ20

)
∂ε

× ∂ε

∂`(g(a;β))
(ε is a function of `(g(a;β)))

=
ψ′2ε(ε, C, a)

ψ2(ε, C, a)
f(g(a;β)). (2)

In order to derive Λ⊥ζ , we proceed as follows. Since Λζ = Λζ1 + Λζ2 + Λ`(g(a;β)) and Λζ1 + Λζ2 ⊂ Λζ , then Λ⊥ζ ⊂
(Λζ1 + Λζ2)⊥ = {g(c, a)ε}. Similarly, Λ⊥ζ ⊂ Λ⊥`(g(a;β)), therefore Λ⊥ζ = {(Λζ1 + Λζ2)⊥ ∩ Λ⊥`(g(a;β))}.

Pick an arbitrary element in (Λζ1 + Λζ2)⊥, and denote it by d(C, a)ε. For d(C, a)ε to be an element in Λ⊥ζ , it needs to be

orthogonal to every element in Λ`(g(a;β)). Pick an arbitrary element in Λ`(g(a;β)) and denote it by ψ′2ε
ψ2
h(g(a;β)). We have,

∀h(g(a;β)) 0 =< d(C, a)ε,
ψ′2ε
ψ2

h(g(a;β)) >

= E
[
d(C, a)ε

ψ′2ε
ψ2

h(g(a;β))
]

= E
[
d(C, a)h(g(a;β))

]
.

Consequently, ∀h(g(a;β)):

0 = E
[
d(C, a)× h(g(a;β))

]
= E

[
E
[
d(C, a)× h(g(a;β))

∣∣ g(a;β)
]]

= E
[
h(g(a;β))× E

[
d(C, a)

∣∣ g(a;β)
]]

= E
[
h(g(a;β))

]
× E

[
d(C, a)

∣∣ g(a;β)
]
.

Therefore, E[ d(C, a) | g(a;β) ] = 0 and

Λ⊥ζ =
{(
d(C, a)− E[d(C, a) | g(a;β)]

)
× ε
}

=
{(
d(C, a)− E[d(C, a) | g(a;β)]

)
×
(
Y − γ(C, a;ψ)− `(g(a;β))

}
=
{(
d(C, a)− E[d(C, a) | g(a;β)]

)
×
(
U(ψ)− E[U(ψ) | C, a]

)}
.

Note that E[U(ψ) | C, a] = Eq[Y | g(a;β)] = E[U(ψ) | g(a;β)]. Hence,

Λ⊥ζ =
{{
d(C, a)− E[d(C, a) | g(a;β)]

}
×
{
U(ψ)− E[U(ψ) | g(a;β)]

}}
.
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