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A THE PROOF OF THEOREM 3

A.1 BASIC THEORY

In this section, we provide a brief review of the basic theory of optimization, which is used to prove Theorem 3.
Readers who are familiar with optimization theory can skip this section. For details, also refer to, for example,
Beck [2017].

Throughout the Supplementary Material, let f(x) be a proper, closed, and convex function. Here, f(x) is called
proper when the domain of f(x), dom(f) = {x|f(x) <∞}, is not empty, and f(x) takes values on the extended
real number line—i.e., (−∞,∞]. In addition, f(x) is called closed when lim inf

x→x0
f(x) ≥ f(x0) holds, where “lim inf”

is the limit inferior (of f at point x0). Furthermore, f(x) is called σ-strongly convex for a given σ > 0 if dom(f)
is convex, and the following inequality holds for any x,y ∈ dom(f) and λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− σ

2λ(1− λ)||x− y||22. (A.1)

In particular, f(x) is called convex if equation (A.1) holds for σ = 0. In addition, a set C is called convex if it
holds that λx + (1 − λ)y ∈ C for any x, y ∈ C and λ ∈ [0, 1]. Throughout the Supplementary Material, the
function g(x) is also a proper, closed, and convex function.

The function f(x) is also assumed to satisfy the following conditions: (i) dom(f) is convex, (ii) dom(g) ⊂
int(dom(f)) and (iii) f(x) is lf -smooth over int(dom(f)). Here, f(x) is called an lf -smooth function when
(∂/∂x)f is a Lipschitz continuous function with Lipschitz constant lf . For a set A, int(A) is a set of all interior
points of A. The function h(x) is called Lipschitz continuous if there exists a positive real constant K such that
|h(x1)− h(x2)| ≤ K||x1 − x2||2 for any x1,x2 ∈ dom(h) and such a K is called a Lipschitz constant. Finally,
the minimizer of f(x) is a point a for which f(x) > f(a) at x around a.

For a p-dimensional vector x ∈ Rp, consider a problem that finds the minimizer of

F (x) = f(x) + g(x), (A.2)

where we assume that the optimal set of argmin
x

(f(x) + g(x)) is nonempty in this Supplementary Material.

Under the preparation above, we introduce the following propositions.

Proposition 1 (Convergence rate of the proximal gradient method [Beck, 2017] For the sequence
{x[k]}k≥0 defined by

x[k + 1] = argmin
x∈Rp

(
f(x[k]) +

〈
∂

∂x
f(x)x=x[k],x− x[k]

〉
+ g(x) + 1

2t ||x− x[k]||22
)

(A.3)
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= argmin
x∈Rp

(
tg(x) + 1

2 ||x− (x[k]− t ∂
∂x

f(x)x=x[k])||22
)

(A.4)

for t > 0 and the initial vector x[0] from dom(F), x∗ is the minimizer of F (x):

F (x[k])− F (x∗) ≤ lf
2k ||x[0]− x∗||2 (A.5)

for k ≥ 0 and t ≤ 1/lf .

Proposition 2 [Beck, 2017] For D to be a Euclidean space, let f : D → (−∞,∞] be a proper, closed, and
σ-strongly convex function (σ > 0). Then,

(a) f(x) has a unique minimizer x∗ in dom(f),

(b) for all x ∈ dom(f),
f(x)− f(x∗) ≥ σ

2 ||x− x
∗||22.

Proposition 3 [Beck, 2017] Let D be a Euclidean space and f : D → (−∞,∞] be a σ-strongly convex function
if and only if the function f(x)− σ

2 ||x||
2
2 is convex.

A.2 PREPARATION

For Section 3, let wi be an n-dimensional observation vector of the i-th explanatory variable Wi of W
(Wi ∈W : i = 1, 2, ..., q). In addition, based on the weight vector γ of equations (6) and (7), we define the n× q
matrix w] and B]yw·xz as

w] =
(
w1

γ1
; w2

γ2
; . . . ; wq

γq

)
(A.6)

and γ �Byw·xz, respectively. Then, for p = 1, equation (5) is reformulated as

L]1(βyx·zw, Byz·xw, B]yw·xz) = 1
2 ||y − xβyx·zw − zByz·xw −w

]B]yw·xz||22 + λ1||B]yw·xz||11. (A.7)

Then, to solve our problem, we adopt the idea of the block-coordinate-relaxation method [Sardy et al., 2000].
Intuitively, in the block-coordinate-relaxation method, a whole set of variables is divided into several blocks, and
the original optimization problem is iteratively solved as a sequential optimization problem regarding some blocks
under the assumption that the remaining blocks are constant. Based on this idea, first, we divide equation (A.7)
into the following two kinds of functions:

f ](βyx·zw, Byz·xw, B]yw·xz) = 1
2 ||y − xβyx·zw − zByz·xw −w

]B]yw·xz||22 (A.8)

g(B]yw·xz) = λ1||B]yw·xz||11. (A.9)

Then, when we divide a whole set of variables into {X} ∪Z and W according to the block-coordinate-relaxation
method, the minimum optimization for equation (A.7) includes the following two substep minimization procedures
in the k + 1-th step (k ≥ 0):

B]yw·xz[k + 1] = argmin
B

(
L]1(βyx·zw[k], Byz·xw[k], B)

)
(
βyx·zw[k + 1], Byz·xw[k + 1]T

)T = argmin
b,B

(
L]1(b, B,B]yw·xz[k + 1])

)
 , (A.10)

where
βyx·zw[0] = β̂yx·z, Byz·xw[0] = B̂yz·x

B]yw·xz[0] = argmin
B

(
1
2 ||y − xβ̂yx·z − zB̂yz·x −w

]B||22 + λ1||B||11
)
.
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First, from equation (A.3), B]yw·xz[k + 1] can be expressed as follows:

B]yw·xz[k + 1] = argmin
B

(
f ]
(
βyx·zw, Byz·xw, B

]
yw·xz[k]

)
+
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B]

yw·xz [k], B −B
]
yw·xz[k]

〉
+ g(B) + lf

2 ||B −B
]
yw·xz[k]||22

)
, (A.11)

where lf is a Lipschitz constant with respect to the partial derivative function

∂

∂B
f ](βyx·zw, Byz·xw, B). (A.12)

Here, through the partial derivative of convex function (A.11) with respect to B, equation (A.11) can also be
rewritten as

B]yw·xz[k + 1] = prox 1
lf
g

(
B]yw·xz[k]− 1

lf

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B]

yw·xz [k]

)(
= Tlf

(
B]yw·xz[k]

))
, (A.13)

where

proxa(b) =


b− a : b ≥ a
0 : −a < b < a

b+ a : b ≤ −a
(A.14)

and we define

Tlf (B′) = prox 1
lf
g

(
B′ − 1

lf

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′

)
(A.15)

for any fixed βyx·zw and Byz·xw. Then, we obtain equation (25) by replacing βyx·zw and Byz·xw with βyx·zw[k]
and Byz·xw[k], respectively.

Second, since the sum of squares matrix of X and Z is invertible in the paper, clearly, the solution of (βyx·zw[k+1],
BTyz·xw[k + 1])T given B]yw·xz[k + 1] can be derived as the least squares estimators of (b, B)T :(

βyx·zw[k + 1]
Byz·xw[k + 1]

)
=
(
sxx Sxz
STxz Szz

)−1(
xT

zT

)
(y −wByw·xz[k + 1]) . (A.16)

Thus, letting {(βyx·zw[l], BTyz·xw[l])T }l≥0 and {B]yw·xz[k]}k≥0 be the sequence generated by procedure (A.10)
for solving the minimization problem with respect to loss function (A.7), L]1(βyx·zw[l], Byz·xw[l], B]yw·xz[k]) is a
monotonically decreasing function of l and k.

A.3 PROOF

Under the preparation in Section A.2, we prove the following lemmas to prove Theorem 3.

Lemma 1 For a given βyx·zw and Byz·xw in equation (A.7), we have

L]1 (βyx·zw, Byz·xw, B1)− L]1
(
βyx·zw, Byz·xw, Tlf (B2)

)
≥ lf

2 ||B1 − Tlf (B2)||22 −
lf
2 ||B1 −B2||22 + df (B1, B2) (A.17)

for any B1 and B2, where df (B1, B2) is the Bregman distance with f ](βyx·zw, Byz·xw, B) between B1 and B2; i.e.,

df (B1, B2) = f ] (βyx·zw, Byz·xw, B1)− f ] (βyx·zw, Byz·xw, B2)

−
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , B1 −B2

〉
. (A.18)

and 〈a, b〉 is an inner product between vectors a and b, i.e., 〈a, b〉 = aT b.
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Proof of Lemma 1: Letting

ψ(b) = f ] (βyx·zw, Byz·xw, B2) +
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , b−B2

〉
+ g(b) + lf

2 ||b−B2||22, (A.19)

ψ is an lf -strongly convex function from Proposition 3. Referring to equations (A.11) and (A.13), we have

prox 1
lf
g

(
B2 −

1
lf

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2

)
(A.20)

= argmin
b

(
f ] (βyx·zw, Byz·xw, B2) +

〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , b−B2

〉
+ g(b) + lf

2 ||b−B2||22
)

and Tlf (B2) = argmin
b

ψ(b). Thus, from Proposition 2, we have

ψ(B1)− ψ(Tlf (B2)) ≥ lf
2 ||B1 − Tlf (B2)||22. (A.21)

Here, letting λmax(A) be the maximum eigenvalue of a p× p symmetric matrix A, when we define

‖A‖op = sup
x 6=0

xTAx

xTx
= λmax(A),

for all B′ and B′′, we have

|| ∂
∂B

f ](βyx·zw, Byz·xw, B)B=B′ −
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′′ ||2 = ||(w])T (w]B′′ −w]B′)||22

≤ ||(w])Tw]||op||B′′ −B′||22 ≤ λmax(S]ww)||B′′ −B′||22, (A.22)

then f(x) is a λmax(S]ww)(= lf )-smooth function. In addition, from the Cauchy–Schwarz inequality and equation
(A.22), 〈

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′ −

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′′ , B

′ −B′′
〉

≤ || ∂
∂B

f ](βyx·zw, Byz·xw, B)B=B′ −
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′′ ||2||B′ −B′′||2

≤ lf ||B′ −B′′||22. (A.23)

Letting

h(βyx·zw, Byz·xw, B) = lf
2 ||B||

2
2 − f ](βyx·zw, Byz·xw, B), (A.24)

from equation (A.24), we have〈
∂

∂B
h(βyx·zw, Byz·xw, B)B=B′ −

∂

∂B
h(βyx·zw, Byz·xw, B)B=B′′ , B

′ −B′′
〉

=
〈
lf (B′ −B′′)−

(
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′ −

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B′′

)
, B′ −B′′

〉
≥ 0 (A.25)

for any B′ and B′′. From equation (A.25), since h(βyx·zw, Byz·xw, B) is a convex function with respect to B and
satisfies the first-order condition, we obtain

h(βyx·zw, Byz·xw, Tlf (B2)) ≥ h(βyx·zw, Byz·xw, B2) +
〈
∂

∂B
h(βyx·zw, Byz·xw, B)B=B2 , Tlf (B2)−B2

〉
⇔ lf

2 ||Tlf (B2)||22 − f ](βyx·zw, Byz·xw, Tlf (B2)) ≥ lf
2 ||B2||22 − f ](βyx·zw, Byz·xw, B2)
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+
〈
lfB2 −

∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , Tlf (B2)−B2

〉
⇔ f ]

(
βyx·zw, Byz·xw, Tlf (B2)

)
≤ f ] (βyx·zw, Byz·xw, B2)

+
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , Tlf (B2)−B2

〉
+ lf

2 ||Tlf (B2)−B2||22

⇔ L]1(βyx·zw, Byz·xw, Tlf (B2)) ≤ ψ(Tlf (B2)). (A.26)

From equation (A.26) together with equation (A.21), we derive

ψ(B1)− L]1(βyx·zw, Byz·xw, Tlf (B2)) ≥ lf
2 ||B1 − Tlf (B2)||22, (A.27)

for any fixed βyx·zw and Byz·xw and any B1.

From equations (A.19) and (A.27), we obtain

f ] (βyx·zw, Byz·xw, B2) +
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , B1 −B2

〉
+ g(B1)

+ lf
2 ||B1 −B2|| − L]1(βyx·zw, Byz·xw, Tlf (B2)) ≥ lf

2 ||B1 − Tlf (B2)||22, (A.28)

and adding f ] (βyx·zw, Byz·xw, B1) to the right-hand side of the above function for rearrangement, we obtain

L]1 (βyx·zw, Byz·xw, B1)− L]1
(
βyx·zw, Byz·xw, Tlf (B2)

)
≥ lf

2 ||B1 − Tlf (B2)||22 −
lf
2 ||B1 −B2||22 + f ] (βyx·zw, Byz·xw, B1)− f ] (βyx·zw, Byz·xw, B2)

−
〈
∂

∂B
f ](βyx·zw, Byz·xw, B)B=B2 , B1 −B2

〉
(A.29)

which completes the proof. 2

Lemma 2 Let {B]yw·xz[k]}k≥0 be the sequence generated by the sequential minimization of equation (A.10) given
βyx·zw and Byz·xw. Then, for optimal solution B]∗yw·xz, there exists some natural number K for any ε > 0 such
that

||B]∗yw·xz −B]yw·xz[k + 1]||22 < ε (A.30)

for all k ≥ K.

Proof of Lemma 2: Letting B1 = B]∗yw·xz and B2 = B]yw·xz[k] in Lemma 1, from B]yw·xz[k+ 1] = Tlf (B]yw·xz[k])
and the nonnegativity of the Bregman distance regarding the convex functions, we have

2
lf

(L]1
(
βyx·zw, Byz·xw, B

]∗
yw·xz

)
− L]1

(
βyx·zw, Byz·xw, B

]
yw·xz[k + 1]

)
)

≥ ||B]∗yw·xz −B]yw·xz[k + 1]||22 − ||B]∗yw·xz −B]yw·xz[k]||22 + 2
lf
df (B]∗yw·xz, B]yw·xz[k])

≥ ||B]∗yw·xz −B]yw·xz[k + 1]||22 − ||B]∗yw·xz −B]yw·xz[k]||22. (A.31)

Thus, noting that
{
L]1

(
βyx·zw, Byz·xw, B

]
yw·xz[k + 1]

)}
k≥0

is a monotonically decreasing sequence with respect
to k, we have

0 ≤ ||B]∗yw·xz −B]yw·xz[k + 1]||22 ≤ ||B]∗yw·xz −B]yw·xz[k]||22, (A.32)

i.e., {B]∗yw·xz − B]yw·xz[k]}k≥0 is also a monotonically decreasing sequence with respect to k. Noting that the
formulation of B]yw·xz[k] is the paraphrase of equation (A.3) in Proposition 1 given βyx·zw and Byw·xz, B]yw·xz[k]
converges to B]∗yw·xz for k →∞. In other words, there exists some natural number K for any ε > 0 such that

||B]∗yw·xz −B]yw·xz[k + 1]||22 < ε (A.33)

for all k ≥ K. 2
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Lemma 3 Let {B]yw·xz[k]}k≥0 be the sequence generated by the sequential minimization of equation (A.10) given
an optimal solution β∗yx·zw and B∗yz·xw. Then, for optimal solution B]∗yw·xz,

L]1
(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k + 1]

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
≤ λmax(S]ww)

2k ||B]∗yw·xz −B]yw·xz[0]||22 (A.34)

holds for all k ≥ 0.

Proof of Lemma 3: For any i ≥ 0, letting B1 = B]∗yw·xz and B2 = B]yw·xz[i] in Lemma 1, since we have

2
lf

(L]1
(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[i+ 1]

)
)

≥ ||B]∗yw·xz −B]yw·xz[i+ 1]||22 − ||B]∗yw·xz −B]yw·xz[i]||22 + 2
lf
df (B]∗yw·xz, B]yw·xz[i])

≥ ||B]∗yw·xz −B]yw·xz[i+ 1]||22 − ||B]∗yw·xz −B]yw·xz[i]||22, (A.35)

we obtain

2
lf

k−1∑
i=0

(L]1
(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[i+ 1]

)
)

≥ ||B]∗yw·xz −B]yw·xz[k]||22 − ||B]∗yw·xz −B]yw·xz[0]||22 ≥ −||B]∗yw·xz −B]yw·xz[0]||22. (A.36)

Here, noting that
{
L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[i+ 1]

)}
i≥0

is a monotonically decreasing sequence with respect to
i ≥ 0, we derive

k(L]1
(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k]

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
)

≤
k−1∑
i=0

(L]1
(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[i+ 1]

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
)

≤ lf
2 ||B

]∗
yw·xz −B]yw·xz[0]||22. (A.37)

Finally, noting that lf = λmax(S]ww), we derive Lemma 3. 2

From Lemma 3, according to equation (A.16), we provide the optimal solution β∗yx·zw and B∗yz·xw given B∗yw·xz as(
β∗yx·zw
B∗yz·xw

)
=
(
sxx Sxz
STxz Szz

)−1(
xT

zT

)(
y −wB∗yw·xz

)
. (A.38)

Then, the following lemma is obtained.

Lemma 4 Let {βyx·zw[k]}k≥0, {Byz·xw[k]}k≥0 and {B]yw·xz[k]}k≥0 be the sequences generated by i-PROGLES
and u = (x, z). Then, for optimal solution β∗yx·zw, B∗yz·xw, there exists some natural number K for any ε ≥ 0
such that

L]1
(
βyx·zw[k + 1], Byz·xw[k + 1], B]yw·xz[k + 1]

)
−L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k + 1]

)
≤ λmax(Suu)

2 λmax(S]wuS−2
uu S

]
uw)ε (A.39)

for all k ≥ K.

Proof of Lemma 4: For all k ≥ 0, we obtain

L]1
(
βyx·zw[k + 1], Byz·xw[k + 1], B]yw·xz[k + 1]

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k + 1]

)
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≤ 1
2 ||u((βyx·zw[k + 1], Byz·xw[k + 1])T − (β∗yx·zw, B∗yz·xw)T )||22

≤ 1
2 ||u||

2
op||(βyx·zw[k + 1], Byz·xw[k + 1])T − (β∗yx·zw, B∗yz·xw)T ||22

≤ λmax(Suu)
2 ||(βyx·zw[k + 1], Byz·xw[k + 1])T − (β∗yx·zw, B∗yz·xw)T ||22. (A.40)

From equations (A.16) and (A.38), we obtain

||(βyx·zw[k + 1], Byz·xw[k + 1])T − (β∗yx·zw, B∗yz·xw)T ||22
= ||

(
uTu

)−1
uTw]

(
B]∗yw·xz −B]yw·xz[k + 1]

)
||22

≤ ||
(
uTu

)−1
uTw]||2op||

(
B]∗yw·xz −B]yw·xz[k + 1]

)
||22 (A.41)

Here, there exists a maximum eigenvalue of S]wuS−2
uu S

]
uw because the sum of squares matrix of x and z is invertible.

Thus, from Lemma 2, there exists some natural number K for any ε > 0 such that

||(βyx·zw[k + 1], Byz·xw[k + 1])T − (β∗yx·zw, B∗yz·xw)T ||22 ≤ λmax(S]wuS−2
uu S

]
uw)ε (A.42)

for all k ≥ K. From equations (A.40) and equation (A.42), we obtain Lemma 4. 2

Theorem 3 Let {βyx·zw[k]}k≥0, {Byz·xw[k]}k≥0 and {Byw·xz[k]}k≥0 be the sequences of βyx·zw, Byz·xw and
Byw·xz, respectively, generated by i-PROGLES, and let u = (x, z). When β∗yx·zw, B∗yz·xw and B∗yw·xz minimize
equation (19) regarding βyx·zw, Byz·xw and Byw·xz, respectively, there exists a natural number K for any ε > 0
such that

L1
(
β∗yx·zw, B

∗
yz·xw, B

∗
yw·xz

)
− L1 (βyx·zw[k + 1], Byz·xw[k + 1], Byw·xz[k + 1])

≤ λmax(S]ww)
2k ||B]yw·xz[0]−B]∗yw·xz||22 + λmax(Suu)

2 λmax(S]wuS−2
uu S

]
uw)ε. (A.43)

holds for any k ≥ K, where B]yw·xz[k] = γ �Byw·xz[k] and B]∗yw·xz = γ �B∗yw·xz.

Proof of Theorem 3: Noting that

L1
(
β∗yx·zw, B

∗
yz·xw, B

∗
yw·xz

)
− L1 (βyx·zw[k + 1], Byz·xw[k + 1], Byw·xz[k + 1])

= L]1
(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
− L]1

(
βyx·zw[k + 1], Byz·xw[k + 1], B]yw·xz[k + 1]

)
= L]1

(
β∗yx·zw, B

∗
yz·xw, B

]∗
yw·xz

)
− L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k + 1]

)
+L]1

(
β∗yx·zw, B

∗
yz·xw, B

]
yw·xz[k + 1]

)
− L]1

(
βyx·zw[k + 1], Byz·xw[k + 1], B]yw·xz[k + 1]

)
, (A.44)

from Lemmas 3 and 4, we have

L1
(
β∗yx·zw, B

∗
yz·xw, B

∗
yw·xz

)
− L1 (βyx·zw[k + 1], Byz·xw[k + 1], Byw·xz[k + 1])

≤ λmax(S]ww)
2k ||B]yw·xz[0]−B]∗yw·xz||22 + λmax(Suu)

2 λmax(S]wuS−2
uu S

]
uw)ε. (A.45)

2.
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B NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to compare the performance of LASSO, adaptive LASSO,
elastic net, SCAD, MCP, OLS and PAL1MA.

B.1 LOSS FUNCTIONS

For an r-dimensional regression vector Byz·xw and a q-dimensional regression vector Byw·xz, let By =
(βyx·zw, BTyz·xw, BTyw·xz)T = (β1, β2, ..., βq+r+1)T and λ, λ1, λ2 ≥ 0. First, the loss function of adaptive LASSO
[Zou, 2006] is defined as

1
2 ||y − xβyx·zw − zByz·xw −wByw·xz||

2
2 + λ||γ �By||11, (B.1)

where γ = (γ1, γ2, ..., γq+r+1)T is a weight vector such that

γ =
(

1
|β̃1|ξ

,
1
|β̃2|ξ

, . . . ,
1

|β̃q+r+1|ξ

)T
(B.2)

for the non-invertible sum of squares matrix of the explanatory variables with tuning parameter ξ ≥ 0 and

γ =
(

1
|β̂1|ξ

,
1
|β̂2|ξ

, . . . ,
1

|β̂q+r+1|ξ

)T
(B.3)

for the invertible sum of squares matrix of the explanatory variables with tuning parameter ξ ≥ 0. In particular,
equation (B.1) is the loss function of the standard LASSO [Tibshirani, 1996] when ξ = 0 and the loss function of
OLS regression when λ = 0.

Second, for 0 ≤ φ ≤ 1, the loss function of the elastic net [Zou and Hastie, 2005] is given by

1
2 ||y − xβyx·zw − zByz·xw −wByw·xz||

2
2 + λ

(
(1− φ)||By||22 + φ||By||11

)
. (B.4)

Third, consider the following type of loss function:

1
2 ||y − xβyx·zw − zByz·xw −wByw·xz||

2
2 +

q+r+1∑
j=1

pλ,ξ(βj). (B.5)

Then, for ξ > 1, the loss function of MCP [Zhang, 2010] is given by defining the function pλ,ξ in equation (B.5)
as follows:

pλ,ξ(x) =


λ|x| − |x|

2

2ξ : |x| ≤ ξλ
1
2ξλ

2 : |x| > ξλ
. (B.6)

In addition, for ξ > 2, the loss function of SCAD [Fan and Li, 2001] is given by defining the function pλ,ξ in
equation (B.5) as follows:

pλ,ξ(x) =


λ|x| : |x| ≤ λ
ξλ|x| − 0.5(|x|2 + λ2)

ξ − 1 : λ < |x| < ξλ

λ2(ξ2 − 1)
2(ξ − 1) : |x| > ξλ

. (B.7)

In this paper, we use the “glmnet” package (version 4.0.2) [Friedman et al., 2010] to perform LASSO, adaptive
LASSO and elastic net, and the “ncvreg” package [Breheny and Huang, 2011] to conduct SCAD and MCP.
The “glmnet” and “ncvreg” packages are available from https://glmnet.stanford.edu/ and http://pbreheny.
github.io/ncvreg/, respectively.
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Table A. Path coefficients

(a) Z satisfies the back-door criterion
Fig. A (a) αyz αxz αyx Ayw

(a1) 0.5 0.5 U([−3, 3]) U([−3, 3])
(a2) 0.5 2.5 U([−3, 3]) U([−3, 3])
(a3) 2.5 0.5 U([−3, 3]) U([−3, 3])
(a4) 2.5 2.5 U([−3, 3]) U([−3, 3])

(b) {Z1, Z2} satisfies the back-door criterion
Fig. A (b) αyz1 αxz1 αyz2 αxz2 αyx Ayw

(b1) 0.5 0.5 0.5 0.5 U([−3, 3]) U([−3, 3])
(b2) 0.5 0.5 0.5 2.5 U([−3, 3]) U([−3, 3])
(b3) 0.5 0.5 2.5 0.5 U([−3, 3]) U([−3, 3])
(b4) 0.5 0.5 2.5 2.5 U([−3, 3]) U([−3, 3])
(b5) 0.5 2.5 0.5 0.5 U([−3, 3]) U([−3, 3])
(b6) 0.5 2.5 0.5 2.5 U([−3, 3]) U([−3, 3])
(b7) 0.5 2.5 2.5 0.5 U([−3, 3]) U([−3, 3])
(b8) 0.5 2.5 2.5 2.5 U([−3, 3]) U([−3, 3])
(b9) 2.5 0.5 0.5 0.5 U([−3, 3]) U([−3, 3])
(b10) 2.5 0.5 0.5 2.5 U([−3, 3]) U([−3, 3])
(b11) 2.5 0.5 2.5 0.5 U([−3, 3]) U([−3, 3])
(b12) 2.5 0.5 2.5 2.5 U([−3, 3]) U([−3, 3])
(b13) 2.5 2.5 0.5 0.5 U([−3, 3]) U([−3, 3])
(b14) 2.5 2.5 0.5 2.5 U([−3, 3]) U([−3, 3])
(b15) 2.5 2.5 2.5 0.5 U([−3, 3]) U([−3, 3])
(b16) 2.5 2.5 2.5 2.5 U([−3, 3]) U([−3, 3])

U([−3, 3]): path coefficients that have been determined by the random number from the uniform distribution on
the interval [−3, 3].

B.2 PARAMETER SETTINGS

For simplicity, letting X and Y be the treatment variable and the response variable, respectively, consider the
linear SCMs with 42 explanatory variables for Y in the form of

Y = αyxX + αyzZ +AywW + εy
X = αxzZ + εx

}
(B.8)

for Fig. A (a) (W includes 40 variables), and

Y = αyxX + αyz1Z1 + αyz2Z2 +AywW + εy
X = αxz1Z1 + αxz2Z2 + εx

}
(B.9)

for Fig. A (b) (W includes 39 variables). Fig. A (a) shows that (i) Z satisfies the back-door criterion relative to
(X,Y ), and (ii) the path coefficients of W on Y are regularized, but Z is not. Fig. A (b) shows that (i) {Z1, Z2}
satisfies the back-door criterion relative to (X,Y ), and (ii) the path coefficients of {Z2}∪W on Y are regularized,
but Z1 is not. Theorem 1 holds in Fig. A (a), so W is collapsible. However, {Z2} ∪W is not in Fig. A (b); thus,
the estimated total effect may be biased.

To construct the population variance-covariance matrix, first, we assigned one of 0.5 and 2.5 to αyz and
αxz, depending on Fig. A (a), and αyz1 , αyz2 , αxz1 and αxz2 , depending on Fig. A (b). Multicollinearity
may occur between X and the covariates satisfying the back-door criterion when we assign 2.5 to the path
coefficients on X but may not occur when we assign 0.5 to the path coefficients on X. Other path coefficients
were randomly and independently generated according to the uniform distribution on the interval [−3, 3].
These parameter settings are shown in Table A. In addition, the population variance-covariance matrices of
the covariates {Z} ∪W in Fig. A (a) and {Z1, Z2} ∪W in Fig. A (b) are also randomly generated using

1464



the “randcorr” package (available from https://www.rdocumentation.org/packages/randcorr/versions/1.
0/topics/randcorr-package) according to Pourahmadi and Wang [2015]. Furthermore, we assume that (i) the
random disturbances εx and εy independently follow normal distributions with mean zero and variance one, and
(ii) the random disturbances are also independent of their non-descendants.

Regarding tuning the regularization parameter λ, the “glmnet” package was utilized for LASSO, adaptive LASSO
and elastic net. Here, the search ranges were set to ξ ∈ {0.1, 0.2, 0.3, ..., 2.9, 3.0} for the tuning parameter ξ of
adaptive LASSO and φ ∈ {0.01, 0.02, 0.03, ..., 0.98, 0.99} for the mixing parameter φ of elastic net. For MCP and
SCAD, the “ncvreg” package was applied to determine the regularized parameter λ. Here, the search ranges were
set to ξ ∈ {1.5, 2.0, 2.5, ..., 19.5, 20.0} for the tuning parameter ξ of MCP and ξ ∈ {2.5, ..., 19.5, 20.0} for the tuning
parameter ξ of SCAD. In contrast, in PAL1MA, we conducted all possible selection based on three fold cross-
validation to determine the regularization parameter λ1 from the search range λ1 ∈ {0.01, 0.011, ..., 0.049, 0.050}
and the tuning parameter ξ1 from the search range ξ1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Similarly, bias correction was also
conducted through all possible selections to determine the regularization parameter λ2 from the search range
λ2 ∈ {0.00, 0.01, 0.02, 0.03} and the tuning parameter ξ2 from the search range ξ2 ∈ {0.00, 0.01, 0.02, 0.03}. Note
that such parameter settings of PAL1MA in this paper are somewhat empirical; i.e., they may not be optimally
determined compared to other regularized regression analyses. The development of optimal parameter tuning for
PAL1MA is saved for future work. The parameter tuning results are shown in Table B.

B.3 ANALYSIS

For 5000 replications, we generated 30 random samples of 42 variables from a multivariate normal distribution
with a zero mean vector and the population variance-covariance matrix generated by the above procedure. Tables
C and C’ show the numerical results by LASSO, adaptive LASSO, elastic net, SCAD, MCP, PAL1MA and OLS
based on Table B. Here, for OLS, we select a set of covariates based on prior causal knowledge; i.e., Z and
{Z1, Z2} are selected in Figs. A (a) and (b), respectively.

From Figs. B and B’ and Tables C and C’, we make the following observations:

1. When the total effect is close to zero, the coincidence rates between the signs of the estimated total effects
and the true total effects are low for each regression analysis, but those of PAL1MA are still higher than
those of the other regression analyses.

2. When the true total effect is far from zero, the coincidence rates are high for each regression analysis.
3. When there is high spurious correlation, the coincidence rates for PAL1MA are lower than those for elastic

net, but the differences are not significant. This situation may occur because the variances of the estimated
total effects are larger than those of the other regression analyses.

4. Except for Case (b8), PAL1MA provides fewer bias estimates than the other regularized regression analyses.
In Case (b8), PAL1MA provides more biased estimates than SCAD and MCP but higher coincidence rates
than these regularized regression analyses.

5. The variance of the estimated total effects from PAL1MA are larger than those from the other regularized
regression analyses but smaller than those from OLS regression for most cases.

.

(a) (b)
Fig. A. Causal diagram
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6. From Figs. B and B’, the interquartile ranges of PAL1MA include the true value of the total effects in all
cases, but the other regularized regression analyses do not include this value in most cases.

7. The running time of the i-PROGLES is slightly longer than those of other regularized regression analyses.

Overall, the coincidence rates between the signs of the estimated total effects and the true total effect from
PAL1MA seem equal to or higher than those from the other regression analyses. In addition, PAL1MA can provide
less biased estimators than the other regularized regression analyses in most cases. In some cases of Figs. A (b),
PAL1MA does not select a set {Z1, Z2} of covariates satisfies the back-door criterion, and such a missing covariate
(Z2) provides biased estimates of the total effects. However, since the regression coefficient of Z2 takes a small
value in such cases, PAL1MA seems not reverse the direction of the regression coefficient in most case. Here, as
seen from the following section, note that such a drawback can be eliminated by selecting smaller values of the
regularization parameters based on the whole set of covariates, although an estimated total effects may not be
stable in some situations. These results imply that the estimation of the total effect by PAL1MA does not lead to
the misleading qualitative interpretation compared to the standard regularized regression analysis.
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Table C. Results based on cross-validation.

(a) Z satisfies the back-door criterion

(a1) (a2)
mean bias mse sd sign mean bias mse sd sign

LASSO -0.0971 0.0550 0.0098 0.0824 0.8282 0.0079 0.1216 0.0163 0.0385 0.1482
adaptive LASSO -0.0185 0.1336 0.0200 0.0463 0.2332 -0.0024 0.1319 0.0187 0.0366 0.0708

Elastic net -0.0983 0.0538 0.0081 0.0720 0.8904 0.0054 0.1241 0.0163 0.0304 0.1174
MCP -0.0619 0.0902 0.0176 0.0971 0.4794 0.0275 0.1020 0.0278 0.1320 0.1642
SCAD -0.0635 0.0886 0.0163 0.0919 0.5440 0.0034 0.1261 0.0168 0.0309 0.0626

PAL1MA -0.1552 0.0031 0.0136 0.1165 0.9190 0.1333 0.0038 0.0787 0.2804 0.6908
OLS -0.1480 0.0041 0.0426 0.2063 0.7630 0.1293 0.0002 0.2708 0.5204 0.6048

(a3) (a4)
mean bias mse sd sign mean bias mse sd sign

LASSO 0.0036 0.0232 0.0038 0.0572 0.2456 0.2959 0.0808 0.0309 0.1562 0.9390
adaptive LASSO 0.0022 0.0218 0.0012 0.0277 0.0720 0.3328 0.0439 0.0285 0.1632 0.9554

Elastic net 0.0137 0.0333 0.0032 0.0459 0.2820 0.2297 0.1469 0.0254 0.0617 0.9998
MCP 0.0052 0.0248 0.0044 0.0616 0.1130 0.4180 0.0413 0.0474 0.2137 0.8942
SCAD 0.0083 0.0279 0.0023 0.0385 0.0214 0.3059 0.0708 0.0469 0.2047 0.8070

PAL1MA -0.0210 0.0013 0.0140 0.1184 0.5688 0.3897 0.0131 0.0572 0.2389 0.9564
OLS -0.0189 0.0007 0.0372 0.1929 0.5398 0.3840 0.0073 0.1974 0.4442 0.8100

mean: sample mean; bias: bias between the true value and the sample mean; mse: mean squared error: sd: standard
deviation; sign: coincidence rate between the signs of the true value and the estimates The best results for each
columns are highlighted in boldface.

(a1) (a2)

(a3) (a4)
(a) Z satisfies the back-door criterion.

Fig. B. Boxplots of the estimated total effects based on 5000 replications from the numerical experiments. The
dashed lines show the true total effects.
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Table C’. Results based on cross-validation.

(b) {Z1, Z2} satisfies the back-door criterion

(b1) (b2)
mean bias mse sd sign mean bias mse sd sign

LASSO -0.0756 0.0761 0.0129 0.0844 0.6876 -0.5308 0.1390 0.0451 0.1606 0.9920
adaptive LASSO -0.0001 0.1517 0.0230 0.0021 0.0032 -0.6033 0.0664 0.0355 0.1763 0.9948

Elastic net -0.0816 0.0702 0.0103 0.0732 0.8074 -0.5291 0.1407 0.0448 0.1583 0.9936
MCP -0.0522 0.0995 0.0178 0.0888 0.4406 -0.5979 0.0719 0.0427 0.1936 0.9458
SCAD -0.0465 0.1052 0.0185 0.0861 0.4128 -0.6378 0.0319 0.0328 0.1783 0.9602

PAL1MA -0.1485 0.0032 0.0192 0.1386 0.8712 -0.6984 0.0287 0.0273 0.1628 0.9990
OLS -0.1528 0.0010 0.0542 0.2329 0.7470 -0.6697 0.0001 0.1126 0.3356 0.9718

(b3) (b4)
mean bias mse sd sign mean bias mse sd sign

LASSO -0.0957 0.0879 0.0166 0.0941 0.7560 -0.4448 0.3337 0.1313 0.1414 0.9904
adaptive LASSO 0.0000 0.1835 0.0337 0.0000 0.0000 -0.5685 0.2099 0.0672 0.1521 0.9964

Elastic net -0.0560 0.1276 0.0222 0.0772 0.5674 -0.4267 0.3517 0.1349 0.1055 1.0000
MCP -0.0568 0.1267 0.0277 0.1081 0.4088 -0.4490 0.3294 0.1342 0.1603 0.9626
SCAD -0.0766 0.1069 0.0325 0.1451 0.3810 -0.5625 0.2159 0.0759 0.1711 0.9824

PAL1MA -0.1686 0.0149 0.0221 0.1480 0.8948 -0.6766 0.1018 0.0601 0.2231 0.9976
OLS -0.1860 0.0025 0.0522 0.2284 0.7936 -0.7760 0.0025 0.1495 0.3867 0.9718

(b5) (b6)
mean bias mse sd sign mean bias mse sd sign

LASSO 0.1219 0.2297 0.0646 0.1087 0.7640 -0.1216 0.1412 0.0311 0.1058 0.7900
adaptive LASSO 0.2227 0.1290 0.0312 0.1205 0.9406 -0.1227 0.1401 0.0306 0.1049 0.7932

Elastic net 0.2277 0.1239 0.0300 0.1211 0.9482 -0.1020 0.1608 0.0346 0.0937 0.7646
MCP 0.1233 0.2283 0.0689 0.1294 0.6744 -0.0515 0.2114 0.0522 0.0867 0.3956
SCAD 0.1167 0.2350 0.0726 0.1317 0.6618 -0.0793 0.1835 0.0455 0.1085 0.5452

PAL1MA 0.3811 0.0295 0.0552 0.2331 0.9586 -0.2976 0.0348 0.0493 0.2193 0.9320
OLS 0.3498 0.0018 0.2565 0.5064 0.7704 -0.2560 0.0068 0.5220 0.7225 0.6364

(b7) (b8)
mean bias mse sd sign mean bias mse sd sign

LASSO 0.1124 0.2296 0.0644 0.1078 0.7414 -0.5468 0.2768 0.0887 0.1099 0.9998
adaptive LASSO 0.1189 0.2232 0.0615 0.1082 0.7696 -0.6804 0.1432 0.0334 0.1137 1.0000

Elastic net 0.1487 0.1934 0.0463 0.0942 0.9154 -0.6009 0.2227 0.0656 0.1263 1.0000
MCP 0.1530 0.1891 0.0653 0.1718 0.6476 -0.7764 0.0472 0.0196 0.1319 0.9976
SCAD 0.0993 0.2428 0.0773 0.1353 0.5856 -0.7703 0.0533 0.0196 0.1296 0.9974

PAL1MA 0.4603 0.1183 0.0829 0.2625 0.9686 -0.7105 0.1131 0.0577 0.2120 0.9994
OLS 0.3408 0.0012 0.2443 0.4943 0.7704 -0.8224 0.0012 0.1699 0.4122 0.9718

mean: sample mean; bias: bias between the true value and the sample mean; mse: mean squared error: sd: standard
deviation; sign: coincidence rate between the signs of the true value and the estimates. The best results for each
columns are highlighted in boldface.
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Table C’. Results based on cross-validation.

(b) {Z1, Z2} satisfies the back-door criterion

(b9) (b10)
mean bias mse sd sign mean bias mse sd sign

LASSO 0.1000 0.0583 0.0115 0.0898 0.7886 -0.0626 0.1219 0.0223 0.0863 0.5282
adaptive LASSO 0.0762 0.0822 0.0131 0.0797 0.7044 -0.0445 0.1400 0.0254 0.0758 0.4102

Elastic net 0.1136 0.0448 0.0098 0.0881 0.8576 -0.0493 0.1352 0.0232 0.0703 0.5136
MCP 0.0776 0.0807 0.0156 0.0954 0.6076 -0.0124 0.1721 0.0316 0.0446 0.1178
SCAD 0.0442 0.1142 0.0229 0.0994 0.3606 -0.0201 0.1644 0.0302 0.0568 0.1910

PAL1MA 0.1706 0.0122 0.0106 0.1024 0.9592 -0.1923 0.0078 0.0225 0.1499 0.9208
OLS 0.1573 0.0010 0.0496 0.2227 0.7704 -0.1805 0.0040 0.2569 0.5068 0.6364

(b11) (b12)
mean bias mse sd sign mean bias mse sd sign

LASSO -0.1674 0.2586 0.0837 0.1296 0.8384 0.0063 0.0901 0.0107 0.0504 0.1188
adaptive LASSO -0.3059 0.1201 0.0365 0.1486 0.9726 0.0000 0.0838 0.0070 0.0000 0.0000

Elastic net -0.2310 0.1949 0.0546 0.1287 0.9476 0.0100 0.0938 0.0109 0.0461 0.1050
MCP -0.2607 0.1653 0.0827 0.2353 0.7000 0.0098 0.0936 0.0109 0.0463 0.0162
SCAD -0.1207 0.3053 0.1089 0.1251 0.7076 0.0098 0.0937 0.0104 0.0407 0.0140

PAL1MA -0.4059 0.0201 0.029 0.1703 0.9926 -0.0396 0.0443 0.0223 0.1427 0.6152
OLS -0.4230 0.0030 0.0424 0.2060 0.9718 -0.0821 0.0017 0.0509 0.2256 0.6364

(b13) (b14)
mean bias mse sd sign mean bias mse sd sign

LASSO -0.3901 0.4240 0.1979 0.1347 0.9904 -0.0045 0.2535 0.0648 0.0235 0.0820
adaptive LASSO -0.6497 0.1643 0.0631 0.1899 0.9996 -0.0004 0.2577 0.0664 0.0061 0.0072

Elastic net -0.4351 0.3789 0.1597 0.1269 0.9980 -0.0154 0.2426 0.0606 0.0415 0.2374
MCP -0.4831 0.3310 0.1517 0.2054 0.9704 -0.0047 0.2534 0.0650 0.0276 0.0620
SCAD -0.5735 0.2405 0.1021 0.2103 0.9662 -0.0039 0.2542 0.0652 0.0250 0.0588

PAL1MA -0.8383 0.0243 0.1000 0.3153 0.9968 -0.2747 0.0167 0.0478 0.2180 0.9206
OLS -0.8114 0.0026 0.1640 0.4050 0.9718 -0.2532 0.0049 0.5067 0.7118 0.6364

(b15) (b16)
mean bias mse sd sign mean bias mse sd sign

LASSO 0.0193 0.2141 0.0486 0.0524 0.0164 -0.5053 0.4043 0.1776 0.1191 0.9992
adaptive LASSO 0.0000 0.1948 0.0380 0.0000 0.0000 -0.6185 0.2910 0.0992 0.1205 0.9998

Elastic net 0.0190 0.2138 0.0484 0.0513 0.0104 -0.5709 0.3387 0.1305 0.1259 1.0000
MCP 0.0220 0.2168 0.0513 0.0651 0.0030 -0.7268 0.1827 0.0632 0.1725 0.9976
SCAD 0.0313 0.2261 0.0591 0.0895 0.0076 -0.7094 0.2001 0.0673 0.1650 0.9966

PAL1MA -0.1051 0.0898 0.1163 0.3291 0.6364 -0.7830 0.1266 0.0778 0.2485 0.9990
OLS -0.1905 0.0043 0.2857 0.5345 0.6364 -0.9069 0.0027 0.2047 0.4525 0.9718

mean: sample mean; bias: bias between the true value and the sample mean; mse: mean squared error: sd: standard
deviation; sign: coincidence rate between the signs of the true value and the estimates The best results for each
columns are highlighted in boldface.
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(b1) (b2)

(b3) (b4)

(b5) (b6)

(b7) (b8)
(b) {Z1, Z2} satisfies the back-door criterion.

Fig. B’. Boxplots of the estimated total effects based on 5000 replications from the numerical experiments. The
dashed lines show the true total effects.
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(b9) (b10)

(b11) (b12)

(b13) (b14)

(b15) (b16)
(b) {Z1, Z2} satisfies the back-door criterion.

Fig. B’. Boxplots of the estimated total effects based on 5000 replications from the numerical experiments. The
dashed lines show the true total effects.
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C CASE STUDY

C.1 BACKGROUND

Fig. C. Causal diagram [Kuroki, 2012]

In this section, we apply LASSO, adaptive LASSO, elastic net, SCAD, MCP, PAL1MA and OLS to a case study
of setting up coating conditions for car bodies, reported by Okuno et al. [1986] and reanalyzed by Kuroki [2012].

According to Okuno et al. [1986], car bodies are coated to increase both the rust protection quality and the visual
appearance. A certain coating thickness must be ensured in the coating process. At the time of the study, this
process was conducted by operators who sprayed the car bodies with paint, which depended on the operators’
skills and could cause low transfer efficiency. Okuno et al. [1986] collected nonexperimental data on the coating
process to examine the process conditions and to increase the transfer efficiency. The sample size is 38, and the
dataset is available from Okuno et al. [1986]. In addition, the observed variables of interest are as follows:

Process condition
The dilution ratio (X1), degree of viscosity (X2), gun speed (X3), spray distance (X4), air pressure (X5), pattern
width (X6), fluid output (X7), temperature of the paint (X8), temperature (X9), and degree of moisture (X10)

Response

The transfer efficiency (Y ).

Table D shows the randomly selected data from the whole dataset given by Okuno et al. [1986]. Here, note that
our discussion is based on Table D to consider a situation where OLS and the all-variable selection procedure
cannot be applied.

According to Okuno et al. [1986], there is some difference among these variables in terms of the controllability

Table D. Randomly selected data from the paper by Okuno et al. [1986].

No. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y
1 33 28.3 6.7 40.0 3.0 5.0 208.0 20.0 19.0 30.0 19.3
2 16.7 35.0 5.0 40.0 5.0 5.5 108.0 25.0 10.5 39.0 7.3
3 16.7 35.0 8.3 30.0 2.1 3.0 112.0 25.0 20.0 25.0 35.2
4 33 25.0 8.3 40.0 4.0 4.1 240.0 34.0 22.5 25.0 18.4
5 44 29.5 6.5 30.0 2.1 5.0 120.0 6.7 7.0 30.0 21.7
6 16.7 35.0 4.9 40.0 5.0 3.9 168.0 25.0 20.0 25.0 28.7
7 44 29.5 8.3 40.0 2.1 2.2 200.0 7.0 7.0 30.0 37.8
8 44 25.8 6.7 40.0 4.1 5.0 132.0 22.0 8.2 46.0 13.4
9 33 25.5 6.5 40.0 4.0 4.0 276.0 20.0 22.5 25.0 17.8
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Table E. Results based on cross-validation.

Method non-regulaized estimate sd selected variables parameters
variables λ ξ φ

LASSO − 0.0470 0.0914 X2,X5,X6 0.1640 − −
adaptive LASSO − 0.0759 0.0862 X2,X5,X6,X10 0.2160 0.5000 −

Elastic net − 0.1395 0.0963 X2,X5,X6,X8,X10 0.1350 − 0.5500
MCP − 0.0000 0.0621 X6 0.3020 4.0000 −
SCAD − 0.1357 0.1124 X2,X4,X5,X6,X10 0.0820 17.5000 −

PAL1MA X8,X10 0.2221 0.1111 X2,X5,X6,X8,X10 0.00005 0.1000 −
PAL1MA X8 0.2242 0.0950 X2,X5,X6,X8,X10 0.00003 0.5000 −
PAL1MA X10 0.2251 0.0854 X2,X5,X6,X10 0.00003 0.5000 −
PAL1MA − 0.2297 0.0795 X2,X5,X6,X10 0.00002 0.5000 −

OLS − 0.2455 0.1314 X2,X8,X10 − − −

estimate: estimates of the total effect with n = 9; sd: standard deviation based on leave-one-out method;
selected variables: selected explanatory variables by variable selection; parameter: regularized, tuning and mixing
parameters. Here, λ2 and ξ2 of PAL1MA were selected as zero by leave-one-out method.

level: X1, X2, ..., X6 can be controlled; X7 and X8 result from other factors and are difficult to control; and
X9 and X10 are environmental conditions that cannot be controlled. In addition, Kuroki [2012] assumed that
the cause-effect relationships in the coating process are as shown in Fig. C. From Fig. C, {X8, X10} satisfies the
back-door criterion relative to (X2, Y ). For details on this case study, refer to Okuno et al. [1986] and Kuroki
[2012].

C.2 ANALYSIS

In this section, we are concerned with the evaluation of the total effect of X2 on Y because similar observations
can be derived regarding other controllable variables. Table E shows the results obtained by each regression
analysis. Here, parameter tuning was conducted by the same procedure as in Section B.

First, according to Okuno et al. [1986], it is well known that the viscosity (X2) is an important factor that
increases both the rust protection quality and visual appearance. However, from Table E, the total effect of X2
on Y is estimated as zero by MCP, which is problematic because it provides such a misleading interpretation that
it is no use to control X2 to achieve the aim.

Second, OLS regression provides the unbiased estimator of the total effect through a set {X8, X9} that satisfies
the back-door criterion. Given this finding, it is desirable that the estimators from the regularized regression
analysis be close to the OLS estimate. From the viewpoint of this observation, the estimates from PAL1MA are
close to the OLS estimates for each selected variable, but those from the other regularized regression analyses are
not close to these estimates.

Third, when the regression coefficient of X8 is regularized, for PAL1MA, X8 is not selected, but {X5, X6} is
selected. This phenomenon may occur because the OLS estimate of the regression coefficient of X8 is very small
(−0.083) in the regression model of Y on X2, X5, X6, X8 and X10. However, even if a set of sufficient confounders
is not available by PAL1MA, by checking the solution paths shown in Fig. D, we can verify that missing sufficient
confounders do not interfere with the qualitative interpretation of the total effects by PAL1MA for any λ.

Fourth, from Fig. E, the sample ranges of elastic net, PAL1MA and OLS do not include zero, but those of the
other regression analyses include zero. From this observation, it is judged that X2 would have a positive effect on
Y from elastic net, PAL1MA and OLS, but the other regression analyses may not result in the rejection of the
hypothesis that X2 has no effect on Y .
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(a) LASSO (b) adaptive LASSO (c) Elastic net

(d) MCP (e) SCAD

(f) PAL1MA ({X8, X10}) (g) PAL1MA (X8)

(f) PAL1MA (X10) (g) PAL1MA (φ)

Fig. D. Solution paths of the regularization parameter λ when both ξ and φ are fixed to the value in Table E.
Here, the dashed horizontal lines and the dashed vertical lines show the value of λ from Table E. The bold solid
line: the regression coefficient of X2; the dot-dashed line: the regression coefficient of X8; the dashed line: the
regression coefficient of X10; the thin solid line: the regression coefficients of the other covariates.

1475



(a) PAL1MA ({X8, X10}) (b) PAL1MA (X8)

(c) PAL1MA (X10) (d) PAL1MA (φ)

Fig. E. Boxplots of the case study for setting up the coating conditions for car bodies

(a) PAL1MA (X10) (b) PAL1MA (φ)

Fig. F. Boxplots of the case study for setting up the coating conditions for car bodies
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Table F. Results

Method non-regulaized estimate sd selected variables parameters
variables λ ξ φ

LASSO − 0.1453 0.1070 X2,X5,X6,X8,X10 0.0752 − −
adaptive LASSO − 0.1438 0.1856 X2,X3,X4,X5,X6,X8,X10 0.0170 0.5000 −

Elastic net − 0.1395 0.0963 X2,X5,X6,X8,X10 0.1350 − 0.5500
MCP − 0.4254 0.2473 X1,X2,X4,X5,X6,X7,X8,X9,X10 0.0140 4.0000 −
SCAD − 0.1568 0.1158 X2,X4,X5,X6,X8,X10 0.0680 17.5000 −

PAL1MA X10 0.2254 0.0835 X2,X5,X6,X8,X10 0.00002 0.5000 −
PAL1MA − 0.2276 0.0816 X2,X5,X6,X8,X10 0.00001 0.5000 −

OLS − 0.2455 0.1314 X2,X8,X10 − − −
estimate: estimates of the total effect with n = 9; sd: standard deviation based on method; selected variables:
selected explanatory variables by the variable selection; parameter: regularized, tuning and mixing parameters.
Here, λ2 and ξ2 of PAL1MA were selected as zero by three fold cross-validation.

Here, Table F also shows the results obtained by conducting parameter tuning to select {X8, X10} satisfying
the back-door criterion relative to (X2, Y ) with the best prediction accuracy possible. To select {X8, X10}, in
Table E, the regularization parameters have been set to smaller values than those in Table E. First, both the
estimates and the standard deviations of LASSO, adaptive LASSO, MCP and SCAD in Table F are larger than
those in Table E, but there seems to be no significant change in those of PAL1MA between Tables E and F.
Second, compared to Table E, covariates other than X8 and X10 are selected in Table F. Especially for MCP, an
intermediate variable X7 is also selected against the back-door criterion to select X8 and X10, which may be
problematic in the context of statistical causal inference. Third, from Figs. F (a) and (b), although the sample
ranges of LASSO, adaptive LASSO, MCP and SCAD include zero, OLS or PAL1MA does not include zero. From
this observation, it is judged that X2 would have a positive effect on Y from elastic net, the PAL1MA and OLS,
but the other regression analyses may not result in the rejection of the hypothesis that X2 has no effect on Y .
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