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A ONLINE EXPECTATION MAXIMIZATION FOR HIDDEN MARKOV MODELS

In sections (A.1)-(A.2) below, we describe the online EM algorithms used (by both L2TS and L2UCB) in our experiments.

These online EM algorithms involve updating the model posterior over the latent state with Bayes’ rule,1

p̂t(z) ∝
∑
z′

p̂t−1(z
′)ϕ̂

(t−1)
z,z′ p(xt|z; θ̂(t−1)) (A.1)

using the current parameter estimates (ϕ̂(t−1), θ̂(t−1)). (These updates are shown in Eqs. (A.2) and (A.6) below, in the case
of multinomial and Gaussian context distributions, respectively.)

In both cases, online EM uses a discount factor γt ∈ (0, 1) which is used to control the magnitude of parameter estimate
updates over time. The rate at which γt approaches zero as t→∞ controls the discounting of previously observed context
data. (In our experiments we use γt = t−0.6.)

While we focus on Gaussian distributions in the case of continuous context data, the online EM algorithm of Cappé [2011]
applies more generally to context distributions p(x|z) in the exponential family.

A.1 MULTINOMIAL CONTEXT DISTRIBUTIONS

For multinomial context distributions with x ∈ {1, ..., X}, we define θ̂ = {ν̂j,i} where ν̂j,i := p(x = i|z = j) satisfies∑X
i=1 ν̂j,i = 1. We use the algorithm of Mongillo and Deneve [2008] – reproduced in Eqs. (A.2)-(A.5) below – to implement

the online EM update in L2TS (Algorithm 1) and L2UCB (Algorithm 2). We define OnlineEM(x, θ̂(t−1), ϕ̂(t−1), p̂t−1, ψ̂t−1)

as the function which returns (θ̂(t), ϕ̂(t), ψ̂t), where (in the categorical case) θ̂(t) = {ν̂(t)j,i }, ϕ̂(t), and ψ̂t = {ρ̂(t)i,j,h(k)} are
computed as in Eqs. (A.5), (A.4), and (A.3) respectively.

1The ∝ sign indicates equality up to a normalizing constant.
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p̂t(z) ∝
∑
z′

p̂t−1(z
′)ϕ̂

(t−1)
z,z′ ν(t−1)

z,xt
(A.2)

ρ̂
(t)
i,j,h(k) =

∑
l

Γl,h(xt)
(
(1− γt)ρ̂(t−1)

i,j,l (k) + γt1(xt = k)1(i = l)1(j = h)p̂t−1(l)
)

(A.3)

where Γi,j(xt) =
ϕ̂
(t−1)
i,j ν̂

(t−1)
j,xt∑

i′,j′ ϕ̂
(t−1)
i′,j′ ν̂

(t−1)
j′,xt

p̂t−1(i′)

ϕ̂
(t)
j,i ∝

X∑
k=1

Z∑
h=1

ρ̂
(t)
i,j,h(k) (A.4)

ν̂
(t)
j,i ∝

Z∑
i,h=1

ρ̂
(t)
i,j,h(k) (A.5)

In the updates to p̂t, ϕ̂(t), and ν̂(t) above, the ∝ sign indicates equality up to the normalizing factors required to ensure that∑
z p̂t(z) = 1,

∑
z′ ϕ̂

(t)
z′,z = 1, or

∑X
i=1 ν̂j,i = 1.

A.2 GAUSSIAN CONTEXT DISTRIBUTIONS

For Gaussian context distributions p(x|z; θ̂), the parameters are means and variances, θ̂ = {ν̂z, Σ̂z}Z1 , conditional on each
latent state z. In this case, we use Algorithm 1 of Cappé [2011] to implement the online EM parameter update in L2TS. This
algorithm is reproduced as follows, largely following the notation in Cappé [2011], with some modifications to maintain
consistency with our notation in the main test.2 We assume for simplicity that xt ∈ R so that ν̂(t)z is univariate. (The
expressions in Cappé [2011] apply also to the multivariate case.)

We again define OnlineEM(x, θ̂(t−1), ϕ̂(t−1), p̂t−1, ψ̂t−1) as the function which returns (θ̂(t), ϕ̂(t), ψ̂t), where now, in
the Gaussian case, θ̂(t) = {ν̂(t)z , Σ̂

(t)
z }, ϕ̂(t), and ψ̂t = {ρ̂(ϕ)t (i, j, k), ρ̂

(θ)
t (i, k)} are computed as in Eqs. (A.12)-(A.13),

(A.10), and (A.8)-(A.9), respectively. These updates involve the quadratic sufficient statistic, s(x) = [1, x, x2], for context
observations x ∼ p(·|z; θ⋆). In Eqs. (A.9) and (A.11) below, ρ̂(θ)

t (i, k) shares the same vector dimension, which we indicate
with bold symbols.

2In particular, Cappé [2011] uses ϕ̂ to denote the posterior probability vector which we call p̂, and uses q to denote the latent transition
probabilities ϕ̂.



p̂t(z) ∝
Z∑

z′=1

p̂t−1(z
′)ϕ̂

(t−1)
z,z′

1√
2πΣ̂

(t−1)
z

exp

[
−
(
xt − ν̂(t−1)

z

)2/
2Σ̂(t−1)

z

]
(A.6)

r̂t(z|z′) =
p̂t−1(z)ϕ̂

(t−1)
z′,z∑

z′′ p̂t−1(z′′)ϕ̂
(t−1)
z′,z′′

(A.7)

ρ̂
(ϕ)
t (i, j, k) = γt1(j = k)r̂t(i|j) + (1− γt)

Z∑
k′=1

ρ̂
(ϕ)
t−1(i, j, k

′)r̂t(k
′|k) (A.8)

ρ̂
(θ)
t (i, k) = γt1(j = k)s(xt) + (1− γt)

Z∑
k′=1

ρ̂
(θ)
t−1(i, k

′)r̂t(k
′|k) (A.9)

ϕ̂
(t)
j,i =

∑Z
z=1 ρ̂

(ϕ)
t (i, j, z)p̂t(z)∑Z

z′,z=1 ρ̂
(ϕ)
t (i, z′, z)p̂t(z)

(A.10)

Ŝ
(θ)
t (i) =

Z∑
k=1

ρ̂
(θ)
t (i, k)p̂t(k) (A.11)

ν̂(t)z = Ŝ
(θ)
t,1 (z)/Ŝ

(θ)
t,0 (z) (A.12)

Σ̂(t)
z = Ŝ

(θ)
t,2 (z)/Ŝ

(θ)
t,0 (z)− (ν̂(t)z )2 (A.13)

B EXPERIMENTS

In both L2TS (Algorithm 1) and L2UCB (Algorithm 2), and for all experiments, we use the following settings:

Online EM hyperparameters. We use γt = t−0.6, following Cappé [2011].

Linear bandit hyperparameters. In L2TS, we set σ̃r = 1. In L2UCB, we set αUCB = 3 for all experiments, which we found
to improve convergence of regret compared to αUCB = 1. For both, we set λµ = 1.

B.1 MULTINOMIAL CONTEXT DISTRIBUTIONS WITH BINARY REWARDS

Problem 1. Expressing the multinomial context distribution probabilities in matrix form, we set

p(x|z) =
[
0.05 0.05 0.45 0.45
0.45 0.45 0.05 0.05

]
, (B.1)

where x ∈ {1, ..., X} with X = 4, and z ∈ {1, 2}.

Denoting the Bernoulli probabilities for (binary) reward values in matrix form, with actions a ∈ {1, 2} and latent states
z ∈ {1, 2} indexing rows and columns, we set

p(r = 1|z, a) =
[
0.4 0.4
0.6 0.4

]
. (B.2)

The initial latent state was generated from a probability vector sampled from a (uniform) Dirichlet prior with concentration
parameters αz = 1 for z = 1, 2.

Problem 2. In this problem, we set (Z,X,K) = (4, 12, 8) with p(x = i|z = j) = 1/3 when (i− j)modX ∈ {−1, 0, 1},
and zero otherwise. Reward probabilities p(r = 1|z, a) are sampled uniformly in (0, 1) for all (z, a). Latent states transition
to the same state with probability 0.75, and to any other state with equal probabilities. For this task only, we omitted the
optional reward update in L2TS and L2UCB, which we found to marginally increase regret. In this task, contexts xt contain
significantly more information about the current latent state zt than do rewards rt. The initial latent state was sampled from
a uniform probability distribution.



Online EM initialization. The sufficient statistics introduced in Appendix A.1 were initialized at ρ̂(0)i,j,h(k) = 0.01 for all
(i, j, h) and all k ∈ {1, ..., X}. The initial latent state probability vector p̂0(z) was sampled randomly from the uniform
distribution over probability vectors.

B.2 MINING APPLICATION DETAILS

We assume a Gaussian reward model, p(r|z, a) = N (µ̂
(a)
z , σ̃2

r). The variance σ̃2
r is a fixed hyperparameter, which we equate

with the hyperparameter σ̃r in Algorithm 1 used for Thompson sampling. (This hyperparameter is the variance of the
implicit Gaussian reward likelihood used in L2TS to update the multivariate Gaussian posterior over µ(a).)

Online EM initialization. The sufficient statistics introduced in Appendix A.2 were initialized at ρ̂(ϕ)0 (i, j, k) = 1,
ρ̂
(θ)
0 (i, k) = [1, 1, 1] for all (i, j, k). The initial latent state probability vector p̂0(z) was set to a uniform distribution.

Numerical Details of Application. We model this application using three latent rock classes z = 1, 2, 3, two mining
actions a = 1, 2, and Gaussian contextual observations for hand-held x-ray flourescent meter (XMET) measurements.

To model p(x|z), we use the approach and numbers in Eidsvik et al. [2015] for how the continuous-valued XMET
observations depend on the latent rock class. The ore grade o and the observed continuous XMET observation x follow
Gaussian distributions as follows:

o = β0 + β1z +N(0, σ2); x = o+N(0, τ2), (B.3)

where β0 = −0.18 and β1 = 1.32 are regressions coefficients. The latter coefficient signifies that a higher rock class results
in higher ore grade. σ = 0.62 captures the uncertainty in the ore grade and τ = 0.45 captures the quality of the observed
XMET. These numbers are directly from Eidsvik et al. [2015].

For the reward distribution p(r|a, z), we assume the profit depends on a revenue factor (rf ) per ore grade from mined ore as
well as both fixed (cf ) and uncertain (variable) costs (cv):

Profit(a, z) = o(z) ∗ rf (a)− cf (a)− cv(a), (B.4)

where cv(a) ∼ N(0, σ2
c ). We choose numbers such that action a = 1 has a higher revenue factor and more fixed cost but

less variable cost compared to action a = 2. Note that the profit is Gaussian as it is linear in Gaussian random variables.

We choose a transition matrix over latent states that favors the diagonal, because spatial modeling in general heavily uses
covariance related concepts (such as variograms) where regions that are geographically closer are more correlated. In our
first experiment, we choose the following matrix, where rows from top to bottom are for z = 1, 2, 3:

p(zt|zt−1) =

 0.7 0.25 0.05
0.25 0.5 0.25
0.05 0.25 0.7

 (B.5)

In our second experiment, we choose a matrix for which latent state changes are very rare, occuring only every O(50) steps:

p(zt|zt−1) =

0.98 0.01 0.01
0.01 0.98 0.01
0.01 0.01 0.98

 (B.6)

In both cases, the initial latent state was generated from a probability vector sampled from a Dirichlet prior with concentration
parameters αz = 1 for z = 1, 2, 3 (i.e. a uniform prior over probability vectors).

B.3 PARAMETER ESTIMATION ERROR

The gap between L2TS and the corresponding oracle variant in Figure 3 (which conditions on the true parameters θ⋆, ϕ⋆) is
a consequence of parameter estimation error. In Figure B.1 below we show parameter estimation error of online EM, when
used by L2TS for the mining application described above. We show mean squared errors averaged over 10 episodes with
different randomly generated ground truth transition matrices (with each column sampled from a uniform distribution over
probability vectors), as well as different randomly generated mean values E[x|z] ∼ N (0, 1) for the Gaussian conditional
distributions p(x|z). (Otherwise, we use the same environment parameters as described above.)



Figure B.1: Mean squared error (MSE) of model estimates for the latent transition matrix (||ϕ̂(t) − ϕ⋆||22) and context
distributions (||θ̂(t) − θ⋆||22) used by L2TS on the mining application, averaged over 10 different true transition matrices and
context distributions.

B.4 BASELINE DETAILS.

We allowed the discounted Thompson Sampling (dTS) algorithm to access the true transition matrix to set its discount factor
to γ = Z−1

∑
z ϕ

⋆
z,z .

For umTS [Hong et al., 2020], we used N = 100 particles with a minimum effective sample size ESSmin = 20 for particle
resampling.

For Exp4.P [Beygelzimer et al., 2010], we pretrained 10 expert modules with linear regression (in the case of categorical
contexts and rewards) or MLP classification3 (in the case of Gaussian context and rewards) to classify observations x
into corresponding optimal actions, based on 1000 samples of contexts x ∼ p(x) =

∑
z p(x|z; θ⋆)pi(z) and action-wise

rewards ra ∼ p(r|a) =
∑

z p(r|z, a)pi(z). For each expert i, we used a different categorical distribution pi(z) obtained by
sampling a uniform distribution over the Z-simplex. (We found comparable performance when increasing to 50 experts.)
The Exp4.P algorithm then learns to give greater weight to experts who were trained on distributions pi(z) which assign
higher probability to recently occurring latent states in the non-stationary environment.

C DERIVATION OF THEOREM 1

We would like to bound the error in the action-wise, vector-valued mean reward estimators µ̂(a), defined in Eq. (4), and
(as discussed in Section 3.3), used by Algorithm 1 with the linear bandit context vector ct set equal to the vector of
posterior probabilities over the latent state, p̂t. As stated in Theorem 1, we set (θ,Φ) = (θ⋆,Φ⋆) throughout this section,
and thus replace the model posterior p̂t with the “true” posterior p⋆t as defined in Eq. (2). We will occasionally denote the
T -dependence of some quantities explicitly as an argument, when it is helpful to remember, but will in general leave it
suppressed in the interest of simplicity.

It will be useful to express the difference between the estimated (Eq. (4)) and true mean reward parameters as

µ̂(a) − µ(a)
⋆ = (B(a))−1g(a), (C.1)

where

g(a) := f (a)µ −B(a)µ
(a)
⋆ =

T∑
t=1

1(at = a)p⋆t

(
rt − (p⋆t )

⊤µ
(a)
⋆

)
. (C.2)

3We use the default architecture settings specified at
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html


For reference, it is also useful to write down the element-wise definitions of the vector g(a) and matrix B(a):

g(a)z =

T∑
t=1

1(at = a)p⋆(zt = z|x1:t)
(
rt −

∑
z′

p⋆(zt = z′|x1:t)(µ(a)
⋆ )z′

)
. (C.3)

B
(a)
zz′ =

T∑
t=1

1(at = a)p⋆(zt = z|x1:t)p⋆(zt = z′|x1:t). (C.4)

We will drop the ⋆ superscript on pt in the following sections, to avoid notational clutter, but emphasize that throughout this
section, all quantities are conditioned on the true parameters (θ⋆,Φ⋆). We will also occasionally use the shorthand notation

pt:t′(z) := p(zt′ = z|xt:t′) (C.5)

to simplify expressions. For simplicity, we will remove the ⋆ when denoting the transition matrix; we restore it in Theorem 1.

The derivation of Theorem 1 proceeds as follows. In Appendix C.1 we derive several intermediate results using a contraction
property [Boyen and Koller, 1998] of the Kullback-Leibler divergence between two posterior beliefs over the state of a
hidden Markov process, which implies that the KL distance between two beliefs about the current latent state zt contracts
exponentially in time as the beliefs are updated over time with additional context observations xt. We use this result to upper
bound the dependence of posterior beliefs of the form pt(z) := p(zt = z|x1:t) on data xt−τ observed in the distant past
(large τ ), such that probabilities pt(z) and pt′(z) may be treated as approximately i.i.d. random variables when |t′ − t| is
large. Since the estimators µ̂(a) are constructed via linear regression with probabilities pt(z) being dependent variables, the
approximate i.i.d. nature of time-separated posteriors leads to a reduction (and asymptotic convergence to zero) in estimator
variance. We demonstrate this explicitly as follows:

• In Appendix C.2 and Appendix C.3, we use the results of Appendix C.1 to obtain element-wise upper bounds on the
variance of, respectively, the error vector g(a) and the empirical inverse covariance matrix B(a).

• In Appendix C.4 we convert the element-wise bound on B(a) into a bound on the largest eigenvalue of (B(a))−1.

• In Appendix C.5 we combine the results of the previous two sections to obtain the final high-probability bound on the
estimator error µ̂(a) − µ(a)

⋆ .

C.1 MIXING RATE BOUNDS ON CONDITIONAL POSTERIOR PROBABILITIES

In this section we will derive an upper bound on the expected total variation distance, E[
∑

z |pt(z) − qt(z)|] and KL
divergence DKL[pt(z)||qt(z)], between two distinct posteriors (pt, qt) obtained by updating corresponding priors (p1, q1)
with the same sequence of context observations x1:t, and using the same likelihood function and transition matrix. The
contraction of these distribution distances indicates that the posterior probabilities at a given time depend predominantly on
recent observations, with dependence on distant past observations, xt−τ , being exponentially suppressed (with respect to τ ).

As stated in Theorem 1, we assume that the latent Markov process is ergodic, and thus has a unique equilibrium distribution
(or stationary distribution) ρ(ϕ)eq (z) defined by Φρ

(ϕ)
eq = ρ

(ϕ)
eq .

Our analysis will make use of the minimal mixing rate [Boyen and Koller, 1998] of a transition matrix,

γϕ := min
z1,z2

∑
z

min(ϕz,z1 , ϕz,z2). (C.6)

Given two initial distributions p1(z) = 1(z = z1) and p2(z) = 1(z = z2), with all of their probability mass concentrated
respectively on states z1 and z2, the quantity

∑
z min(ϕz,z1 , ϕz,z2) is the minimal probability mass which is moved to

shared successor states z by applying the transition matrix to p1 and p2. Thus, γϕ quantifies the minimal probability mass
that is moved from different states to a shared state, for any initial distributions p1 and p2. The minimal mixing rate was
used by Boyen and Koller [1998] to prove a contraction theorem for the KL divergence between two different distributions:

Theorem C.1 (Theorem 3 in Boyen and Koller [1998]). For any two prior distributions p0 and q0 over states z ∈ {1, ..., Z},
the distributions p = Φp0, q = Φq0 induced by a transition matrix Φ satisfy

DKL[p||q] ≤ (1− γϕ)DKL[p0||q0], (C.7)

with the minimal mixing rate γϕ defined in Eq. (C.6).



We will also make use of the fact [Boyen and Koller, 1998] that conditioning on additional data reduces the KL divergence
between different distributions, in expectation:

Lemma C.2. Given two distinct priors p(z) and q(z), and corresponding posteriors obtained by conditioning on a
real-valued observation x generated from a known likelihood distribution ℓ(x|z),

p(z|x) = p(z)ℓ(x|z)/p(x), q(z|x) = q(z)ℓ(x|z)/q(x), (C.8)

where p(x) :=
∑

z p(z)ℓ(x|z) and q(x) :=
∑

z q(z)ℓ(x|z), the KL divergence between the posteriors p(z|x) and q(z|x)
satisfies

Ex∼p(x)[DKL[p(z|x)||q(z|x)]] ≤ DKL[p(z)||q(z)]. (C.9)

Proof. Using Eq. (C.8), we have

Ex∼p(x)[DKL[p(z|x)||q(z|x)]] = Ex∼p(x)

[∑
z

p(z)ℓ(x|z)
p(x)

log

(
p(z)ℓ(x|z)
p(x)

q(x)

q(z)ℓ(x|z)

)]

= Ex∼p(x)

[∑
z

p(z)ℓ(x|z)
p(x)

(
log

p(z)

q(z)
− log

p(x)

q(x)

)]

=
∑
z

p(z) log
p(z)

q(z)
Ex∼p(x)[ℓ(x|z)/p(x)]− Ex∼p(x)

[∑
z p(z)ℓ(x|z)
p(x)

log
p(x)

q(x)

]
= DKL[p(z)||q(z)]−DKL[p(x)||q(x)]. (C.10)

In the last line, we have used the fact that
∑

z p(z)ℓ(x|z)
p(x) = 1 by definition, and Ex∼p(x)[ℓ(x|z)/p(x)] = Ex∼ℓ(·|z)[1] = 1.

Since DKL[p(x)||q(x)] ≥ 0, we recover Eq. (C.9).

Eq. (C.7) and Eq. (C.9) can be combined to show that the KL divergence between two prior beliefs over the hidden state
contracts in expectation during a single transition and subsequent observation:

Lemma C.3. Given two prior probability distributions q0(z) and q̃0(z) over the hidden state z, the posterior distributions
over the successor state z′, conditional on observing x ∼ p(·|z′; θ), that is

q(z′) ∝
∑
z

Φz′,zq0(z)p(x|z′; θ), q̃(z′) ∝
∑
z

Φz′,z q̃0(z)p(x|z′; θ),

where the sequence x1:t is generated via a sequence of latent states using the transition matrix Φ, satisfy

Ex∼p(·|z′;θ),z′∼Φq̃0 [DKL[q̃||q]] ≤ (1− γϕ)DKL[q̃0||q0], (C.11)

where the expectation is taken over x ∼ p(x) =
∑

z,z′ Φz′,z q̃0(z)p(x|z′; θ).

Proof. Applying Eq. (C.9) with prior probability vectors Φq̃ and Φq over zt, we have

Ex∼p(x)[DKL[q̃||q]] ≤ DKL[Φq̃0||Φq0].

where p(x) =
∑

z′(Φq̃0)z′p(x|z′; θ). Applying Eq. (C.7), we recover Eq. (C.11).

Note that Eq. (C.11) – and consequently also Eqs. (C.14) and (C.17) below – is asymmetric with respect to q and q̃, since
the expectation is over data x generated with the first argument, q̃0.

Eq. (C.11) can be applied recursively to show that the KL divergence contracts exponentially as the two distributions are
propagated forward in time:

Lemma C.4. Given two prior probability distributions q0(z) and q̃0(z) over the initial latent state z0, the resulting posterior
distributions over the state zt at time t, that is

qt(z
′) :=

∑
z

q0(z)p(zt = z′|x1:t, z0 = z), (C.12)

q̃t(z
′) :=

∑
z

q̃0(z)p(zt = z′|x1:t, z0 = z), (C.13)



satisfy
Ex1:t|z0∼q̃0 [DKL[q̃t||qt]] ≤ e−γϕtDKL[q̃0||q0], (C.14)

where the expectation is over histories x1:t which are generated from initial latent states z0 ∼ q̃0(·).

Proof. Applying Eq. (C.11) to the transition at time t, with priors (q̃0, q0)→ (q̃t−1, qt−1) in Eq. (C.11) determined by a
fixed sequence x1:t−1 of preceding data, we have

Ext|x1:t−1,z0∼q̃0 [DKL[q̃t||qt]] ≤ (1− γϕ)DKL[q̃t−1||qt−1], (C.15)

where we have denoted that the expectation is taken only over xt ∼ p(x) =
∑

z(Φq̃t−1)zp(x|z; θ). Taking the remaining
expectations recursively over xt−1, ..., x1, backwards in time, we have

Ex1:t|z0∼q̃0 [DKL[q̃t||qt]] ≤ (1− γϕ)tDKL[q̃0||q0], (C.16)

Since (1− γϕ)t = (elog(1−γϕ))t = et log(1−γϕ) < e−γϕt for γϕ ∈ (0, 1) and t > 0, we recover Eq. (C.14).

Note that Eq. (C.14) is a conservative bound, for two reasons: (1) If there exist pairs of states (z1, z2) in Eq. (C.6) – e.g.
spatially distant states – which cannot transition to any common state z, we have γϕ = 0. However, mixing may still occur
efficiently over several timesteps – e.g. allowing for several transitions between spatially connected states – leading to a
similar exponential contraction with respect to a more general mixing rate. (2) Eq. (C.9) is a weaker bound than Eq. (C.10),
which may be substantially tighter when the marginal context distributions p(x) and q(x) are separated by a large KL
distance. This can occur when the conditional context distributions p(x|z; θ) – denoted ℓ(x|z) in Lemma C.2 – are very
different, making observations x highly informative about z.

Eq. (C.14) can be converted into a bound on the expected total variation distance, or 1-norm, between two posteriors:

Corollary C.4.1. The 1-norm difference between two distributions (q̃t, qt) over the state zt, as defined in Eqs. (C.12)-(C.13),
satisfies the upper bound

Ex1:t|z0∼q̃0

[∑
z

|q̃t(z)− qt(z)|

]
≤ e− 1

2γϕt
√

2DKL[q̃0||q0]. (C.17)

Proof. Pinsker’s inequality states that for any two probability distributions q̃ and q, the 1-norm and KL divergence satisfy
||q̃ − q||1 ≤

√
2DKL[q̃||q].4 Setting ||q̃ − q||1 =

∑
z |q̃t(z)− qt(z)|, and taking the expectation, we have

Ex1:t|z0∼q̃0

[∑
z

|q̃t(z)− qt(z)|

]
≤ Ex1:t|z0∼q̃0

[√
2DKL[q̃t||qt]

]
.

Applying Jensen’s inequality to bring the expectation under the square root, we have

Ex1:t|z0∼q̃0

[∑
z

|q̃t(z)− qt(z)|

]
≤
√

2 · Ex1:t|z0∼q̃0 [DKL[q̃t||qt]].

Applying Eq. (C.14), we arrive at Eq. (C.17).

C.2 PARTIAL BOUND ON THE ESTIMATOR ERROR

In this section, we compute the variance of the vector g(a) defined in Eq. (C.2), across different reward and observation
histories. We show that the variance converges to zero as T →∞, and then show that |g(a)| converges to zero asymptotically.
In the following sections, we will use this result to bound the estimator error µ̂(a) − µ(a)

⋆ = (B(a))−1g(a).

4The symmetry of the left hand side under exchange of q̃ and q implies the same relation holds with respect to the reverse KL
divergence DKL[q||q̃].



Lemma C.5. When the ground truth parameters (θ,Φ) are known, each element of g(a), Eq. (C.2), satisfies the upper
bound

(g(a)z /T )2 ≤ 1

δ · T

(
σ2
eq + ||µ

(a)
⋆ ||21

4

γϕ

(
1 + log ζϕ

))
(C.18)

with probability at least 1− δ, for any δ ∈ (0, 1), where

σ2
eq := max

a

∑
z

ρ(ϕ)eq (z)Var[r|z, a] (C.19)

is the maximal variance in rewards when the latent state has reached equilibrium, and γ−1
ϕ log ζϕ := τ⋆ is the integer

number of timesteps satisfying

τ⋆ := min
τ∈N
| logDϕ(τ)− γϕτ |, (C.20)

where
Dϕ(τ) := max

z
max
t≥1

Ex1:t+τ [DKL[p(zt+τ |x1:t+τ )||p(zt+τ |zt = z;x1:t+τ )]] (C.21)

is a measure of how much information the latent state zt at any time t can possibly contain about a future latent state zt+τ .

Proof. We will use the shorthand notation δ(a)t := 1(at = a) for the indicator function which picks out times t for a given
action a. First, we observe that the expectation of g(a) (conditional on any action sequence a1:T ) is zero:

E[g(a)z |a1:T ] = Ex1:T
[g(a)z |x1:T , a1:T ]

= Ex1:T

[ T∑
t=1

δ
(a)
t p(zt = z|x1:t)E[rt|x1:T , at = a]

−
T∑

t=1

δ
(a)
t p(zt = z|x1:t)

∑
z′

p(zt = z′|x1:t)(µ(a)
⋆ )rz′

]
=

T∑
t=1

δ
(a)
t Ex1:T

[
p(zt = z|x1:t)

∑
z′

(p(zt = z′|x1:T )− p(zt = z′|x1:t))(µ(a)
⋆ )z′

]

=

T∑
t=1

δ
(a)
t

∑
z′

(µ
(a)
⋆ )z′ · Ex1:t

[
p(zt = z|x1:t)(Ext+1:T

[p(zt = z′|x1:T )]− p(zt = z′|x1:t))
]

=

T∑
t=1

δ
(a)
t

∑
z′

(µ
(a)
⋆ )z′ · Ex1:t [p(zt = z|x1:t)(p(zt = z|x1:t)− p(zt = z|x1:t))] = 0. (C.22)

Here, we have used the fact that E[rt|x1:T , at = a] =
∑

z′ p(zt = z′|x1:T )(µ(a)
⋆ )z′ to take the expectation over reward data,

followed by the partial expectation over context data xt+1:T .

Since E[g(a)z ] = 0, we compute the variance to obtain an upper bound on |g(a)z |. To compute the variance of the vector
element g(a)z , we first take the expectation over rewards, conditional on a specific context history x1:T . Defining the reward
noise

η
(a)
t := rt −

∑
z′

p(zt = z′|x1:t)(µ(a)
⋆ )z′ = rt − p⊤t µ

(a)
⋆ , (C.23)

so that for brevity we can write g(a) =
∑

t δ
(a)
t ptη

(a)
t , or equivalently

g(a)z =

T∑
t=1

δ
(a)
t p(zt = z|x1:t)η(a)t ,

we have (for any (z1, z2))

E[g(a)z1 g
(a)
z2 |x1:T , a1:T ] =

∑
t,t′

δ
(a)
t δ

(a)
t′ p(zt = z1|x1:t)p(zt′ = z2|x1:t′) · E[η(a)t η

(a)
t′ |x1:T , at = at′ = a]. (C.24)



Since E[rt|x1:T , at = a] =
∑

z p(zt = z|x1:T )(µ(a)
⋆ )z and E[rtrt′ |x1:T , at = at′ = a] =

∑
z,z′ p(zt = z, zt′ =

z′|x1:T )(µ(a)
⋆ )z(µ

(a)
⋆ )z′ , the correlation between reward noise at times t and t′ ̸= t is

(for t ̸= t′)

E[ηtηt′ |x1:T , at = at′ = a] =∑
z,z′

(µ
(a)
⋆ )z(µ

(a)
⋆ )z′

[
p(zt = z, zt′ = z′|x1:T )− p(zt = z|x1:t)p(zt′ = z′|x1:T )

− p(zt = z|x1:T )p(zt′ = z′|x1:t′) + p(zt = z|x1:t)p(zt′ = z′|x1:t′)
]
. (C.25)

When t = t′ we have

E[η2t |x1:T , at = a] =
∑
z

p(zt = z|x1:T )((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2)

− 2
(∑

z

p(zt = z|x1:t)(µ(a)
⋆ )z

)(∑
z′

p(zt = z′|x1:T )(µ(a)
⋆ )z′

)
+
(∑

z

p(zt = z|x1:t)(µ(a)
⋆ )z

)2
, (C.26)

where
σ(a)
z := Er∼p(·|z,a)[r

2]− Er∼p(·|z,a)[r]
2 = Er∼p(·|z,a)[r

2]− [(µ
(a)
⋆ )z]

2. (C.27)

We now take the expectation over x1:T . Because Eq. (C.24) only depends on xt′+1:T via the conditional expectation of
reward noise E[ηtηt′ |x1:T ], we can take the partial expectation over xt′+1:T as follows:

E[g(a)z1 g
(a)
z2 |a1:T ] = Ex1:T

[
E[g(a)z1 g

(a)
z2 |x1:T , a1:T ]

]
= 2

∑
t,t′>t

δ
(a)
t δ

(a)
t′ Ex1:t′

[
p(zt = z1|x1:t)p(zt′ = z2|x1:t′) · Ext′+1:T

[E[ηtηt′ |x1:T , at = at′ = a]]
]

+
∑
t

δ
(a)
t Ex1:t

[
p(zt = z1|x1:t)p(zt = z2|x1:t) · Ext+1:T

[E[η2t |x1:T , at = a]]
]

(C.28)

where we have decomposed the double sum over time as
∑

t,t′ =
∑

t=t′ +2
∑

t,t′>t. Using Eq. (C.25) for the t < t′ terms,
we have

(for t < t′) Ext′+1:T
[E[ηtηt′ |x1:T , at = at′ = a]]

=
∑
z,z′

(µ
(a)
⋆ )z(µ

(a)
⋆ )z′

[
Ext′+1:T

[p(zt = z, zt′ = z′|x1:T )]

− p(zt = z|x1:t)Ext′+1:T
[p(zt′ = z′|x1:T )]

− Ext′+1:T
[p(zt = z|x1:T )]p(zt′ = z′|x1:t′)

+ p(zt = z|x1:t)p(zt′ = z′|x1:t′)
]

=
∑
z,z′

(µ
(a)
⋆ )z(µ

(a)
⋆ )z′

[
p(zt = z, zt′ = z′|x1:t′)− p(zt = z|x1:t)p(zt′ = z′|x1:t′)

− p(zt = z|x1:t′)p(zt′ = z′|x1:t′) + p(zt = z|x1:t)p(zt′ = z′|x1:t′)
]

=
∑
z,z′

(µ
(a)
⋆ )z(µ

(a)
⋆ )z′p(zt = z|x1:t′)

(
p(zt′ = z′|zt = z, x1:t′)− p(zt′ = z′|x1:t′)

)
(C.29)

In the second equality we have cancelled two equivalent terms, and in the last line we have factored the joint distribution
over (z, z′) into a marginal and conditional. Similarly, using Eq. (C.26) for the t′ = t terms, we have

E[η2t |x1:t, at = a] = Ext+1:T
[E[η2t |x1:T , at = a]]

=
∑
z

p(zt = z|x1:t)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2)−
(∑

z

p(zt = z|x1:t)(µ(a)
⋆ )z

)2
≤
∑
z

p(zt = z|x1:t)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2). (C.30)



Substituting Eqs. (C.29) and (C.30) into Eq. (C.28), taking the absolute value to obtain an upper bound, using p(zt =
z1|x1:t)p(zt′ = z2|x1:t′) ≤ 1 and p(zt = z|x1:t′) ≤ 1 to simplify the expression, using the fact that Ex1:t [p(zt = z|x1:t)] =
ρ
(ϕ)
eq (z) in the t = t′ contribution, and setting z1 = z2 for simplicity, we have

Var[g(a)z1 ] ≤ T
∑
z

ρ(ϕ)eq (z)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2)

+
∑
z,z′

|(µ(a)
⋆ )z(µ

(a)
⋆ )z′ | × 2

∑
t,t′>t

Ex1:t′ [|p(zt′ = z′|zt = z, x1:t′)− p(zt′ = z′|x1:t′)|] (C.31)

We have also used δ(a)t δ
(a)
t′ ≤ 1 and have removed the action-conditioning on Var[g(a)], since after setting δ(a)t δ

(a)
t′ ≤ 1 the

right-hand side no longer depends on the action sequence, and thus the inequality holds for any action sequence. Introducing
a free parameter τ1 satisfying 1 ≤ τ1 ≤ t′ − t, we take the partial expectation over xt+τ1:t′ of the difference in conditional
probabilities by applying Corollary C.4.1 to bound the expectation value over xt+τ1+1:t′ :

Ex1:t′ [|p(zt′ = z′|zt = z, x1:t′)− p(zt′ = z′|x1:t′)|]
= Ex1:t+τ1

Ext+τ1+1:t′ [|p(zt′ = z′|zt = z, x1:t′)− p(zt′ = z′|x1:t′)|]

≤ e− 1
2γϕ(t

′−(t+τ1))Ex1:t+τ1

[√
2DKL[p(zt+τ1 |x1:t+τ1)||p(zt+τ1 |zt = z;x1:t+τ1)]

]
≤ e− 1

2γϕ(t
′−(t+τ1))

√
2 · Ex1:t+τ1

[DKL[p(zt+τ1 |x1:t+τ1)||p(zt+τ1 |zt = z;x1:t+τ1)]]

≤ e− 1
2γϕ(t

′−(t+τ1))
√
2Dϕ(τ1).

In the second inequality, we have applied Jensen’s inequality to bring the expectation inside the square root. In the last line,
we have recalled the definition of Dϕ(τ1) in Eq. (C.21). For τ1 ≫ 1/γϕ, the latent state will have evolved through multiple
mixing times, so we expect Dϕ(τ1) to become small, decreasing to zero as τ1 →∞.

We now introduce a second free parameter τ0 ∈ N (which we will optimize below), and use it to decompose the sum over
t′ − t into a contribution from widely separated times, t′ − t > τ0, where the exponential suppression is strong, and a
contribution from nearby times, t′ − t ≤ τ0, over which the posterior probabilities may be more strongly correlated and
there is not significant exponential suppression:

Var[g(a)z1 ] ≤ T
∑
z

ρ(ϕ)eq (z)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2) (C.32)

+ 2||µ(a)
⋆ ||21

∑
t,t′>t

[
1(t′ − t ≤ τ0) + 1(t′ − t > τ0)e

− 1
2γϕ(t

′−(t+τ1))
√
2Dϕ(τ1)

]
.

Here, we have used the fact that∑
z,z′

|(µ(a)
⋆ )z(µ

(a)
⋆ )z′ | ≤

∑
z

|(µ(a)
⋆ )z| ×

∑
z′

|(µ(a)
⋆ )z′ | = ||µ(a)

⋆ ||21,

and (in the t′ − t ≤ τ0 term) the fact that the difference of probabilities in Eq. (C.31) is between 0 and 1. The t′ − t > τ0
contribution can be upper bounded as follows:

∑
t,t′>t

1(t′ − t > τ0)e
− 1

2γϕ(t
′−(t+τ1)) ≤ T

T∑
τ=τ0+1

e−
1
2γϕ(τ−τ1) ≤ T

∫ ∞

τ0

dτe−
1
2γϕ(τ−τ1) =

2T

γϕ
e−

1
2γϕ(τ0−τ1).

Here, we have used monotonicity with respect to τ to bound the discrete sum with a continuous integral. Using this in Eq.
(C.32), we have

Var[g(a)z1 ] ≤ T
∑
z

ρ(ϕ)eq (z)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2) + 2||µ(a)
⋆ ||21

(
Tτ0 +

2T

γϕ
e−

1
2γϕ(τ0−τ1)

√
2Dϕ(τ1)

)
. (C.33)

Setting to zero the derivative with respect to τ0, and solving for τ0, we find the optimal value

τ⋆0 := τ1 +
1

γϕ
log(2Dϕ(τ1)),



for which the upper bound becomes

Var[g(a)z1 ] ≤ T
∑
z

ρ(ϕ)eq (z)((σ(a)
z )2 + [(µ

(a)
⋆ )z]

2) + 2T ||µ(a)
⋆ ||21

(
τ1 +

1

γϕ

(
2 + logDϕ(τ1)

))
.

We now approximately optimize τ1 by setting it equal to the value τ⋆1 at which γϕτ⋆1 = logDϕ(τ
⋆
1 ) := log ζϕ. Furthermore,

since
∑

z ρ
(ϕ)
eq (z)((µ

(a)
⋆ )z)

2 <
∑

z((µ
(a)
⋆ )z)

2 = ||µ(a)
⋆ ||22 < ||µ

(a)
⋆ ||21 and 1/γϕ ≥ 1, the expression for Var[g(a)z ] simplifies

to:
Var[g(a)z ] ≤ T

(
σ2
eq + ||µ

(a)
⋆ ||21

4

γϕ

(
1 + log ζϕ

))
, (C.34)

where
σ2
eq := max

a

∑
z

ρ(ϕ)eq (z)(σ(a)
z )2. (C.35)

Finally, we apply Chebyshev’s inequality, which states that

|g(a)z − E[g(a)z ]| <

√
Var[g

(a)
z ]

δ
(C.36)

with probability at least 1 − δ for any δ ∈ (0, 1). Recalling from Eq. (C.22) that E[g(a)z ] = 0, we recover Eq. (C.18)
above.

C.3 BOUND ON THE INVERSE COVARIANCE MATRIX

In this section we derive a theoretical bound on the action-wise inverse covariance matrix B(a) in the T →∞ limit.

We will (i) use a mild assumption on the frequency with which optimal actions are selected in order to lower bound the
expected elements E[B(a)

z,z′ ] of the action-wise inverse covariance matrices, (ii) show that the variance around this expectation
decreases as 1/γϕT , and (iii) combine these results to obtain a high-probability lower bound on the empirical inverse
covariance matrix B(a).

Recalling that the context history x1:t determines (conditional on the true task parameters5) an optimal action

a⋆t := argmaxa
∑
z

p⋆(zt = z|x1:t)µ(a)
⋆ , (C.37)

we state the lower bound of point (i) above:

Lemma C.6. Assuming that at any t the optimal action given x1:t, Eq. (C.37), is selected by a policy π with probability at
least πmin > 0, the expectation over histories x1:T of the empirical inverse covariance matrix, B(a), satisfies the lower
bound

1

T
E[B(a)(T )] ≽ πminB̄

(a)(T ), (C.38)

where A ≽ B indicates that A−B is positive semidefinite, and

B̄
(a)
zz′ (T ) :=

1

T

T∑
t=1

Ex1:t [1(a = a⋆t )p(zt = z|x1:t)p(zt = z′|x1:t)] . (C.39)

Proof. We first express the expectation value of the matrix element B(a)
zz′ as a sum over expected values at each time,

E[B(a)
zz′ (T )] =

T∑
t=1

Ex1:t

[
Er1:t−1,a1:t−1|x1:t

[1(at = a)]p(zt = z|x1:t)p(zt = z′|x1:t)
]

=

T∑
t=1

Ex1:t
[Pπ(at = a|x1:t)p(zt = z|x1:t)p(zt = z′|x1:t)] . (C.40)

5We restore the ⋆ notation in Eq. (C.37) to denote this.



In the first line, we have decomposed the expectation into an inner context-conditioned expectation over actions and rewards,
and an outer expectation over contexts. The former only involves the binary indicator 1(at = a), and is the probability

Pπ(at = a|x1:t) := Er1:t−1,a1:t−1|x1:t
[1(at = a)] (C.41)

that a given policy π selects action at = a conditional on the context history x1:t. As stated in Theorem 1, we make the mild
assumption that the optimal action a⋆t is selected with a minimal nonzero probability πmin. (Any policy that learns the task
should converge to πmin → 1 as T →∞.) That is,

Pπ(at = a|x1:t) ≥ πmin · 1(a = a⋆t ), (C.42)

where we conservatively lower bound the probability at zero for a ̸= a⋆t . Since the rank one matrix ptp⊤t with elements

(ptp
⊤
t )z,z′ = p(zt = z|x1:t)p(zt = z′|x1:t)

is positive semidefinite6 for any x1:t, Eq. (C.42) implies that, for any pt,

Pπ(at = a|x1:t)ptp⊤t ≽ πmin · 1(a = a⋆t )ptp
⊤
t

and hence
Ex1:t

[Pπ(at = a|x1:t)ptp⊤t ] ≽ πminEx1:t
[1(a = a⋆t )ptp

⊤
t ].

Applying this bound to each matrix term of E[B(a)
zz′ (T )] in Eq. (C.40) we see that

E[B(a)(T )] ≽ πmin · T · B̄(a)(T ), (C.43)

with B̄(a)(T ) defined in Eq. (C.39). Hence we recover the matrix lower bound Eq. (C.38) above.

We now show that the variance of the empirical matrix B around its asymptotic expected form can be upper bounded:

Lemma C.7. When the ground truth parameters (θ,Φ) are known, the variance across histories x1:T of the empirical
inverse covariance matrix element Bzz′(T ), satisfies the upper bound

Var

[
1

T
B

(a)
zz′ (T )

]
≤ 2

γϕT
(κ+ log log(1/ρmin)), (C.44)

where κ ≈ 6.78, and ρmin := minz ρ
(ϕ)
eq (z) is the equilibrium probability of the least probable latent state.

Proof. The variance over context histories x1:T of the matrix element Bzz′(T ), conditioned on actions a1:T (and using the
shorthand notation δ(a)t = 1(at = a)), is

Var[B
(a)
zz′ |a1:T ] = Ex1:T

[(B
(a)
zz′ )

2|a1:T ]− Ex1:T
[B

(a)
zz′ |a1:T ]2

=
∑
t,t′

δ
(a)
t δ

(a)
t′

(
Ex1:t′ [p1:t(z)p1:t(z

′)p1:t′(z)p1:t′(z
′)]− Ex1:t′ [p1:t(z)p1:t(z

′)]Ex1:t′ [p1:t′(z)p1:t′(z
′)]
)
. (C.45)

Here, we have trivially taken the expectation over xt′+1:T . Using again the shorthand notation pt:t′(z) := p(zt′ = z|xt:t′)
(with pt:t′ ∈ RZ denoting the vector of probabilities), and defining

δpt(z; τ) := p1:t(z)− pt−τ+1:t(z), (C.46)

we can write, for t′ > t,

p1:t′(z)p1:t′(z
′) = (pt+1:t′(z

′) + δpt′(z; t
′ − t))(pt+1:t′(z

′) + δpt′(z
′; t′ − t)), (C.47)

Using Corollary C.4.1 to bound the expectation over xt+1:t′ , and using the fact that

DKL[p1:t||ρ(ϕ)eq ] =
∑
z

p1:t(z) log

(
p1:t(z)

ρ
(ϕ)
eq (z)

)
≤
∑
z

p1:t(z) log(1/ρmin) = log(1/ρmin),

6This matrix has Z − 1 zero eigenvalues, and a nonzero eigenvalue
∑

z p(zt = z|x1:t)
2.



we have

Ex1:t′

[∑
z

|δpt′(z; τ)|
]
≤ e− 1

2γϕτEx1:t
[

√
2DKL[p1:t||ρ(ϕ)eq ] ≤ e− 1

2γϕτ
√

2 log(1/ρmin) := u(τ). (C.48)

Thus, for t′ > t,

|Ex1:t′ [p1:t′(z)p1:t′(z
′)]− Ext+1:t′ [pt+1:t′(z)pt+1:t′(z

′)]| ≤ Ex1:t′ [|δpt′(z; t
′ − t)|] + Ex1:t′ [|δpt′(z

′; t′ − t)|]
+ Ex1:t′ [|δpt′(z; t

′ − t)| · |δpt′(z′; t′ − t)|]
≤ 3u(t′ − t), (C.49)

where we have used pt+1:t′ ≤ 1 and |δpt′ | ≤ 1 to conservatively bound the expectation. Applying the decomposition in Eq.
(C.47) again for the first term in Eq. (C.45), we have

Ex1:t′ [p1:t(z)p1:t(z
′)p1:t′(z)p1:t′(z

′)] ≤ Ex1:t
[p1:t(z)p1:t(z

′)] · Et+1:t′ [pt+1:t′(z)pt+1:t′(z
′)] + 3u(t′ − t). (C.50)

Here we have used the fact that p1:t(z)p1:t(z′) ≤ 1 to simplify the last term. Combining Eq. (C.49) and (C.50), we have
(for t′ > t)

|Ex1:t′ [p1:t(z)p1:t(z
′)p1:t′(z)p1:t′(z

′)]− Ex1:t
[p1:t(z)p1:t(z

′)]Ex1:t′ [p1:t′(z)p1:t′(z
′)]| ≤ 6u(t′ − t). (C.51)

As in Lemma C.5, we now introduce a free parameter τ0, and break the sum in Eq. (C.45) into a contributions from small
|t′ − t| (where the difference in Eq. (C.45) may be large but cannot exceed one) and large |t′ − t| (where the upper bound on
the difference in Eq. (C.45) is strong). The variance Var[Bz,z′ ], Eq. (C.45), can then be upper bounded:

Var[B
(a)
zz′ |a1:T ] ≤

∑
t,t′

δ
(a)
t δ

(a)
t′ [1(|t′ − t| ≤ τ0) + 1(|t′ − t| > τ0)6u(|t′ − t|)]

Using δ(a)t δ
(a)
t′ ≤ 1 to apply the inequality for any action sequence a1:T , and thus removing the action conditioning, we

have
Var[B

(a)
zz′ ] ≤

∑
t,t′

1(|t′ − t| ≤ τ0) + 2
∑
t,t′

1(t′ − t > τ0)6u(t
′ − t). (C.52)

Here, we have also used the symmetry of Eq. (C.45) under exchange of t and t′ to sum only over t′ > t. The bound on
Var[Bz,z′ ] becomes

Var[B
(a)
zz′ ] ≤ T (2τ0 + 1) + 12T

T∑
τ=τ0+1

e−
1
2γϕτ

√
2 log(1/ρmin)

≤ T (2τ0 + 1) + 12T
√

2 log(1/ρmin)

∫ ∞

τ0

dτe−
1
2γϕτ

= T (2τ0 + 1) + 12T
√

2 log(1/ρmin)
2

γϕ
e−

1
2γϕτ0

where we have again used the monotonicity with respect to τ to bound the discrete sum with a continuous integral. We are
now in a position to optimize the free parameter τ0 to make the bound as tight as possible. Setting to zero the derivative with
respect to τ0, and solving for τ0, we find the optimal value

τ⋆0 :=
1

γϕ
log (72 log(1/ρmin)) , (C.53)

for which the upper bound becomes

Var[B
(a)
zz′ ] ≤ T + 2

T

γϕ
[2 + log (72 log(1/ρmin))]

≤ 2
T

γϕ
(κ+ log log(1/ρmin)),

where we have used the fact that γϕ ≤ 1, and κ = 5
2 + log 72 = 5

2 + 3 log 2 + 2 log 3 ≈ 6.78.



Note that the unusual log-log dependence in Eq. (C.44) originates in the exponential contraction in Eq. C.14, which
suppresses an initial KL-distance that is already logarithmic in probabilities.

Finally, we apply Chebyshev’s inequality to bound the deviation of the B(a)
zz′ from its asymptotic expected value:

Lemma C.8. When the ground truth parameters (θ,Φ) are known, any matrix element of the empirical inverse covariance
matrix B(a)(T ), for any particular history (x1:T , a1:T ) of contexts and actions, satisfies the inequality

1

T
|B(a)

zz′ (T )− E[B(a)
zz′ (T )]| ≤

√
1

δ

2

γϕT
(κ+ log log(1/ρmin)) (C.54)

where κ ≈ 6.78, with probability at least 1− δ, for any δ ∈ (0, 1).

Proof. Chebyshev’s inequality states that for any random variable X with variance Var[X], |X − E[X]| ≤
√

Var[X]/δ

with probability at least 1− δ. Setting X = 1
T B

(a)
zz′ and using Eq. (C.44) to upper bound the variance, we recover Eq. (C.54)

above.

C.4 BOUND ON COVARIANCE MATRIX EIGENVALUES

In Appendix C.3 we derived a high-probability upper bound on the deviation of the elements of the empirical inverse
covariance matrix B(a) from their asymptotic expected values. We would like to convert this into a bound on the covariance
matrix (B(a))−1, in order to bound the estimator error (B(a))−1g(a), Eq. (C.1). In this section, we show that an element-wise
bound such as Eq. (C.54) can be converted to an eigenvalue bound which can be applied to the inverse matrix.

Lemma C.9. For symmetric matrices M̄ , M = M̄ +∆M , with |∆Mz,z′ | ≤ Uδ for any given (z, z′) with probability at
least 1− δ, the minimal eigenvalue λ1 of M satisfies the lower bound

λ1 ≥ λ̄1 − ZUδ (C.55)

with probability at least 1− Zδ, where λ̄1 is the minimal eigenvalue of M̄ .

Proof. Let λ1 and λ̄1 be, respectively, the minimal eigenvalues of M and M̄ . Since M and M̄ are symmetric, ∆M is also
symmetric. The Weyl inequality for symmetric, real-valued square matrices states that if λ̄1 and λ(∆)

1 are the minimal
eigenvalues of matrices M̄ and ∆M , then the minimal eigenvalue λ1 of the matrix sum M̄ +∆M satisfies the lower bound

λ1 ≥ λ̄1 + λ
(∆)
1 . (C.56)

The Gershgorin circle theorem can be used to bound the eigenvalue λ(∆)
1 in terms of the matrix elements ∆Mz,z′ . For a real

square matrix A, the Gershgorin circle theorem states that the i’th eigenvalue satisfies the inequality

|λi −Aii| ≤
∑
j ̸=i

|Aij |,

which implies that
|λi| ≤

∑
j

|Aij | (C.57)

Applying Eq. (C.57) to any eigenvalue λ(∆)
z of ∆M , we have

|λ(∆)
z | ≤

∑
z′

|∆Mzz′ | ≤ ZUδ. (C.58)

Since Eq. (C.58) only holds if |∆Mzz′ | ≤ Uδ for all z′, the probability of the bound is at least (1 − δ)Z > 1 − Zδ.
Combining Eq. (C.58) with Eq. (C.56), we recover Eq. (C.55).

We now use the element-wise bound on B(a)
zz′ from Lemma C.8 to apply Lemma C.9 to the minimal eigenvalue of the inverse

covariance matrix B(a), which immediately translates into an upper bound on the maximal eigenvalue of (B(a))−1.



Lemma C.10. Under the same conditions as Lemma C.8, the minimal eigenvalue λ(a)1 (T ) of the empirical inverse covariance
matrix 1

T B
(a)(T ) satisfies the lower bound

λ
(a)
1 (T ) ≥ λ(a)min(T )/κ̃, (C.59)

where λ(a)min(T ) is the minimal eigenvalue of B̄(a)(T ) defined in Eq. (C.39), with probability at least 1− δλ, where

δλ :=
Z3

(λ
(a)
min(T ))

2

(
πmin − κ̃−1

)−2 2

Tγϕ
(κ+ log log(1/ρmin)), (C.60)

for any κ̃ ∈ (1/πmin, κ̃max), with

1

κ̃max
= πmin −

Z

λ
(a)
min(T )

√
2

Tγϕ
(κ+ log log(1/ρmin)). (C.61)

Proof. Recalling Eq. (C.54), we apply Lemma C.9 with

M̄ → 1

T
E[B(a)(T )], M → 1

T
B(a)(T ), Uδ →

√
1

δ

2

Tγϕ
(κ+ log log(1/ρmin)),

and have
λ
(a)
1 (T ) ≥ λ̄(a)1 (T )− ZUδ, (C.62)

with probability at least 1−Zδ, where λ(a)1 (T ) and λ̄(a)1 (T ) are the minimal eigenvalues of 1
T B

(a)(T ) and 1
T E[B

(a)(T )], re-
spectively. Using the fact (Lemma C.6) that 1

T E[B
(a)(T )] ≽ πminB̄

(a)(T ), or equivalently 1
T E[B

(a)(T )] = πminB̄
(a)(T )+

PSD where PSD is a positive semidefinite symmetric matrix with non-negative minimal eigenvalue, and applying the Weyl
inequality again (as in Lemma C.9), we have λ̄(a)1 (T ) ≥ πminλ

(a)
min(T ), and thus,

λ
(a)
1 (T ) ≥ πminλ

(a)
min(T )− ZUδ. (C.63)

Defining

κ̃−1 := πmin −
Z

λ
(a)
min(T )

√
1

δ

2

Tγϕ
(κ+ log log(1/ρmin)), (C.64)

Eq. (C.63) takes the form of Eq. (C.59), with κ̃ inheriting its range, as stated in Lemma C.10 above, from the range of
δ ∈ (0, 1). Inverting Eq. (C.64) to express the probability δλ := Zδ in terms of other parameters, we recover Eq. (C.60).

C.5 FINAL BOUND ON ESTIMATOR ERROR

In the preceding sections, we derived high-probability bounds for the empirical covariance matrix (B(a))−1 and the error
vector g(a). In this section, we combine these results to derive Theorem 1, a high-probability upper bound on the estimator
error µ̂(a) − µ(a)

⋆ = (B(a))−1g(a):

Proof of Theorem 1. From Lemma C.5, we have (g
(a)
z /T )2 ≤ U2

δ – using U2
δ as a shorthand for the right hand side of Eq.

(C.18) – with probability at least 1 − δ for any z, and thus with probability at least (1 − δ)Z > 1 − Zδ for all z. Thus,
renaming δ → δ/Z, the 1-norm of the estimator error is upper bounded with probability at least 1− δ:

|µ̂(a)
z − (µ

(a)
⋆ )z| ≤

∑
z′

|((B(a))−1)zz′ | · |g(a)z′ | ≤ T · Uδ/Z

∑
z′

∣∣∣((B(a))−1)zz′

∣∣∣. (C.65)

The sum over elements |((B(a))−1)zz′ | can be upper bounded in terms of the Frobenius norm ||(B(a))−1||F ,∑
z′

|((B(a))−1)zz′ | ≤ Z ×max
z,z′
|((B(a))−1)zz′ | ≤ Z

√∑
z,z′

|((B(a))−1)zz′ |2 = Z||(B(a))−1||F .

The singular value decomposition of (B(a))−1, which is symmetric and positive semidefinite, can be written (B(a))−1 =
1
T UaΛ

−1
a U⊤

a where Ua is an orthogonal matrix and Λa is the diagonal matrix whose nonzero entries are the eigenvalues of



1
T B

(a). (Recall that the elements of the matrix B(a) increase linearly with T , with 1
T B

(a) approaching a constant matrix at
large T .) The Frobenius norm of a matrix is unchanged under a (left or right) orthogonal transformation, so

T · ||(B(a))−1||F = ||Λ−1
a ||F =

√∑
z

(λ
(a)
z )−2 ≤

√
Z

λ
(a)
1

,

where λ(a)1 is the minimal eigenvalue (at time T ) of 1
T B

(a). Thus, T ·
∑

z′ |(B(a))−1)zz′ | ≤ Z3/2/λ
(a)
1 . Substituting this

into Eq. (C.65) above, and recalling Lemma C.10, we have

|µ̂(a)
z − (µ

(a)
⋆ )z| ≤

Z3/2κ̃

πminλ
(a)
min(T )

Uδ/Z

with probability at least
(1− δ)(1− δλ) > 1− δ − δλ.

With the definition of δλ in Eq. (C.60), recalling that U2
δ refers to the upper limit in Eq. (C.18), and setting κ̃ = 2/πmin for

simplicity, we recover Theorem 1 as stated above.

Note from Eq. (C.60) (with κ̃ = 2/πmin) that in order for the probability of the bound to become positive, the time T
(measured in mixing times 1/γϕ) must exceed a minimal threshold value,

Tγϕ >
8Z3

πminλ
(a)
min

(κ+ log log(1/ρmin)). (C.66)

Before this timescale, insufficient data can be gathered to reliably reduce the variance of the estimator. Once Tγϕ exceeds
this threshold value, which is parametrically large in the number of latent states Z, the bound becomes nontrivial.

D DERIVATION OF THEOREM 2

As outlined in the main text, the derivation of Theorem 2 involves (i) a generic procedure for converting bounds on empirical
estimates into a regret bound for linear Thompson sampling, and (ii) application of Theorem 1 and related results, which
bound empirical reward estimates and empirical covariance matrices in the latent bandit setting, to apply the resulting linear
Thompson sampling regret bound to the latent bandit setting. This involves the following steps:

• In Appendix D.1, we define an important feature of the distribution over contexts in the linear bandit setting, which
quantifies the amount of probability mass concentrated on contexts ct where the reward gap between the optimal action
argmaxac

⊤
t µ

(a)
⋆ and the next-best action is very small.

• In Appendix D.2 we state several assumptions used in our derivation, including bounds on empirical estimates which
we later show to take a specific form in the case of Lemma 1 and Theorem 1 (where the linear bandit problem is
obtained by reducing from the latent bandit setting, and conditioning on the true parameters (θ⋆, ϕ⋆)).

• In Appendix D.3, we derive (under these assumptions) a high-probability bound on the probability that linear Thompson
sampling will select a suboptimal action at any time, given an observed context vector c⋆.

• In Appendix D.4 we upper bound (with high probability) the regret incurred by linear Thompson sampling at a given
time, by taking an average over possible context vectors c⋆ of the mean regret incurred conditional on c⋆ (which is
determined by the probability of suboptimal actions). We show that the bulk of expected regret comes from contexts c⋆

for which the best two actions have very similar expected reward.

• In Appendix D.5 we sum over timesteps to bound the cumulative regret of linear Thompson sampling. Since the regret
bound at each timestep derived in Appendix D.4 fails with small but nonzero probability, an additional worst-case
regret is incurred on timesteps when the bound fails. We optimize the probability of failure (a free parameter at each
timestep) in order to tighten the bound on cumulative regret. Lastly, we specify from a more general case to the specific
case in which empirical estimate error decreases as 1/

√
T , which leads to O(

√
T ) regret.

• Lastly, in Appendix D.6, we use Theorem 1, which bounds the error in empirical reward parameter estimators in the
latent bandit setting (Section 3.1), along with a corresponding bound on empirical covariance matrices (Lemma C.10),
to apply the generic linear TS regret bound of Appendix D.5 to the setting in which context vectors are posterior
probability vectors over a latent state undergoing Markovian state transitions, c⋆t = p⋆t .



We remind the reader of the linear Thompson sampling algorithm (used by L2TS as a subroutine), which is the focus of our
analysis in this Appendix:

Linear Thompson Sampling (Agrawal and Goyal [2013b])
Input:
λµ > 0, σ̃

(a)
r > 0 for a ∈ A

µ̂(a) = 0d, f (a) = 0d, B(a) = λµ1d, for a ∈ A
for t← 1, 2, ... do
Receive context ĉt
Sample µ(a) ∼ N (µ̂(a), (σ̃

(a)
r )2(B(a))−1) for a ∈ A

Select action a = argmaxa′ ĉ⊤t µ
(a′)

Observe reward rt
Update mean reward estimates:
B(a) ← B(a) + ĉtĉ

⊤
t , f (a) ← f (a) + ĉtrt

µ̂(a) = (B(a))−1f (a)

Preliminaries. We will distinguish the true context c⋆ – which determines the ground-truth mean reward, E[rt|at = a] =

(c⋆t )
⊤µ

(a)
⋆ – from the context ĉ which is accessible to the linear Thompson sampling agent. Throughout our analysis of

linear Thompson sampling, we allow for error or corruption of observed contexts, ĉ ̸= c⋆, which we assume to satisfy a
bound (Assumption D.5). While we ultimately set ĉ = c⋆ when applying our analysis to the latent bandit setting, our regret
bound for linear Thompson sampling (Lemmas D.2 and D.3, and Corollary D.3.1) applies more generally.

With the exception of Appendix D.6, we assume context feature vectors are in a d-dimensional Euclidean space, c⋆, ĉ ∈ Rd.
In Appendix D.6 we specify to our particular setting of interest, where c⋆ = p⋆ is a probability vector restricted to the
(d− 1)-dimensional simplex, and d = Z is the latent state dimensionality.

We use P (t)
c to denote the true distribution over linear bandit context vectors at time t, that is, c⋆t ∼ P

(t)
c (·), keeping in

mind that in the latent bandit setting, P (t)
c will become the distribution over posterior probability vectors with elements

p⋆t (z) := p(zt = z|x1:t, θ⋆, ϕ⋆), with the context history x1:t being a random sequence generated from given ground-truth
parameters (θ⋆, ϕ⋆).

Regarding notation, we define Ω̂(a) := (B(a))−1 as the empirical covariance matrices used by linear Thompson sampling,
and will assume σ̃r = 1 for simplicity. We use µ̂ := {µ̂(a)}Ka=1, Ω̂ := {Ω̂(a)}Ka=1 to collectively denote the set of action-wise
estimators and action-wise covariance matrices.

D.1 LINEAR BANDIT CONTEXT DISTRIBUTION

In this section, we define an important task-relevant feature of the context distribution P (t)
c , which quantifies the likelihood

of encountering contexts for which the optimal action has only marginally higher expected reward than the next-best action.
Such “adversarial” contexts make it hard to resolve the best action, and are likely to induce suboptimal actions. As we will
see, these regions of context space contribute significantly to expected regret.

Recall that, in the linear bandit setting of Section 3.2, a given context vector context ct determines an optimal action
a⋆t := argmaxa(ct)

⊤µ
(a)
⋆ , conditional on the true reward parameters {µ(a)

⋆ }Ka=1. Thus, the space of context vectors may be
partitioned into regions of optimality which favor different actions. (Note that in the latent bandit setting, this amounts to
partitioning the simplex of probability vectors over the latent state.)

We will see that the asymptotic regret of linear Thompson sampling is controlled by the density of the context distribution
near the borders of these regions of optimality, in the following way. We first define, for any context vector c ∈ Rd and pair
of actions (a⋆, a), the component c(a

⋆,a)
∥ ∈ R parallel and perpendicular to the reward gap direction µ(a⋆)

⋆ − µ(a)
⋆ , that is,

c
(a,a⋆)
∥ (c) := c⊤(µ

(a⋆)
⋆ − µ(a)

⋆ )/||µ(a⋆)
⋆ − µ(a)

⋆ ||2. (D.1)

c
(a,a⋆)
⊥ (c) := Πa,a⋆c, (D.2)



where the projection matrix

Πa,a⋆ = 1− (µ
(a⋆)
⋆ − µ(a)

⋆ )(µ
(a⋆)
⋆ − µ(a)

⋆ )⊤

||µ(a⋆)
⋆ − µ(a)

⋆ ||22

projects c onto the (d− 1)-dimensional hyperplane orthogonal to the vector difference µ(a⋆)
⋆ − µ(a)

⋆ .

Equivalently to Eq. (D.1), the difference in expected reward between actions a⋆ and a depends (only) on the parallel
component of c,

c⊤(µ
(a⋆)
⋆ − µ(a)

⋆ ) = c
(a⋆,a)
∥ ∆a⋆,a, (D.3)

where
∆a⋆,a := ||µ(a⋆)

⋆ − µ(a)
⋆ ||2 (D.4)

is the magnitude of the vector difference of reward parameters for actions a⋆ and a. Thus, given fixed reward parameters
µ⋆ = {µ(a)

⋆ }Ka=1, the marginal distribution over the parallel component c(a
⋆,a)

∥ of the context determines the probability

distribution over the difference in expected rewards between a⋆ and a. Its density at small c(a
⋆,a)

∥ quantifies the probability
for “adversarial” contexts for which the better action (between a⋆ and a) becomes impossible to resolve. We define this limit
as

ρ
(t)
a⋆,a := lim

ϵ→0+

1

ϵ
P
c∼P

(t)
c

(
a(c) = a⋆, c⊤(µ

(a⋆)
⋆ − µ(a)

⋆ ) < ϵ||µ(a⋆)
⋆ − µ(a)

⋆ ||2
)
. (D.5)

This quantity is the probability density which the distribution P (t)
c assigns to contexts for which action a⋆ is optimal, but is

only infinitesimally preferred to action a. Note that, since the inequality in Eq. (D.5) can be written as c(a
⋆,a)

∥ < ϵ, ρ(t)a⋆,a

only depends on the direction of the vector difference µ(a⋆)
⋆ − µ(a)

⋆ (which determines c(a
⋆,a)

∥ , see Eq. (D.1)), and not its
magnitude ∆a⋆,a. As mentioned above, when we interpret the context vectors ct as posterior probability vectors in the latent
bandit setting, P (t)

c becomes a distribution over these posteriors, which depend on the history of observations x1:t. In this
setting, Eq. (D.5) can be rewritten as shown in Eq. (10) in the main text.

D.2 ASSUMPTIONS

In this section we state several assumptions used throughout the derivation of Theorem 2. First, we make assumptions
pertaining to the boundedness of context vectors and reward parameter vectors:

Assumption D.1. The Euclidean norm of any context vector c⋆ ∼ P (t)
c (at any time t) is strictly upper bounded,

||c⋆||2 ≤ uc.

Assumption D.1 is automatically satisfied with uc = 1 when the contexts c⋆ are posterior probability vectors.

Assumption D.2. For all a, the 1-norm of the true mean reward parameter vector µ(a)
⋆ is upper bounded,

||µ(a)
⋆ ||1 < uµ.

We also make three generic assumptions on empirical estimates, which will be applied in Appendix D.3 to quantities at a
single time t.

Assumption D.3. For each (a, z) and for δ1 ∈ (0, 1), the error of the z’th vector element of the estimator µ̂(a) is upper
bounded,

|µ̂(a)
z − (µ

(a)
⋆ )z| ≤ U (µ̂)

δ1
,

with probability at least 1− δ1.

Assumption D.4. For each a and for δ2 ∈ (0, 1), the maximal eigenvalue of the empirical covariance matrix Ω̂(a) is upper
bounded,

max
z

λ(a)z ≤ (U
(Ω̂)
δ2

)2,

with probability at least 1− δ2.



Assumption D.5. The 1-norm error of the estimated context vector is upper bounded,

||ĉ− c⋆||1 :=
∑
z

|ĉz − c⋆z| ≤ U
(ĉ)
δ3
,

with probability at least 1− δ3.

In general, we allow the upper bounds in Assumptions D.3-D.5 to be unspecified functions of the bound probabilities δi. In
Appendix D.6, we will the use specific functional forms for these upper bounds (including time-dependence) which apply in
the latent bandit setting under the conditions of Theorem 1. As noted above, in the latent bandit setting we will only consider
the U (ĉ)

δ3
= 0 case, but our analysis of linear Thompson sampling applies more generally.

D.3 UPPER BOUND ON SUBOPTIMAL ACTION PROBABILITIES

In this section, we show that for linear Thompson sampling, the probability of making a suboptimal action, given a Thompson
sampling distribution N (µ̂, Ω̂), can be bounded in terms of upper bounds on the error in µ̂ and on the eigenvalue spectrum
of Ω̂, with suboptimal actions becoming impossible when the confidence ellipsoid determined by Ω̂ shrinks to zero (i.e.
U

(Ω̂)
δ2
→ 0 in Assumption D.4) and reward error approaches zero.

The action probability bound, Eq. (D.7), is expressed in terms of a free parameter y which we will optimize in Appendix D.4
in order to tighten the resulting regret bound. Note that in Eq. (D.7), in the limit where u1 and u2 (which are proportional to
the upper bounds in Assumptions D.3-D.5 on estimation error and uncertainty) become very small, y may be chosen to be
very large, such that the probability of suboptimal action a can be upper bounded at a very small value except for contexts
for which the reward gap ∆a(c

⋆) is infinitesimally small.

Lemma D.1. When assumptions D.1 and D.3-D.5 are satisfied, the probability

π(a|ĉ, µ̂, Ω̂) := P (at = a|ĉt = ĉ, µ̂(t) = µ̂, Ω̂(t) = Ω̂) (D.6)

of linear Thompson sampling selecting any action a at any time t, conditional on empirical quantities (ĉ, µ̂, Ω̂) (the estimated
or noisily observed context vector, the estimated reward parameters, and the empirical covariance matrix), with ĉ − c⋆
bounded by Assumption D.5, satisfies the upper bound

π(a|ĉ, µ̂, Ω̂) ≤ 1
(
∆a(c

⋆) < yu1 + u2
)
+

1

2y
e−y2

(D.7)

for any y > 0, with probability at least 1− δ3 − 2(dδ1 + δ2), where c⋆ is the true context vector (whose difference from ĉ is
bounded by Assumption D.5),

∆a(c
⋆) := (c⋆)⊤(µ

(a(c⋆))
⋆ − µ(a)

⋆ ), (D.8)

is the context-dependent reward gap between action a and the optimal action for context c⋆, and

u1 := 2
(
uc + U

(ĉ)
δ3

)
U

(Ω̂)
δ2

, (D.9)

u2 := U
(ĉ)
δ3
||µ(a⋆)

⋆ − µ(a)
⋆ ||1 + 2dU

(µ̂)
δ1

(uc + U
(ĉ)
δ3

). (D.10)

Proof. For Thompson sampling, the action probabilities are averages over the multivariate normal distributions7 from which
the action-wise reward parameters µ(a) are sampled:8

π(a|ĉ, µ̂, Ω̂) =
∫ ∏

a′

dµ(a′)PG(µ
(a′)|µ̂(a′), Ω̂(a′)) ·

∏
a′ ̸=a

1(ĉ⊤µ(a) − ĉ⊤µ(a′) > 0). (D.11)

7We denote the multivariate Gaussian probability distribution function with mean µ and covariance Ω as PG(·|µ,Ω).
8The second product over actions ensures that the probability for selecting action a is the integrated probability mass in the space of

samples {µ(a)}Ka=1 for which action a has the highest expected reward ĉ⊤µ
(a)
⋆ .



For any a⋆ ̸= a, we can replace the indicator functions for all a′ ̸= a, a⋆ with 1, resulting in the upper bound:

π(a|ĉ, µ̂, Ω̂) ≤
∫
dµ(a)PG(µ

(a)|µ̂(a), Ω̂(a))dµ(a⋆)PG(µ
(a⋆)|µ̂(a⋆), Ω̂(a⋆))

· 1(ĉ⊤µ(a) − ĉ⊤µ(a⋆) > 0). (D.12)

We define the difference in sampled reward parameters for actions a and a⋆ (which will be set to the optimal action a(c⋆)),
shifted relative to the mean reward parameter estimators (µ̂(a), µ̂(a⋆)), as

ν := (µ(a) − µ̂(a))− (µ(a⋆) − µ̂(a⋆)), (D.13)

(For simplicity, we will suppress the implicit (a, a⋆)-dependence of ν.) Since the indicator function in Eq. (D.12) depends
only on the difference

µ(a) − µ(a⋆) = ν + µ̂(a) − µ̂(a⋆),

we can change variables from (µ(a), µ(a⋆)) to (µ(a) − µ(a⋆), µ(a) + µ(a⋆)) and integrate out the latter sum variable. The
distribution of the difference µ(a) − µ(a⋆) of two variables µ(a) ∼ PG(·|µ̂(a), Ω̂(a)) and µ(a⋆) ∼ PG(·|µ̂(a⋆), Ω̂(a⋆)) is
Gaussian distributed with a covariance given by the sum of the individual covariances, that is,

µ(a) − µ(a⋆) ∼ PG(·|µ̂(a) − µ̂(a⋆), Ω̂(a) + Ω̂(a⋆)). (D.14)

In terms of the zero-mean variable ν, then, we can rewrite Eq. (D.12) – for any a⋆ ̸= a – as

π(a|ĉ, µ̂, Ω̂) ≤
∫
dνPG(ν|0, Ω̂(a) + Ω̂(a⋆)) · 1(ĉ⊤ν > ĉ⊤(µ̂(a⋆) − µ̂(a))). (D.15)

We now introduce a free parameter ϵ > 0 and insert a factor of

1 = 1(ĉ⊤ν ≥ ϵ||ĉ||2) + 1(ĉ⊤ν < ϵ||ĉ||2)

inside the integral in Eq. (D.15). This divides the space of samples ν into samples which are more or less optimistic about
action a relative to a⋆ (relative to the estimated difference µ̂(a⋆) − µ̂(a)). Thus, for any a⋆ ̸= a,

π(a|ĉ, µ̂, Ω̂) ≤
∫
dνPG(ν|0, Ω̂(a) + Ω̂(a⋆)) · 1(ĉ⊤ν > ĉ⊤(µ̂(a⋆) − µ̂(a)))

×
(
1(ĉ⊤ν ≥ ϵ||ĉ||2) + 1(ĉ⊤ν < ϵ||ĉ||2)

)
≤ P

(
ĉ⊤ν ≥ ϵ||ĉ||2

∣∣∣ν ∼ N (0, Ω̂(a) + Ω̂(a⋆))
)
+ 1(ϵ||ĉ||2 > ĉ⊤(µ̂(a⋆) − µ̂(a))) (D.16)

In the first term we’ve used 1(ĉ⊤ν > ĉ⊤(µ̂(a⋆) − µ̂(a))) ≤ 1, and in the second term we’ve upper bounded the indicator
function,

1(ĉ⊤ν > ĉ⊤(µ̂(a⋆) − µ̂(a))) ≤ 1(ϵ||ĉ||2 > ĉ⊤(µ̂(a⋆) − µ̂(a))).

and taken the upper bound on the indicator function outside the integral, which is upper bounded by 1.

We will now use Assumption D.4 to derive an upper bounds on the first term in Eq. (D.16), and Assumptions D.3 and D.5 to
correspondingly bound the second term.

Upper bound on the first term in Eq. (D.16).

Eq. (D.58) from Appendix D.7 gives an upper bound on the probability mass in the tail of a Gaussian distribution, which we
use to upper bound the first term in (D.16). Recalling that the inner product of a Gaussian random vector ν ∼ N (0,Ω) with
any vector c is a Gaussian variable with mean zero and variance c⊤Ωc, Eq. (D.58) yields (for any a⋆ ̸= a)

P
(
ĉ⊤ν ≥ ϵ||ĉ||2

∣∣∣ν ∼ N (0, Ω̂(a) + Ω̂(a⋆))
)
≤ 1√

2ϵ
σ(ĉ) exp

[
− ϵ2/2σ2(ĉ)

]
, (D.17)

where the variance
σ2(ĉ) := ||ĉ||−2

2 ĉ⊤(Ω̂(a) + Ω̂(a⋆))ĉ (D.18)

depends on the estimated context ĉ. To simplify the expectation over contexts required to compute regret, we upper bound
σ2(ĉ) in terms of the eigenvalues of the empirical covariance matrices {Ω̂(a)}. Defining λ(a,a

⋆)
z as the z’th eigenvalue of the



covariance matrix Ω̂(a) + Ω̂(a⋆), the variance σ2(ĉ) along any direction of the confidence ellipsoid specified by the same
covariance matrix satisfies the upper bound

σ2(ĉ) ≤ max
z

λ(a,a
⋆)

z . (D.19)

Furthermore, by the Weyl inequality (and since the matrices Ω̂(a) are real, symmetric, and positive definite),

max
z

λ(a,a
⋆)

z ≤ max
z

λ(a)z +max
z

λ(a
⋆)

z .

Assumption D.4 states that maxz λ
(a)
z , maxz λ

(a⋆)
z ≤ (U

(Ω̂)
δ2

)2 with probability at least (1−δ2)2 > 1−2δ2, and consequently,

σ2(ĉ) ≤ 2(U
(Ω̂)
δ2

)2 (D.20)

with the same probability. Therefore, since the upper bound in Eq. (D.17) increases monotonically with σ(ĉ), we have, for
any ĉ and a⋆ ̸= a, and with probability at least 1− 2δ2,

P
(
ĉ⊤ν ≥ ϵ||ĉ||2

∣∣∣ν ∼ N (0, Ω̂(a) + Ω̂(a⋆))
)
≤
U

(Ω̂)
δ2

ϵ
exp

[
− ϵ2/(2U (Ω̂)

δ2
)2
]
=

1

2y
e−y2

(D.21)

where
y :=

ϵ

2U
(Ω̂)
δ2

, (D.22)

is a rescaled version of the free parameter ϵ.

Upper bound on the second term in Eq. (D.16).

Applying Assumption D.3 to each element of the vector estimator µ̂(a), we have ||µ̂(a) − µ(a)
⋆ ||1 ≤ d ·U (µ̂)

δ1
with probability

at least (1− δ1)d > 1− dδ1. Applying this bound for both action a and a⋆, we have

ĉ⊤(µ̂(a⋆) − µ̂(a)) = ĉ⊤(µ
(a⋆)
⋆ − µ(a)

⋆ ) + ĉ⊤(µ̂(a⋆) − µ(a⋆)
⋆ ) + ĉ⊤(µ

(a)
⋆ − µ̂(a))

≥ ĉ⊤(µ(a⋆)
⋆ − µ(a)

⋆ )− ||ĉ||1||µ̂(a⋆) − µ(a⋆)
⋆ ||1 − ||ĉ||1||µ̂(a) − µ(a)

⋆ ||1
≥ ĉ⊤(µ(a⋆)

⋆ − µ(a)
⋆ )− 2d||ĉ||1U (µ̂)

δ1
(D.23)

with probability at least (1− dδ1)2 ≥ 1− 2dδ1 (for any a, a⋆ ̸= a). It follows that

1(ϵ||ĉ||2 > ĉ⊤(µ̂(a⋆) − µ̂(a))) ≤ 1(ϵ||ĉ||2 > ĉ⊤(µ
(a⋆)
⋆ − µ(a)

⋆ )− 2d||ĉ||1U (µ̂)
δ1

) (D.24)

with the same probability. We will now apply Assumption D.5 to bound the deviation of the estimated context ĉ from the true
context c⋆. Recalling the shorthand notation ∆a(c

⋆) := (c⋆)⊤(µ
(a(c⋆))
⋆ − µ(a)

⋆ ) of Eq. (D.8), and recalling that a⋆ = a(c⋆)
is enforced in Eq. (D.33), we have

ĉ⊤(µ
(a⋆)
⋆ − µ(a)

⋆ ) = ∆a(c
⋆) + (ĉ− c⋆)⊤ (µ

(a⋆)
⋆ − µ(a)

⋆ ).

Applying Assumption D.5 to bound the error ĉ− c⋆, we have

|(ĉ− c⋆)⊤(µ(a⋆)
⋆ − µ(a)

⋆ )| ≤ ||ĉ− c⋆||1||µ(a⋆)
⋆ − µ(a)

⋆ ||1 ≤ U (ĉ)
δ3
||µ(a⋆)

⋆ − µ(a)
⋆ ||1

with probability at least 1− δ3. Consequently, ĉ⊤(µ(a⋆)
⋆ −µ(a)

⋆ ) ≥ ∆a(c
⋆)−U (ĉ)

δ3
||µ(a⋆)

⋆ −µ(a)
⋆ ||1 with the same probability,

and thus

1(ϵ||ĉ||2 > ĉ⊤
(
µ
(a⋆)
⋆ − µ(a)

⋆ )− 2d||ĉ||1U (µ̂)
δ1

)
≤ 1

(
ϵ||ĉ||2 > ∆a(c

⋆)− U (ĉ)
δ3
||µ(a⋆)

⋆ − µ(a)
⋆ ||1 − 2d||ĉ||1U (µ̂)

δ1

)
≤ 1

(
∆a(c

⋆) < ϵ(||c⋆||1 + U
(ĉ)
δ3

) + U
(ĉ)
δ3
||µ(a⋆)

⋆ − µ(a)
⋆ ||1 + 2dU

(µ̂)
δ1

(||c⋆||1 + U
(ĉ)
δ3

)
)
, (D.25)

with probability at least 1− δ3. In the last line, we have again used Assumption D.4 to exchange ĉ in favor of c⋆, by using

||ĉ||2 ≤ ||ĉ||1 = ||c⋆ + (ĉ− c⋆)||1 ≤ ||c⋆||1 + ||ĉ− c⋆||1 ≤ ||c⋆||1 + U
(ĉ)
δ3



in the first term, and similarly ||ĉ||1 ≤ ||c⋆||1 + U
(ĉ)
δ3

in the last term. Lastly, we use Assumption D.1 to upper bound ||c⋆||1
in Eq. (D.25). Combining Eq. (D.25) with Eq. (D.24), we then have

1(ϵ||ĉ||2 > ĉ⊤(µ̂(a⋆) − µ̂(a))) ≤ 1
(
∆a(c

⋆) < ϵ(uc + U
(ĉ)
δ3

) + U
(ĉ)
δ3
||µ(a⋆)

⋆ − µ(a)
⋆ ||1 + 2dU

(µ̂)
δ1

(uc + U
(ĉ)
δ3

)
)
, (D.26)

with probability at least (1− δ3)(1− 2dδ1) ≥ 1− δ3 − 2dδ1. To simplify the expression, we introduce the variables u1 and
u2 defined above in Eqs. (D.9)-(D.10), which summarize the influence of the error bounds from Assumptions D.3-D.5, and
write Eq. (D.26) as

1(ϵ||ĉ||2 > ĉ⊤(µ̂(a⋆) − µ̂(a))) ≤ 1(∆a(c
⋆) < yu1 + u2), (D.27)

again with probability at least 1− δ3 − 2dδ1, where y was defined in Eq. (D.22). Finally, combining Eqs. (D.21) and (D.27)
to upper bound (respectively) the first and second terms in Eq. (D.16), we arrive at the final high-probability bound on
action probabilities, Eq. (D.7), with the probability of the bound obtained by combining the probabilities of Eqs. (D.21) and
(D.27).

D.4 INSTANTANEOUS REGRET BOUND

The suboptimal action probability bound, Lemma D.1, conditions on a particular context vector ĉ, which is approximately
equal to the true context c⋆ (with the difference bounded by Assumption D.5). We now take an expectation over the context
distribution P (t)

c from which c⋆ is generated at time t, in order to extend Lemma D.1 into a corresponding high-probability
bound on the expected regret incurred at time t.

Lemma D.2. When Assumptions D.1 and D.3-D.5 are satisfied, and furthermore when

(U
(Ω̂)
δ2

)2 <
1

8e

∆2
a⋆,a

ucρ
(t)
a⋆,a

(D.28)

the expected regret incurred by linear Thompson sampling at a single timestep is upper bounded,

δR(t) ≤
∑
a⋆,a

ρ
(t)
a⋆,a

∆a⋆,a

((
||µ(a⋆)

⋆ − µ(a)
⋆ ||1U (ĉ)

δ3
+ 2ducU

(µ̂)
δ1

)2
+ 8u2c

(
U

(Ω̂)
δ2

)2
log ζ

)
+O(U3) (D.29)

with probability at least 1− 2(dδ1 + δ2)− δ3, where

ζ :=
∆2

a⋆,a

2ρ
(t)
a⋆,a

1

uc(2U
(Ω̂)
δ2

)2
, (D.30)

and where O(U3) denotes contributions which scale cubically or higher with the upper bounds U (µ̂)
δ1
, U

(Ω̂)
δ2

, U
(ĉ)
δ3

on
estimation errors.

Proof. The instantaneous or per-timestep expected regret incurred by selecting action at – averaged over possible ground-
truth context vectors c⋆ (and ĉ ≈ c⋆ up to error bounded by Assumption D.5) and actions a, but conditioned on the empirical
estimates (µ̂, Ω̂) – is

δR(t)(µ̂, Ω̂) =
∑
a

E
c⋆∼P

(t)
c

[(c⋆)⊤(µ
(a(c⋆))
⋆ − µ(a)

⋆ )π(a|ĉ, µ̂, Ω̂)] (D.31)

=
∑
a⋆,a

δR(t)
a⋆,a(ĉ, µ̂, Ω̂), (D.32)

where
δR(t)

a⋆,a(µ̂, Ω̂) := E
c⋆∼P

(t)
c

[
1(a(c⋆) = a⋆)∆a(c

⋆)π(a|ĉ, µ̂, Ω̂)
]

(D.33)

is the pair-wise expected regret incurred due to taking action a when a⋆ is optimal, and we have used the definition of the
reward gap ∆a(c) in Eq. (D.8). Using Lemma D.1 to upper bound the action probability π(a|ĉ, µ̂, Ω̂) in Eq. (D.33), the
action pair-wise regret δR(t)

a⋆,a satisfies the upper bound

δR(t)
a⋆,a ≤ E

c⋆∼P
(t)
c

[
1(a(c⋆) = a⋆)∆a(c

⋆)
(
1
(
∆a(c

⋆) < yu1 + u2
)
+

1

2y
e−y2

)]
(D.34)



for any y > 0, with probability at least 1− δR, where

δR := 2(dδ1 + δ2) + δ3. (D.35)

We have removed the arguments (µ̂, Ω̂) of regret, since the upper bound holds for any values of these arguments, and thus
also bounds the expected regret, averaged over possible realizations of these estimators, δR(t)

a⋆,a = Eµ̂,Ω̂[δR
(t)
a⋆,a(µ̂, Ω̂)].

Asymptotic limit of small errors.

In the asymptotic, large-T limit, we expect that the u1 and u2 – which scale linearly with the upper bounds on the errors
(U

(µ̂)
δ1
, U

(Ω̂)
δ2

, U
(ĉ)
δ3

) in (µ̂, Ω̂, ĉ) in Assumptions D.3-D.5 – will converge towards zero. In this regime, the indicator function
in the first term in Eq. (D.34) will only be nonzero when the context-dependent reward gap between actions a and a⋆ is very
small, making it difficult to resolve the better action. Defining ϵ̄ := yu1 + u2 for brevity, the first term in Eq. (D.34) can be
evaluated as follows, by expressing the expectation over c⋆ as an integral over the parallel component c(a

⋆,a)
∥ ∼ P (t)

∥ (·|a⋆, a)
introduced above in (D.1):

E
c∼P

(t)
c

[
1(a(c) = a⋆)∆a(c) · 1

(
∆a(c) < ϵ̄

)]
=

∫ ϵ̄/∆a⋆,a

0

dxP
(t)
∥ (x|a⋆, a)x∆a⋆,aP(a(c) = a⋆|c(a

⋆,a)
∥ = x)

= ∆a⋆,a

∫ ϵ̄/∆a⋆,a

0

dx · x×
[
lim

x→0+
P

(t)
∥ (x|a⋆, a) · P(a(c) = a⋆|c(a

⋆,a)
∥ = x) +O(ϵ̄)

]
=

ϵ̄2

2∆a⋆,a

[
1

ϵ̄

∫ ϵ̄

0

dxP
(t)
∥ (x|a⋆, a) · P(a(c) = a⋆|c(a

⋆,a)
∥ = x) +O(ϵ̄)

]
=

ϵ̄2

2∆a⋆,a

[
1

ϵ̄
P
c∼P

(t)
c

(
a(c) = a⋆, c

(a⋆,a)
∥ < ϵ̄

)
+O(ϵ̄)

]
(D.36)

In the first line, we have conditioned on the event (a(c⋆) = a⋆) that a⋆ is optimal by restricting x ∼ P
(t)
∥ (·|a⋆, a) to

be positive,9 In the second line, since x < ϵ̄/∆a⋆,a, we have written the integrant as its limit as the parallel component
approaches zero, up to O(ϵ̄) corrections. In the third line, we have evaluated the integral over x and rewritten the limiting
quantity in brackets as an integral, which is exact up to an additional O(ϵ̄) correction. In the last line, we have rewritten the
integral over the marginal and joint distributions as a joint probability. In the ϵ̄→ 0 limit, recalling the definition of c(a

⋆,a)
∥ in

Eqs. (D.1)-(D.3), this final quantity in brackets is the limiting pairwise probability density ρa⋆,a defined above in Eq. (D.5).
Therefore, up to an additional O(ϵ̄) correction due to the change in this quantity away from its limit as ϵ̄→ 0, we have

E
c∼P

(t)
c

[
1(a(c) = a⋆)∆a(c) · 1

(
∆a(c) < ϵ̄

)]
=

ρ
(t)
a⋆,a

2∆a⋆,a
ϵ̄2 +O(ϵ̄3) (D.37)

While this limiting form obviously fails for large ϵ̄, at late times we expect the error bounds (U (µ̂)
δ1
, U

(Ω̂)
δ2

, U
(ĉ)
δ3

) to become
tight, and hence ϵ̄ to approach zero.

The expectation in the second term in Eq. (D.34) can also be upper bounded,

E
c⋆∼P

(t)
c

[1(a(c⋆) = a⋆)∆a(c
⋆)] ≤ ∆a⋆,a · Ec⋆∼P

(t)
c

[||c⋆||2] ≤ uc∆a⋆,a. (D.38)

Here, we have used 1(a(c⋆) = a⋆) ≤ 1, set a(c⋆) = a⋆, upper bounded the vector inner product ∆a(c
⋆) in terms of the

Euclidean norms ||c⋆||2 and ||µ(a⋆)
⋆ − µ(a)

⋆ ||2 = ∆a⋆,a, used ||c⋆||2 ≤ ||c⋆||1, and used Assumption D.1 again.

Applying Eq. (D.37) and Eq. (D.38) in Eq. (D.34), δRa⋆,a can be upper bounded as follows:

δR(t)
a⋆,a ≤

ρ
(t)
a⋆,a

2∆a⋆,a
(yu1 + u2)

2 + uc∆a⋆,a
1

2y
e−y2

+O(U3), (D.39)

with probability at least 1− δR as specified in Eq. (D.35), where O(U3) indicates contributions which scale with the cube

of the error bounds (U (µ̂)
δ1
, U

(Ω̂)
δ2

, U
(ĉ)
δ3

). This is in contrast with the leading terms, which scale quadratically with u1 and u2

9Recall from Eq. (D.1) that the sign of c(a
⋆,a)

∥ specifies whether or not action a⋆ is preferred to a.



and hence10 with the error bounds. In the limit where all errors become very small, the O(U3) contribution will become
negligible compared to the leading terms.

Optimization of the free parameter y.

We are now in a position to optimize the free parameter y. Noting that

(yu1 + u2)
2 ≤ 2(y2u21 + u22),

and defining

u :=
2ρ

(t)
a⋆,a

∆2
a⋆,auc

u21, v :=
1

2
uc∆a⋆,a (D.40)

to simplify notation, we have

δR(t)
a⋆,a ≤

ρ
(t)
a⋆,a

∆a⋆,a
u22 + v

(
uy2 + y−1e−y2

)
+O(U3) (D.41)

Defining a rescaled variable ỹ := uey
2

, the second term is

uv ×
(
log(ỹ/u) +

1

ỹ
√

log(ỹ/u)

)
.

Setting ỹ = 1 for simplicity, so that y2 = log(1/u), it is straightforward to check that the first term is larger as long as
u < 1/e ≈ 0.368. Under this assumption and with this choice of y, then, the second term in Eq. (D.41) is ≤ 2uv log(1/u),
and hence

δR(t)
a⋆,a ≤

ρ
(t)
a⋆,a

∆a⋆,a

(
u22 + 2u21 log

(
∆2

a⋆,a

2ρ
(t)
a⋆,a

uc
u21

))
+O(U3) (D.42)

Finally, absorbing the terms in u1 and u2 – see Eqs. (D.9)-(D.10) – which scale quadratically with the error bounds
(U

(µ̂)
δ1
, U

(Ω̂)
δ2

, U
(ĉ)
δ3

) into the subleading O(U3) contribution, and summing over actions as in Eq. (D.32), we arrive at the
final form of the instantaneous regret bound, Eq. (D.29). (The condition that u < 1/e is given in Eq. (D.28), again with the
higher order term in u1 removed.)

D.5 REGRET BOUND FOR LINEAR THOMPSON SAMPLING

We now sum over timesteps in order to extend the per-timestep regret bound from the previous section into a cumulative
regret bound. In the following Lemma, we assume a generic form for the per-timestep bound, which will be partially
specified in the subsequence Corollary, and fully specified using Lemma D.2 above in the following section.

Lemma D.3. When Assumption D.1 is satisfied (such that ||c⋆||2 ≤ uc), and when the per-timestep regret at any time t for a
given algorithm satisfies the upper bound

δR(t) ≤ UR

tν1δν2
t

(D.43)

with probability at least 1 − δt, for any δt ∈ (0, 1) and for ν1 ∈ (0, 1], ν2 ∈ [0, 1] with 1 − ν1/(1 + ν2) > 0, the
corresponding cumulative regretR(T ) =

∑T
t=1 δR(t) satisfies the upper bound

R(T ) ≤ U1/(1+ν2)
R (uc ·max

a⋆,a
∆a⋆,a)

ν2/(1+ν2)
1 + ν2

1 + ν2 − ν1
T 1−ν1/(1+ν2). (D.44)

Proof. At any given time, the per-timestep regret satisfies (with probability 1) the bound

δR(t) ≤ UR

tν1δν2
t

+ δt ×max
c⋆

max
a,a⋆
|(c⋆)⊤(µ(a⋆)

⋆ − µ(a)
⋆ )| (D.45)

10Below, we will set the free parameter y to an optimal value which scales only logarithmically with the error bounds.



for some ν1, ν2 > 0. The second term conservatively bounds the worst-case regret incurred when the high-probability bound,
Eq. (D.43), fails with probability ≤ δt. We choose a power-law time schedule for the bound probability parameter δt,

δt = δ0/t
νδ ,

with free parameters δ0 > 0 and νδ > 0. With this schedule, and using Assumption D.1 to bound |(c⋆)⊤(µ(a⋆)
⋆ − µ(a)

⋆ )| ≤
uc||µ(a⋆)

⋆ − µ(a)
⋆ ||2 = uc∆a⋆,a, we have

δR(t) ≤ UR

δν2
0

tν2νδ−ν1 + δ0t
−νδuc ·max

a⋆,a
∆a⋆,a.

The sum over timesteps can be bounded with the continuous integral,
∑T

t=1 t
−ν ≤

∫ T

0
t−νdt = 1

1−νT
1−ν , as long as

ν ∈ (0, 1). Assuming, then, that νδ ∈ (0, 1), ν1 − ν2νδ ∈ (0, 1), we have

R(T ) =
T∑

t=1

δR(t) ≤ UR

δν2
0 (1− (ν1 − ν2νδ))

T 1−(ν1−ν2νδ) +
δ0

1− νδ
T 1−νδuc ·max

a⋆,a
∆a⋆,a. (D.46)

The free parameter νδ controls the tradeoff between the growth rates in time of the two terms. Equating these exponents,

1− (ν1 − ν2νδ) = 1− νδ,

leads to νδ = ν1/(ν2 + 1) ∈ (0, 1). Consequently,

R(T ) =
T∑

t=1

δR(t) ≤
(
UR

δν2
0

+ δ0uc ·max
a⋆,a

∆a⋆,a

)
1 + ν2

1 + ν2 − ν1
T 1−ν1/(1+ν2). (D.47)

The free parameter δ0 can be optimized by setting its derivative to zero, which yields

δ0 =

(
URν2

uc maxa⋆,a ∆a⋆,a

)1/(ν2+1)

.

Using this value of δ0 in Eq. (D.47), along with the assumed condition that ν2 ≤ 1, we recover Eq. (D.44).

While Eq. (D.43) allows for a generic power-law time-dependence of the per-timestep regret bound and its probability of
failure δt, in practice the exponents (ν1, ν2) will take specific values. In particular, in the limit of approximately i.i.d. reward
data, the error ||µ̂(a) − µ(a)

⋆ || in reward estimators decreases as 1/
√
t, and can be bounded (e.g. as shown in Appendix C)

for any reward distribution using Chebyshev’s inequality, resulting in the following specific case of Lemma D.3:

Corollary D.3.1. When Assumption D.1 is satisfied, and when the per-timestep regret at any time t for a given algorithm
satisfies the upper bound

δR(t) ≤ UR

t · δt
(D.48)

with probability at least 1− δt, for any δt ∈ (0, 1), the cumulative regretR(T ) =
∑T

t=1 δR(t) satisfies the upper bound

R(T ) ≤ 2

(
UR · uc ·max

a⋆,a
∆a⋆,a

)1/2

T 1/2. (D.49)

Proof. Eq. (D.49) is the special case of Eq. (D.44) for ν1 = ν2 = 1.



D.6 REGRET BOUND FOR LATENT LINEAR THOMPSON SAMPLING

We are now in a position to apply the cumulative regret bound of the previous section, along with the specific form of the
per-timestep regret for linear Thompson sampling from Lemma D.2 and the latent bandit error bound, Theorem 1, to finally
derive Theorem 2:

Proof of Theorem 2. In the latent bandit setting of Section 3.1, Theorem 1 guarantees that Assumption D.3 is satisfied, at
time t, with

U
(µ̂)
δ1

=
2Z2

π2
min ·mina λ

(a)
min(t)

√
1

δ1 · t

(
σ2
eq +

4u2µ
γϕ⋆

(
1 + log ζϕ⋆

))
+O(1/t3/2) (D.50)

with probability at least 1− δ1. Here, we have defined 1− δ1 to be the probability of the bound as given in Eq. (7), and have
Taylor expanded the O(1/t) contribution in δ1 = δ +O(1/t) from Eq. (7) into a O(1/t3/2) contribution to U (µ̂)

δ1
. We have

also used Assumption D.2 to bound ||µ(a)
⋆ ||1 < uµ. (We remind the reader that the definitions of quantities in Eq. (D.50) are

given in Theorem 1.)

Likewise, Lemma C.10 (which was used to derive Theorem 1) guarantees that Assumption D.4 is satisfied under the same
conditions, at time t, with

(U
(Ω̂)
δ2

)2 =
κ̃

tλ
(a)
min(t)

(D.51)

with probability of failure δ2 ∝ (πmin − κ̃−1)−2/t, as shown in Eq. (C.60). Here we have converted the minimal eigenvalue
lower bound of Eq. (C.59) into a maximal eigenvalue upper bound for the inverse matrix, Ω̂(a)(t) = 1

t (B
(a)(t))−1.

While λ(a)min(t) introduces time-dependence in Eqs. (D.50) and (D.51), this time-dependence can be ignored at late times,
where all quantities converge to limiting asymptotic forms. Under the assumption of ergodicity of the latent Markov chain
(used in Appendix C for Theorem 1), as T →∞ the latent state converges to an equilibrium distribution. Consequently, the
generating distribution of context data xt−τ :t approaches an asymptotic equilibrium distribution for any fixed τ , as t→∞.
Since the posteriors probabilities p⋆t (z) = p(zt = z|x1:t) are deterministic functions of context data, and furthermore
since the dependence on past data xt′≪t becomes exponentially suppressed with decay rate γϕ⋆ (see Appendix C.1), the
distribution over these posterior probabilities will also converge exponentially quickly to an asymptotic equilibrium form
at late times. Thus, setting c⋆t = p⋆t , we see that the distribution P (t)

c over linear bandit context vectors converges to an
asymptotic distribution, with differences decaying exponentially in time with a decay rate γϕ⋆ . Recall that the action-wise
inverse covariance matrices

B̄(a)(T ) :=
1

T

T∑
t=1

Ex1:t

[
1(a = a⋆t )p

⋆
t (p

⋆
t )

⊤] ,
defined in Eq. (C.39), are sums of expectations over the posteriors p⋆t . As T → ∞, the contributions from t <

√
T will

decrease as O(
√
T/T ) = O(1/

√
T ), and will thus make an O(1/

√
T ) contribution to the minimal eigenvalues λ(a)min(T ).

This can be absorbed into the O(t−3/2) late-time corrections in Eq. (D.50). Furthermore, contributions to B̄(a)(T ) from
t >
√
T will be expectations over the limiting equilibrium distribution over p⋆t , up to differences decaying exponentially,

which can also be absorbed into the O(t−3/2) corrections in Eq. (D.50).11 Therefore, from now on, we set the minimal
eigenvalues in Eqs. (D.50) and (D.51) equal to their asymptotic values, which we define as

λ
(a)
min = lim

t→∞
λ
(a)
min(t). (D.52)

Furthermore, we define λmin := mina λ
(a)
min as the minimum eigevalue over all action-wise inverse covariance matrices,

B̄(a)(t) as t→∞.

Lastly, under the assumption of Theorem 1 that the true posteriors p⋆t are used as context vectors, Assumption D.4 is satisfied
with U (ĉ)

δ3
= 0 and δ3 = 0.

Given these error bounds, and setting d = Z and uc = 1 (since ||p⋆t ||2 ≤ ||p⋆t ||1 =
∑

z p
⋆
t (z) = 1), Lemma D.2 takes the

form

δR(t) ≤
∑
a⋆,a

ρ
(t)
a⋆,a

∆a⋆,a

((
2ZU

(µ̂)
δ1

)2
+ 8
(
U

(Ω̂)
δ2

)2
log ζ

)
+O((δ1t)

−3/2) (D.53)

11This relies on a strictly positive decay rate γϕ⋆ . However, when γϕ⋆ , the upper bound U
(µ̂)
δ1

becomes vacuous anyways.



with probability at least 1− 2Zδ1 − δ2, where (U (µ̂)
δ1
, U

(Ω̂)
δ2

) are given in Eqs. (D.50) and (D.51), and we have set U (ĉ)
δ3

= 0,

and where ζ was defined in Eq. (D.30). Here, we have used the fact that U (µ̂)
δ1
∝ (1/

√
tδ1) in Eq. (D.50) in the O(U3)

contributions in Eq. (D.29). (Note that in the context of linear Thompson sampling, the minimal probability πmin of selecting
the optimal action can be lower bounded at 1/K by initializing the empirical covariance matrices to allow for sufficiently
broad posteriors over µ(a)

⋆ .)

The U (Ω̂)
δ2

term only contributes subleading corrections to regret, as t→∞, for the following reason. At times t when the

bound on U (Ω̂)
δ2

holds with probability 1 − δ2, the regret incurred scales as 1/t. Additional regret is incurred from times

when the bound on U (Ω̂)
δ2

fails. This occurs with probability δ2 ∝ 1/t, yielding additional per-timestep expected regret that
is also O(1/t).

Thus, with the U (Ω̂)
δ2

term incorporated into the subleading corrections, and furthermore using Eq. (D.52) in the t→∞ limit
(as discussed above), we now have

δR(t) ≤ U ×
∑
a⋆,a

ρa⋆,a

∆a⋆,a
+O((δ1t)

−3/2) +O(1/t) +O(t−2) (D.54)

with probability12 at least 1− 2Zδ1. where

U :=
16Z6

π4
minλ

2
min

1

δ1 · t

(
σ2
eq +

4u2µ
γϕ⋆

(
1 + log ζϕ⋆

))
We have also omitted the time index on ρa⋆,a, which we define as the asymptotic limit

ρa⋆,a := lim
t→∞

ρ
(t)
a⋆,a. (D.55)

This is because, since ρ(t)a⋆,a is also an expectation over the current distribution P (t)
c of context vectors, it will converge to a

fixed asymptotic value, with differences from its t→∞ limit decaying exponentially. As discussed above, these differences
are smaller than the subleading corrections in Eq. (D.54), so we omit them.

In Eq. (D.54), the O(t−2) contribution comes from the O(t−3/2) contribution to U (µ̂)
δ1

in Eq. (D.50). Finally, defining the
parameter δt in Eq. (D.48) as δt := 2Zδ1, such that the per-timestep regret bound holds with probability 1 − δt, we can
apply Corollary D.3.1. Plugging Eq. (D.54) into Eq. (D.48), Eq. (D.49) then recovers the final bound, Eq. (11).

Note that: (1) The O(T 2/5) scaling of the subleading corrections arises from applying Lemma D.3 to the O((δ1t)
−3/2)

contribution in Eq. (D.54), and setting ν1 = ν2 = 3/2 in Eqs. (D.43)- (D.44). (2) The O(t−2) contributions to δR(t)

integrates to a constant when summing over t, which is (asymptotically) smaller than the O(T 2/5) correction. □

Problem-dependent structure of Theorem 2. We end this section by reminding the reader of the key dependencies in
Theorem 2, described in the main text.

In addition to these dependencies, the Z-dependence and dependences of ∆likely in Theorem 2 are inherited from Theorem 1,
with the regret at time t being bounded proportional to the squared error, ||µ̂(a) − µ(a)

⋆ ||22. This dependence arises from the
fact that increasing the error increases both (i) the size of the space of posterior beliefs p⋆t for which the true reward gap
(p⋆t )

⊤(µ
(a⋆)
⋆ − µ(a)

⋆ ) is too small to resolve relative to the error in estimating µ(a⋆)
⋆ − µ(a)

⋆ , which increases the probability
of a suboptimal action, as well as (ii) the scale of the reward gap (regret incurred) when suboptimal actions are taken. In
short, mistakes are made more frequently, and mistakes are more costly.

Furthermore, we note that regret is implicitly proportional to the number of actions K. This is because the inverse covariance
B̄(a) in Eq. (8) picks out only times when a given action a is optimal, and thus scales as 1/K, becoming small when there
are many actions to choose from. Consequently, the corresponding eigenvalues λ(a)min also scale as 1/K, leading to regret
proportional to K. This captures the fact that when there are many actions to explore, it takes longer to reduce uncertainty
(bounded by λmin) about all of them.

12Recall that the probability δ2 of the covariance bound failing can be chosen to decay to zero as 1/t.



D.7 BOUND ON GAUSSIAN TAIL PROBABILITY MASS

The probability mass in the normal distribution N (0, σ) above threshold x is∫ ∞

x

dy
1√
2πσ

e−y2/2σ2

=
1

2

(
1− erf(x/

√
2σ)
)
, (D.56)

where erf() is the error function, which can be expanded for large argument values and bounded,

erf(z) > 1− z−1e−z2

(D.57)

for all z > 0, but tightly as z →∞. Equivalently, the probability mass in the tail is bounded as∫ ∞

x

dy
1√
2πσ

e−y2/2σ2

<
σ√
2x
e−x2/2σ2

(D.58)

for x > 0.
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