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1 ADDITIONAL EXPERIMENT: PIMA INDIANS DIABETES DATASET

Following the experiments in Wachter et al. [2017b], we utilize the Pima Indians Diabetes dataset (Smith et al. [1988]). It
is composed of low dimensional tabular data and helps to validate the CounteRGAN’s versatility and its applicability to
diverse use cases. The dataset contains 8 features describing the relevant characteristics of patients useful for predicting
diabetes. The target label is positive if the patient has diabetes (268 examples) and negative otherwise (500 examples). We
use stratified (label balanced) sampling with 80% of the dataset being assigned to the train set and the remaining 20% for the
test set. The classifier is the same as the neural network architecture used in Wachter et al. [2017b] and achieves an accuracy
of 74.68% on the test set.

White-box classifier Black-box classifier

RGD CSGP GAN CounteRGAN RGD CSGP CounteRGAN

↑ Prediction gain 0.15 ± 0.01 0.13 ± 0.02 0.15 ± 0.03 0.33 ± 0.04 0.17 ± 0.00 0.13 ± 0.00 0.16 ± 0.02

↓ Realism 2.20 ± 0.24 2.03 ± 0.11 3.33 ± 0.11 1.79 ± 0.11 2.22 ± 0.01 1.98 ± 0.01 2.13 ± 0.12

↓ Actionability 1.64 ± 0.20 1.14 ± 0.19 9.46 ± 0.53 6.91 ± 0.43 1.75 ± 0.02 1.29 ± 0.02 2.97 ± 0.12

↓ Latency (ms) 1,195.91 ± 5.65 3,211.67 ± 11.65 1.68 ± 0.06 1.51 ± 0.03 2,525.99 ± 1.23 15,921 ± 23.66 1.82 ± 0.12

↓ Batch latency (s) 204.58 483.88 0.26 0.23 453.45 2,228.23 0.32

Table 1: Diabetes test data results (mean and 95% confidence interval). The arrows indicate whether larger ↑ or lower ↓
values are better, and the best results are in bold. The realism metric typically ranges from 1.84 (mean reconstruction error
on the test set) to 2.44 (reconstruction error on random Gaussian noise). Computations are performed using the entire test
set (154 samples).

For this experiment we introduce the important concept of mutable and immutable features. For most practical applications
of counterfactual search, certain features may be hard or impossible to change and can be considered immutable. Though
features typically vary in their degree of mutability, for the purposes of this experiment we consider features as either mutable
or immutable. For the Pima Indians Diabetes dataset, we consider Pregnancies, Age, and Diabetes Pedigree Function
features to be immutable. We use Glucose, Insulin, Body Mass Index, Tricept Skin Fold Thickness, and Blood Pressure as
mutable features. In practice, we apply counterfactual search with no modifications, then simply cancel the perturbations
applied to immutable features.

Table 1 summarizes our findings for this experiment. On this dataset, all methods appear equally capable of improving
classifier prediction gain. The CounteRGAN generates more realistic instances, and the CSGP outputs the sparsest coun-
terfactuals. Even on this low-dimensional dataset, the CounteRGAN is able to meet or exceed the evaluation metrics of
counterfactuals produced by existing methods while heavily outperforming them in terms of latency. This includes >1,000x
to >2,000x improvements for individual counterfactuals on white-box and black-box models respectively and from 3 to 4
orders of magnitude for batch generation of all counterfactuals.
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The evaluation results validate that the proposed CounteRGAN method is capable of overcoming the main limitations
of existing methods, namely the lack of realism and high latency. It also provides similar or better prediction gain and
actionability on high dimensional images and a low-dimensional tabular dataset. The impressive latency improvements are
pivotal with regard to real-time applicability and scalability. This is due to the generator only needing a forward-pass through
the neural network as opposed to performing a new counterfactual search for every data point, as required by existing
methods.

2 PROOF OF THEOREM 1

Theorem 1. If the discriminator is systematically allowed to reach its optimum, and the generator has sufficient capacity,
then the minimax optimization of the value function

VCounteRGAN−wt(D,G) =

∑
i Ct(xi) logD(xi)∑

i Ct(xi)
+

1

N

∑
i

log (1−D(xi +G(xi))) , (1)

converges to the Nash equilibrium. The full generator’s output distribution pg+ converges to a distribution pCt
defined by

pCt
(x) = Nt Ct(x) pdata(x), (2)

where Nt is a normalization constant.1

Proof. We first introduce the full generator output function G+(x) = x+G(x), and note that the value function defined by
equation 1 can be written as

VCounteRGAN−bb(D,G) = Ex∼pCt
logD(x) + Ex∼pg+

log (1−D(x)) , (3)

since the first term on the r.h.s. of Equation 1 is a weighted sampling estimate of Ex∼pCt
logD(x), and for the second term,

the equality Ex∼pg+
log (1−D(x)) = Ex∼pdata

log (1−D(G+(x))) is a consequence of the Radon–Nikodym theorem.

From the expression of the value function in equation 3, Proposition 1 of Goodfellow et al. [2014a] implies that for any
generator G the optimal discriminator is

D∗(x) =
pCt

(x)

pg+(x) + pCt(x)
. (4)

The value function for an ideal discriminator thus reads:

V∗(G) = V(D∗, G) = Ex∼pCt
log

pCt
(x)

pg+(x) + pCt(x)
+ Ex∼pg+

log
pg+(x)

pg+(x) + pCt(x)
. (5)

To find the distribution p∗g+ that minimizes V∗ under the probability normalization constraint,
∫
pg+(x)dx = 1, we introduce

a Lagrange multiplier µ. We then compute the functional derivative of V∗ with respect to pg+ using the shortened notation
for p = pCt

(x) and q = pg+(x) in the following equation

δV∗

δq
=

∂

∂q

[
p log

(
p

p+ q

)
+ q log

(
q

p+ q

)
+ µq

]
= log

(
q

p+ q

)
+ µ. (6)

The optimum of V∗ is attained for

δV

δp∗g+
(x) = 0 ⇐⇒ p∗g+(x) =

pCt(x)

exp(µ)− 1
, (7)

from which the normalization constraint leads to∫
pCt

(x)

exp(µ)− 1
dx = 1 ⇐⇒ exp(µ) = 2, (8)

1Explicitly, Nt =
(∫

Ct(x) pdata(x)dx
)−1 but it doesn’t need to be computed for our purpose.



such that
p∗g+(x) = pCt(x) (9)

for all x. Hence V∗ has a unique optimum2 that is reached when

p∗g+ = pCt . (10)

The fact that pg+ converges to the optimum when using the alternating gradient updates follows from Proposition 2 in
Goodfellow et al. [2014a].

3 SYNTHETIC DATASET EXAMPLE
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(e) Standard GAN. (f) CounterGAN.

Figure 1: Comparing how three different counterfactual search techniques are able to achieve their objectives while producing
significantly different counterfactuals on a synthetic and binary class dataset.

Figure 1 provides an example of counterfactual search using a synthetic dataset meant to illustrate the challenges faced
by counterfactual generation methods. The data points shown in (a) can be interpreted as the known populations from two
different societies (red/blue). An ML classifier has been trained to predict the type of society a person belongs to based
on their weight (x-axis) and height (y-axis). The solid white line in (b) represents the classifier’s decision boundary such
that all predictions for points falling within the red shaded region are classified as persons belonging to the red society and
vice-versa. The five selected orange points in (c) represent persons from the red society we seek to provide counterfactuals
for. These counterfactuals should provide meaningful recourse regarding how to turn themselves into realistic looking
persons of the blue society, as predicted by the classifier. The counterfactuals generated by an existing method (d) produce
the correct classification result (blue) but the suggested changes would mean that the transformed individuals would not
look like the rest of the known populace of the blue society (lack of realism). Using a standard GAN, the counterfactuals
always result in the same or similar looking persons of the blue society. While these results are more realistic than those
obtained with the previous method, the suggested changes may be harder to apply to some original persons than others (i.e.,
lower sparsity) and hence less actionable. The proposed CounteRGAN method (f) results in counterfactuals that are of the
desired classification (blue) and are most realistic and actionable than those obtained with previous methods. Red society
members seeking to imperceptibly infiltrate the blue society would benefit the most from the meaningful recourse provided
by this method.

4 CODE

The corresponding code to reproduce all the results and methods will be available by the date of publication.
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