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A PROOFS OF SECTION 5

Lemma 5.3 (re-stated). There exists a distribution Q?0 that solves (3) and is a mixture of at most N0 Gaussian components.
Moreover, problem (3) is equivalent to a separable problem of the form

max {L(x,Q0) : Q0 ∈ Bε0(P̂σ0 )} =


max 1

N0

∑
i∈I0 f(x|µi,Σi)

s. t. (µi,Σi) ∈ Rp × Sp≥σ
c((µi,Σi), (x̂i, σ

2I)) ≤ ε0 ∀i ∈ I0.

An analogous result holds for problem (4) with the corresponding subscript y = 1.

Proof of Lemma 5.3. There exists a distribution Q?0 that solves (3) and is a mixture of at most N0 Gaussian components.
Moreover, problem (3) is equivalent to a separable problem of the form

max {L(x,Q0) : Q0 ∈ Bε0(P̂σ0 )}

=


max 1

N0

∑
i∈I0 f(x|µi,Σi)

s. t. (µi,Σi) ∈ Rp × Sp≥σ
c((µi,Σi), (x̂i, σ

2I)) ≤ ε0 ∀i ∈ I0.

We use ∀i implies ∀i ∈ I0, and
∑
i is also taken over the same set. Given any x, the likelihood of x under any Gaussian

mixture Q0 can be written using the corresponding measure ν0 as

L(x,Q0) =

∫
Rp×Sp+

f(x|µ,Σ)ν0(dµ,dΣ).

Recall that Ξ = Rp × Sp≥σ . Using the definition of the type-∞Wasserstein, we find

Wc(ν0, ν̂0) ≤ ε0
⇔ ∃λ ∈ Λ(ν0, ν̂0) such that

ess sup
λ

{
c((µ,Σ), (µ′,Σ′)) : (µ,Σ, µ′,Σ′) ∈ Ξ× Ξ

}
≤ ε0

⇔ ∀i ∃λi ∈ P(Ξ) such that

ess sup
λi

{
c((µ,Σ), (x̂i, σI)) : (µ,Σ) ∈ Ξ

}
≤ ε0

⇔ ∀i ∃λi ∈ P(Ξ) such that
c((µ,Σ), (x̂i, σI)) ≤ ε0 (µ,Σ) ∈ supp(λi),
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where the second equivalence follows from that ν̂0 = 1
N0

∑
i δ(x̂i,σ2I) and hence any λ ∈ Λ(ν0, ν̂0) takes the form

1
N0

∑
i λi⊗ δ(x̂i,σ2I) for some probability measures λi ∈ P(Ξ), and the third equivalence follows from Lemma A.1. Hence,

problem (3) is equivalent to
max

∫
Rp×Sp≥σ

f(x|µ,Σ)ν0(dµ,dΣ)

s. t. ν0 ∈ P(Rp × Sp≥σ)

Wc(ν0, ν̂0) ≤ ε0

=


max 1

N0

∑
i

∫
Rp×Sp≥σ

f(x|µi,Σi)λi(dµi,dΣi)

s. t. λi ∈ P(Rp × Sp≥σ) ∀i
c((µi,Σi), (x̂i, σ

2I)) ≤ ε0 ∀(µi,Σi) ∈ supp(λi) ∀i.

It is easy now to employ a greedy argument to show that the optimal solution for λi should be a Dirac delta distribution
supported on one point in the space of Rp × Sp≥σ . This leads to the conclusion regarding the maximization problem (3).

An similar argument can be applied for the minimization problem (4), the detailed proof is omitted.

Lemma A.1. For any λ ∈ P(Ξ), x̂ ∈ Rp, σ, ε > 0 and any function c : Ξ × Ξ → R such that the map (µ,Σ) 7→
c((µ,Σ), (x̂, σ2I)) is continuous, we have ess supλ c((µ,Σ), (x̂, σ2I)) ≤ ε if and only if c((µ,Σ), (x̂, σ2I)) ≤ ε for any
(µ,Σ) ∈ supp(λ).

Proof of Lemma A.1. We first prove the “only if” direction. Suppose that there exists (µ′,Σ′) ∈ supp(λ) such that

c((µ′,Σ′), (x̂, σ2I)) > ε.

By continuity of the map (µ,Σ) 7→ c((µ,Σ), (x̂, σ2I)), there exists an open neighbourhood U ⊆ Ξ containing (µ′,Σ′) such
that

c((µ,Σ), (x̂, σ2I)) > ε ∀(µ,Σ) ∈ U.

By the definition of of support, λ(U) > 0. Therefore,

Pr
λ

(c((µ,Σ), (x̂, σ2I)) ≤ ε) = 1− Pr
λ

(c((µ,Σ), (x̂, σ2I)) > ε) ≤ 1− λ(U) < 1,

which contradicts to that ess supλ c((µ,Σ), (x̂, σ2I)) ≤ ε.

We next prove the “if” direction. By the law of total probability and the fact that c((µ,Σ), (x̂, σ2I)) ≤ ε for any (µ,Σ) ∈
supp(λ),

Pr
λ

(
c((µ,Σ), (x̂, σ2I)) ≤ ε

)
= Pr

λ

(
c((µ,Σ), (x̂, σ2I)) ≤ ε|(µ,Σ) ∈ supp(λ)

)
λ(supp(λ))

+ Pr
λ

(
c((µ,Σ), (x̂, σ2I)) ≤ ε|(µ,Σ) 6∈ supp(λ)

)
(1− λ(supp(λ)))

=1 · 1 + Pr
λ

(
c((µ,Σ), (x̂, σ2I)) ≤ ε|(µ,Σ) 6∈ supp(λ)

)
· 0 = 1,

which completes the proof.

Proposition 5.4 (re-stated). Fix any index i ∈ I0. For any x̂i ∈ Rp, x ∈ Rp and ε0 ∈ R+, we have

exp(−αi)
(2π)p/2

=


max f(x|µi,Σi)
s. t. (µi,Σi) ∈ Rp × Sp≥σ

c((µi,Σi), (x̂i, σ
2I)) ≤ ε0,

where αi is the optimal value of the two-dimensional optimization problem

min
a∈R+, dp∈[σ,+∞)

a2+(dp−σ)2≤ε20

log dp +
(‖x− x̂i‖2 − a)2

2d2p
+ (p− 1) log σ.



Proof of Proposition 5.4. Let αi be the optimal value of the negative log-likelihood minimization problem

αi =


min 1

2 log det Σi + 1
2 (x− µi)>Σ−1i (x− µi)

s. t. µi ∈ Rp, Σi ∈ Sp+
‖µi − x̂i‖22 + Tr

[
Σi + σ2I − 2

(
(σ2I)

1
2 Σi(σ

2I)
1
2

) 1
2
]
≤ ε20

Σi � σ2I.

It is easy to see that

max{f(x|µi,Σi) : (µi,Σi) ∈ Rp × Sp≥σ, c((µi,Σi), (x̂i, σ
2I)) ≤ ε0} =

1√
(2π)p

exp(−αi).

It remains to provide a simpler formulation to determine αi. To simplify the notation, we omit the index i on all variables
and parameters. We reparameterize Σ = V diag(d2)V > for a vector d ∈ Rp+, where diag(d2) denotes a Rp×p diagonal
matrix with its j-th diagonal entries equals to d2j , and O(p) is the set of p-dimensional orthogonal matrices

O(p) = {V ∈ Rp×p : V >V = Ip}.

The negative log-likelihood minimization problem is further equivalent to

min
∑p
j=1 log dj + 1

2 (V >(x− µ))> diag(d−2)(V >(x− µ))

s. t. d ∈ Rp+, V ∈ O(p), µ ∈ Rp
‖µ− x̂‖22 +

∑p
j=1(dj − σ)2 ≤ ε20

d ≥ σ,

where d ≥ σ implies the element-wise constraints dj ≥ σ for any j = 1, . . . , p. We introduce an auxiliary variable a ∈ R+

and rewrite the optimization problem in an equivalent way as

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε20

min
µ∈Rp

‖µ−x̂‖22=a
2

min
V ∈O(p)

p∑
j=1

log dj +
1

2
(V >(x− µ))> diag(d−2)(V >(x− µ)).

Notice that the above optimization problem is invariant to the ordering of the entries of d. As a consequence, without any
loss of generality, we can assume that dp is the maximum value across all dj . By Lemma B.1, the above optimization
problem becomes

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε20
dp=max{d}

min
µ∈Rp

‖µ−x̂‖22=a
2

p∑
j=1

log dj +
1

2d2p
‖x− µ‖22.

Using Lemma B.2, we obtain the equivalent optimization problem

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε20
dp=max{d}

p∑
j=1

log dj +
1

2d2p
(‖x− x̂‖2 − a)2.

Rewriting the above problem into a two-layer optimization problem

min
a∈R+, dp∈R+, dp≥σ
a2+(dp−σ)2≤ε20

log dp +
1

2d2p
(‖x− x̂‖2 − a)2 + min

dj∈R+, dj≥σ ∀j=1,...,p−1∑p−1
j=1 (dj−σ)

2≤ε20−a
2−(dp−σ)2

dj≤dp ∀j=1,...,p−1

p−1∑
j=1

log dj

 . (1)

Notice that for any dp that is feasible for the outer minimization problem, the inner minimization problem over dj ,
∀j = 1, . . . , p − 1 admits a non-empty feasible set. Indeed, because dp ≥ σ, the value dj = σ, j = 1, . . . , p − 1 is a



feasible solution for the inner problem. We now focus on solving the inner minimization problem. As log( · ) is an increasing
function, for any s ≥ 0, we find

min
dp≥dj≥σ ∀j=1,...,p−1∑p−1

j=1 (dj−σ)
2≤s

p−1∑
j=1

log dj = (p− 1) log σ,

which holds because the optimization problem on the left hand side admits the optimal solution d?j = σ for all j = 1, . . . , p−1.
This completes the proof.

Proposition 5.5 (re-stated). Fix any index i ∈ I1. For any x̂i ∈ Rp, x ∈ Rp and ε1 ∈ R+, we have

exp(αi)

(2π)p/2
=


min f(x|µi,Σi)
s. t. (µi,Σi) ∈ Rp × Sp≥σ

c((µi,Σi), (x̂i, σ
2I)) ≤ ε1,

where αi is the optimal value of the two-dimensional optimization problem

min
a∈R+, d1∈[σ,+∞)

a2+p(d1−σ)2≤ε21

{
− log d1 −

(‖x− x̂i‖2 + a)2

2d21
− (p− 1) log

(
σ +

√
ε2 − a2 − (d1 − σ)2

p− 1

)}
.

Proof of Proposition 5.5. Let αi be the optimal value of the log-likelihood minimization problem

αi =


min − 1

2 log det Σi − 1
2 (x− µi)>Σ−1(x− µi)

s. t. µi ∈ Rp, Σi ∈ Sp+
‖µi − x̂i‖22 + Tr

[
Σi + σ2I − 2

(
(σ2I)

1
2 Σi(σ

2I)
1
2

) 1
2
]
≤ ε21

Σi � σ2I.

It is easy to see that

min{f(x|µi,Σi) : (µi,Σi) ∈ Rp × Sp≥σ, c((µi,Σi), (x̂i, σ
2I)) ≤ ε1} =

1

(2π)p/2
exp(αi).

It remains to provide the computational routine to determine αi. To simplify the notation, we omit the index i on all variables
and parameters. We reparameterize Σ = V diag(d2)V > for a vector d ∈ Rp+, where diag(d2) denotes a Rp×p diagonal
matrix with its j-th diagonal entries equals to d2j , and O(p) is the set of p-dimensional orthogonal matrices

O(p) = {V ∈ Rp×p : V >V = Ip}.

The log-likelihood minimization problem is further equivalent to

min −
∑p
j=1 log dj − 1

2 (V >(x− µ))> diag(d−2)(V >(x− µ))

s. t. d ∈ Rp+, V ∈ O(p), µ ∈ Rp
‖µ− x̂‖22 +

∑p
j=1(dj − σ)2 ≤ ε21

d ≥ σ,

where d ≥ σ implies the element-wise constraints dj ≥ σ for any j = 1, . . . , p. We introduce an auxiliary variable a ∈ R+

and rewrite the optimization problem in an equivalent way as

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε21

min
µ∈Rp

‖µ−x̂‖22=a
2

min
V ∈O(p)

−
p∑
j=1

log dj −
1

2
(V >(x− µ))> diag(d−2)(V >(x− µ)).

Notice that the above optimization problem is invariant to the ordering of the entries of d. As a consequence, without any loss
of generality, we can assume that d1 is the minimum value across all dj . By Lemma B.1, the above optimization problem
becomes

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε21
d1=min{d}

min
µ∈Rp

‖µ−x̂‖22=a
2

−
p∑
j=1

log dj −
1

2d21
‖x− µ‖22.



Using Lemma B.2, we obtain the equivalent optimization problem

min
a∈R+, d∈Rp+, d≥σ
a2+

∑
j(dj−σ)

2≤ε21
d1=min{d}

−
p∑
j=1

log dj −
1

2d21
(‖x− x̂‖2 + a)2.

Notice that the constraint σ ≤ d1 = min{d} implies that p(d1− σ)2 ≤
∑
j(dj − σ)2. As a consequence, any feasible value

for d1 should satisfy a2 + p(d1− σ)2 ≤ ε21. Separating the variable d into two groups d1 and d2, . . . , dp leads to a two-layer
optimization problem

min
a∈R+, d1∈R+, d1≥σ
a2+p(d1−σ)2≤ε21

− log d1 −
1

2d21
(‖x− x̂‖2 + a)2 + min

dj∈R+, dj≥d1 ∀j=2,...,p∑p
j=2(dj−σ)

2≤ε21−a
2−(d1−σ)2

−
p∑
j=2

log dj

 . (2)

Consider momentarily the minimization problem

min
dj∈R+ ∀j=2,...,p∑p

j=2(dj−σ)
2≤ε21−a

2−(d1−σ)2

−
p∑
j=2

log dj ,

where the constraints dj ≥ d1 have been intentionally omitted. Proposition B.3 asserts that this optimization problem has
the optimal value

−(p− 1) log

σ +

√
ε21 − a2 − (d1 − σ)2

p− 1


at the optimal solution d?j = σ +

√
ε21−a2−(d1−σ)2

p−1 , which also by the outer constraint a2 + p(d1 − σ)2 ≤ ε21 satisfies
dj ≥ d1 ∀j = 2, . . . , p. Thus it is indeed the optimal solution to the inner minimization problem in (2). As a consequence,
problem (2) is equivalent to

min
a∈R+, d1∈R+, d1≥σ
a2+p(d1−σ)2≤ε21

− log d1 −
1

2d21
(‖x− x̂‖2 + a)2 − (p− 1) log

σ +

√
ε21 − a2 − (d1 − σ)2

p− 1

 .

This completes the proof.

B AUXILIARY RESULTS

The following preparatory results are necessary to prove Propositions 5.4 and 5.5.

Lemma B.1 (Eigenbasis solution). Let E ∈ Rp×p be a diagonal matrix satisfying E11 ≤ · · · ≤ Epp. Then, for any w ∈ Rp,
we have

max
V ∈O(p)

w>V EV >w = Epp‖w‖22.

Proof of Lemma B.1. The claim holds trivially when w = 0. Consider now any w ∈ Rp\{0}. Since V EV > � Epp · Ip, we
find

max
V ∈O(p)

w>V EV >w ≤ max
V ∈O(p)

w>V (Epp · Ip)V >w = Epp‖w‖22.

On the other hand, taking V ? = [v?1 , . . . , v
?
p] ∈ O(p) with v?p = w

‖w‖2 , and using the orthogonality of the columns of V ?,
we have

w>V ?EV ?>w = Epp‖w‖22.

This shows that V ? is an optimal solution and completes the proof.



Lemma B.2 (Quadratic optimization). For any x ∈ Rp, x̂ ∈ Rp and a ∈ R+, the following assertions hold.

• Convex quadratic minimization:

min
µ∈Rp:‖µ−x̂‖22=a2

‖x− µ‖22 = (‖x− x̂‖2 − a)2,

where the minimum is attained at µ? = a
‖x−x̂‖2x+ (1− a

‖x−x̂‖2 )x̂.

• Convex quadratic maximization:

max
µ∈Rp:‖µ−x̂‖22=a2

‖x− µ‖22 = (‖x− x̂‖2 + a)2,

where the maximum is attained at µ? = − a
‖x−x̂‖2x+ (1 + a

‖x−x̂‖2 )x̂.

The results in Lemma B.2 are dispersed in the literature. An elementary proof is provided here for completeness.

Proof of Lemma B.2. By the triangle inequality, for any µ such that ‖µ− x̂‖2 = a, we have

‖x− µ‖2 ≥ |‖x− x̂‖ − ‖µ− x̂‖| = |‖x− x̂‖ − a| ,

where the lower bound can be attained by taking µ = a
‖x−x̂‖2x+ (1− a

‖x−x̂‖2 )x̂. Therefore,

min
µ∈Rp:‖µ−x̂‖22=a2

‖x− µ‖22 = (‖x− x̂‖2 − a)2

Similarly, by the triangle inequality we have

‖x− µ‖2 ≤ ‖x− x̂‖+ ‖x̂− µ‖ = ‖x− x̂‖+ a,

and the upper bound can be attained by µ = − a
‖x−x̂‖2x+ (1 + a

‖x−x̂‖2 )x̂. This completes the proof.

Proposition B.3 (Logarithm maximization). For any s, σ ≥ 0 and positive integer k, we have

k log

(√
s

k
+ σ

)
=


max
e∈Rk+

k∑
j=1

log ej

s. t.

k∑
j=1

(σ − ej)2 ≤ s.
(3)

Moreover, the optimal solution e? satisfies e?j =
√

s
k + σ for any j = 1, . . . , k.

Proof of Proposition B.3. Let e? ∈ Rk+ be an optimal solution to the maximization problem (3). Suppose there exist two
indices m and n such that e?m 6= e?n. Consider e′ defined by

e′j =

{
1
2 (e?m + e?n), if j ∈ {m,n},
e?j , otherwise.

By the convexity of the function x 7→ (x− σ)2,

(e′m − σ)
2

+ (e′n − σ)
2

= 2

(
e?m + e?n

2
− σ

)2

≤ (e?m − σ)2 + (e?n − σ)2,

which implies that e′ is a feasible solution to problem (3). Furthermore, since e?m 6= e?n, by the concavity of the function
x 7→ log x, we have that

log e?m + log e?n < 2 log

(
e?m + e?n

2

)
= log e′m + log e′n,



which violates the optimality of e?. Therefore, any optimal solution e? must have all entries identical. Using this, we get
from the constraint that

|e?j − σ| ≤
√
s

k
∀j = 1, . . . , k.

By continuity of the objective and constraint functions, we must have

|e?j − σ| =
√
s

k
∀j = 1, . . . , k.

Since the objective function is increasing in e?j , the optimal solution is given by

e?j = σ +

√
s

k
∀j = 1, . . . , k.

The optimal value can then be obtained by direct computation. This completes the proof.

C FIRST-ORDER ALGORITHMS

C.1 OPTIMISTIC LIKELIHOOD PROBLEM

For the optimistic likelihood problem, Theorem 5.1 reduces the task to solving the 2-dimensional problem

min
a∈R+, dp∈[σ,+∞)

a2+(dp−σ)2≤ε20

log dp +
(‖x− x̂i‖2 − a)2

2d2p
+ (p− 1) log σ.

By letting

dp = v2 + σ, and a = v1,

we can obtain the equivalent form

min
v1,v2≥0
v21+v

2
2≤ε

2
0

F (v), (4)

where the objective function is given by

F (v) = log(v2 + σ) +
(‖x− x̂i‖2 − v1)2

2(v2 + σ)2
+ (p− 1) log σ.

If we denote by V = {v ∈ R2 : v1, v2 ≥ 0, v21 + v22 ≤ ε20} the feasible region of the above minimization problem, then the
projection ProjV(v) can be computed in closed-form via

ProjV(v) =



v, if v1, v2 ≥ 0, v21 + v22 ≤ ε20,
ε0
‖v‖2 v, if v1, v2 ≥ 0, v21 + v22 > ε20,

(0, ε0)>, if v1 < 0, v2 > ε0,

(0, v2)>, if v1 < 0, 0 ≤ v2 ≤ ε0,
(ε0, 0)>, if v1 > ε0, v2 < 0,

(v1, 0)>, if 0 ≤ v1 ≤ ε0, v2 < 0,

(0, 0)>, if v1, v2 < 0.

Algorithm 1 is a projected gradient descent routine to solve problem (4). The convergence guarantee for Algorithm 1 follows
from Beck [2017, Theorem 10.15].



Algorithm 1 Projected Gradient Descent Algorithm with Backtracking Line-Search

Algorithm parameters: Line search parameters θ ∈ (0, 1), β > 0
Initialization: Set v0 ← 0
for t = 0, 1, . . . do

Find the smallest integer k ≥ 0 such that

F
(
ProjV(vt − θkβ∇F (vt))

)
≤ F (vt)− 1

2θkβ
‖vt − ProjV(vt − θkβ∇F (vt))‖22

Set st = θkβ and set vt+1 = ProjV(ut − st∇F (vt)).
end for

C.2 PESSIMISTIC LIKELIHOOD PROBLEM

For the pessimistic likelihood problem, Theorem 5.2 reduces the task to solving the 2-dimensional problem

min
a∈R+, d1∈[σ,+∞)

a2+p(d1−σ)2≤ε21

− log d1 −
1

2d21
(‖x− x̂i‖2 + a)2 − (p− 1) log

σ +

√
ε21 − a2 − (d1 − σ)2

p− 1

 .

Note that the gradient of the objective function is a non-Lipschitz function. Worse still, the gradient is even undefined on at
the feasible point (d1, a) = (σ, ε1). These properties induce numerical issues for the optimization algorithm. Therefore, we
solve the following perturbed problem instead:

min
a∈R+, d1∈[σ,+∞)

a2+p(d1−σ)2≤ε21

− log d1 −
1

2d21
(‖x− µ̂‖2 + a)2 − (p− 1) log

σ +

√
ζ + ε21 − a2 − (d1 − σ)2

p− 1

 , (5)

for some small ζ > 0. By Bonnans and Shapiro [2013, Proposition 4.4], the optimal value of problem (5) is continuous
in ζ and the optimal solution set is upper semi-continuous in ζ as a set-valued mapping, see Bonnans and Shapiro [2013,
Section 4.1].

We now derive a projected gradient descent algorithm with backtracking line search for solving problem (5). First, by letting

d1 = u2 + σ, and a =
√
pu1,

we can equivalently transform problem (5) to the following one:

min
u1,u2≥0

u2
1+u

2
2≤(ε1/

√
p)2

F (u), (6)

where the objective function is given by

F (u) = − log(u2 + σ)− 1

2(u2 + σ)2
(‖x− x̂i‖2 +

√
pu1)2 − (p− 1) log

σ +

√
ζ + ε21 − pu21 − u22

p− 1

 .

The upshot of problem (6) is that the feasible region is the intersection of the non-negative orthant with a circular disk
of radius ε1/

√
p centered at the origin. As we will see below, this enables easy computation of the projection and linear

optimization oracle. Indeed, denoting by U = {u ∈ R2 : u1, u2 ≥ 0, u21 + u22 ≤ (ε1/
√
p)2} the feasible region of

problem (6), the projection ProjU (u) can be computed in closed-form via

ProjU (u) =



u, if u1, u2 ≥ 0, u21 + u22 ≤ (ε1/
√
p)2,

(ε1/
√
p)

‖u‖2 u, if u1, u2 ≥ 0, u21 + u22 > (ε1/
√
p)2,

(0, ε1√p )>, if u1 < 0, u2 >
ε1√
p ,

(0, u2)>, if u1 < 0, 0 ≤ u2 ≤ ε1√
p ,

( ε1√p , 0)>, if u1 > ε1√
p , u2 < 0,

(u1, 0)>, if 0 ≤ u1 ≤ ε1√
p , u2 < 0,

(0, 0)>, if u1, u2 < 0.



A projected gradient descent algorithm can now be employed to solve problem (6).

D RECOVERY OF THE ADVERSARIAL DISTRIBUTION

It is often instructive to recover and analyze the optimal distribution that maximizes the posterior probability odds ratio, or
more directly, the likelihood ratio in (2). Equivalent, it suffices to characterize the distribution Q?0 that maximizes (3), and
the distribution Q?1 that minimizes (4).

Lemma D.1 (Likelihood maximizer). For each i ∈ I0, let (a?i , d
?
pi) be the optimal solution of the following two-dimensional

optimization problem

min
a∈R+, dp∈[σ,+∞)

a2+(dp−σ)2≤ε20

log dp +
(‖x− x̂i‖2 − a)2

2d2p
+ (p− 1) log σ.

Then, the maximizero Q?0 of problem (3) is a Gaussian mixture with N0 components, and for i ∈ I0, the i-th components
has mean

µ?i =
a?i

‖x− x̂i‖2
x+

(
1− a?i
‖x− x̂i‖2

)
x̂i,

and covariance matrix
Σ?i = V ?i diag(σ, . . . , σ, d?pi)

2(V ?i )>,

where V ?i is any orthogonal matrix with the p-th column given by x−µ?i
‖x−µ?i ‖2

.

Proof of Lemma D.1. The result follows directly by inspecting the proofs of Proposition 5.4, Lemma B.1 and Lemma B.2.

Lemma D.2 (Likelihood minimizer). For each i ∈ I1, let (a?i , d
?
1i) be the optimal solution of the following two-dimensional

optimization problem

min
a∈R+, d1∈[σ,+∞)

a2+p(d1−σ)2≤ε21

− log d1 −
(‖x− x̂i‖2 + a)2

2d21
− (p− 1) log

σ +

√
ε21 − a2 − (d1 − σ)2

p− 1

 .

Then, the minimizer Q?1 of problem (4) is a Gaussian mixture with N1 components, and for i ∈ I1, the i-th components has
mean

µ?i = − a?i
‖x− x̂i‖2

x+

(
1 +

a?i
‖x− x̂i‖2

)
x̂i,

and covariance matrix

Σ?i = V ?i diag

d?1i, σ +

√
ε21 − a?i

2 − (d?1i − σ)2

p− 1
, . . . , σ +

√
ε21 − a?i

2 − (d?1i − σ)2

p− 1

2

(V ?i )>,

where V ?i is any orthogonal matrix with the 1st column given by x−µ?i
‖x−µ?i ‖2

.

Proof of Lemma D.2. The result follows directly by inspecting the proofs of Proposition 5.5, Lemma B.1 and Lemma B.2.



Figure 1: Visualization of the worst-case distributions on a toy dataset, color codes are similar to Figure 1. The dashed,
opaque dots and circles represent the isotropic Gaussian around each data sample. The solid dots and circles represent the
worst-case distributions corresponding to the boundary point xb. For blue (unfavorably predicted) samples, the worst-case
distribution is formed by perturbing the distribution towards xb – which leads to maximizing the posterior probability of
unfavorable prediction. For green (favorably predicted) samples, the worst-case distribution is formed by perturbing the
distribution away from xb – which leads to minimizing the posterior probability of favorable prediction. These worst-case
distributions will maximize the posterior probability odds ratio.
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