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1 PROOFS

In this section, we will prove all the theoretical results of the paper. The first Section 1.1, however, details some of the
important properties of IID-RUMs that are useful in proving the main theorems and lemmas. Many of these results can be of
independent interest such as the Borda consistency property which is shared by a very broad class of IID-RUMs. The reader
may also skip to Section 1.2 for the proofs of the main results stated earlier in the paper.

1.1 A CLOSER LOOK AT IID-RUMS

All IID-RUMs are in a family of choice models known as Fechnerian models Becker et al. [1963].

Definition 1. A choice model ρ is a Fechnerian model if there exists a function F : R× R→ [0, 1] that is increasing in the
first argument and decreasing in the second argument such that

ρ(i|{i, j}) = F (Ui, Uj) .

It is well known that Fechnerian models satisfy strongly stochastic transitivity (SST). That is, if ρ(i|{i, j}) > 1
2 then

ρ(i|{i, k}) ≥ ρ(j|{j, k}) for all k 6= i, j. A weaker notion of stochastic transitivity is weak stochastic transitivity (WST): if
ρ(i|{i, j}) > 1

2 , ρ(j|{j, k}) > 1
2 then ρ(i|{i, k}) > 1

2 . The following lemma establishes that all IID-RUMs are Fechnerian
models.

Lemma 1.1. All IID-RUMs are Fechnerian models.

Proof. The proof is simply showing the existence of the function F in the definition of Fechnerian models. Consider any
two items i and j

ρ(i|{i, j}) = P(Xi > Xj) = P(Ui + εi > Uj + εj)

= P(εj − εi < Ui − Uj)
= Fij(Ui − Uj) .

where Fij is the CDF of the random variable εj − εi. Note that all the εi’s are identically distributed and thus F = Fij for
all pairs (i, j). This completes the proof.

As the class of SST models are a special subclass of WST models, there exists a universal ordering among the items, induced
by pairwise preference. Under IID-RUMs, this ordering the same as that of the partworth parameters. It’s also notable that
while IID-RUMs satisfy SST, RUMs with independent but not identically distributed noise (Independent RUMs) don’t in
general. In fact, Independent RUMs may not even satisfy WST. Next, we introduce a property of random utility models
which we term the order preserving property.
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Definition 2. A choice model ρ satisfies the order preserving property if

ρ(i|{i, j}) > 1

2
⇒ ρ(i|S) > ρ(j|S)∀S : i, j ∈ S .

The following lemma states that a broad class of IID-RUMs which include the MNL and Probit model satisfy the order
preserving property.

Lemma 1.2. All IID-RUMs whose noise distribution has absolutely continuous density function and support on the real
line satisfy the order preserving property.

Proof. Consider a pair of item i, j such that Ui > Uj . The proof for the case when S = {i, j} is trivial. We immediately
have ρ(i|{i, j}) > 1

2 . Now consider any choice set S containing both i and j where |S| ≥ 3. Let fεi denote the density
function of the item-specific noise distribution of item i. Of course, under IID-RUM, fεi = fεj = f for all i 6= j. We have

ρ(i|S) = P(Xi > Xk,∀k ∈ S\{i})
= P(Ui + εi > Uk + εk,∀k ∈ S\{i})
= P(εk < Ui − Uk + εi,∀k ∈ S\{i})

=

∫
ε

P(εk < Ui − Uk + εi,∀k ∈ S\{i}, εi = ε)dε

=

∫
ε

P(εk < Ui − Uk + εi,∀k ∈ S\{i}|εi = ε)fεi(ε)dε

=

∫
ε

( ∏
k∈S\{i}

P(εk < Ui − Uk + ε)

)
f(ε)dε .

In the last equality, we have used the independence assumption of IID-RUMs. Further breaking down the product gives

∫
ε

( ∏
k∈S\{i}

P(εk < Ui − Uk + ε)

)
f(ε)dε

=

∫
ε

( ∏
k∈S\{i,j}

P(εk < Ui − Uk + ε)

)
P(εj < Ui − Uj + ε)f(ε)dε .

(1)

By our assumption of identicallity and that the noise distribution has continuous density with support on the real line,
P(εk < Ui − Uk + ε) < P(εk < Uj − Uk + ε) for all k ∈ S\{i, j}. On the other hand, for a random variable ε′ distributed
identically to the εi’s,

P(εj < Ui − Uj + ε) > P(ε′ < Uj − Ui + ε) ∀ε .

Putting these two inequalities back into (1) gives

ρ(i|S) =

∫
ε

( ∏
k∈S\{i,j}

P(εk < Ui − Uk + ε)

)
P(εj < Ui − Uj + ε)f(ε)dε

>

∫
ε

( ∏
k∈S\{i,j}

P(εk < Uj − Uk + ε)

)
P(ε′ < Uj − Ui + ε)f(ε)dε

= ρ(j|S) .

This completes the proof.

While the class of IID-RUMs whose noise distribution has continuous density function and support on the real line includes
many commonly used IID-RUMs such as the MNL and Probit model, there are other IID-RUMs outside this class that also
satisfy the order preserving property. An example is IID-Exponential RUM.

Lemma 1.3. IID-Exponential RUM satisfies the order preserving property.



Proof. Since the pairwise case (m = 2) is trivial, we will focus on proving Lemma 1.3 for m ≥ 3. Consider a menu
S ∈ C(m) : i, j ∈ S, let S′ = S\{i, j}. For this proof, let us consider a ‘copy’ of i and call it i′. That is, Xi′ is distributed
identically to Xi. We have

ρ(i|S) = P(Xi > max{{Xk}k∈S′ ∪ {j}})

=

∫ ∞
0

P(Xk < Ui + ε ∀k ∈ S′, Xj < Ui + ε) · f(ε)dε

=

∫ ∞
0

P(Xk < Ui + ε∀k ∈ S′) · P(Xj < Ui + ε) · f(ε)dε

>

∫ ∞
0

P(Xk < Ui + ε∀k ∈ S′) · P(Xi′ < Ui + ε) · f(ε)dε

>

∫ ∞
0

P(Xk < Uj + ε∀k ∈ S′) · P(Xi′ < Uj + ε) · f(ε)dε

=

∫ ∞
0

P(Xk < Uj + ε∀k ∈ S′, Xi′ < Uj + ε) · f(ε)dε

= P(Xj > max{{Xk}k∈S′ ∪ {i′}})
= ρ(j|S) .

The first inequality holds because for any ε > Uj − Ui, P(Xj < Ui + ε) > P(Xi′ < Ui + ε). The second inequality
holds because for any ε > max{0,max{Uk − Uj}k∈S′∪{j}}, P(Xk < Ui + ε) > P(Xk < Uj + ε) for all k ∈ S′ and
P(Xi′ < Uj + ε) > P(Xi′ < Uj + ε). This completes the proof.

Recall the Borda Consistency property introduced in Section 4.2. One can show that a broad class of IID-RUMs which
contains many commonly used RUMs such as the MNL and the Probit model satisfies Borda Consistency, the key property
that ensures correctness of Generalized Borda Count.

Theorem 1.4. Any IID-RUM ρ whose noise distribution has continuous density function and support on the real line
satisfies Borda consistency.

Proof. Note that |C(m)
i | = |C(j)

j | =
(
n−1
m−1

)
for any i, j and m. The proof for m = 2 is trivial so we will focus on m ≥ 3. By

definition,

τ
(m)
i =

1

|C(m)
i |

∑
S∈C(m)

i

ρ(i|S)

=
1

|C(m)
i |

( ∑
S:|S|=m,i,j∈S

ρ(i|S) +
∑

S:|S|=m,i∈S,j /∈S

ρ(i|S)

)
.

By the ordering preserving property of IID-RUMs, for any S : i, j ∈ S, p(ρ|S) > ρ(j|S). To prove that τ (m)
i > τ

(m)
j , we

only need to prove that for any S′ : |S′| = m− 1; i, j /∈ S′,

ρ(i|S′ ∪ {i}) > ρ(j|S′ ∪ {j}) .

Let fε denote the density function of the noise distribution, we have

ρ(i|S′ ∪ {i}) = P(Xi > Xk∀k ∈ S′)
= P(Ui + εi > Uk + εk∀k ∈ S′)
= P(εk < Ui − Uk + εi∀k ∈ S′)

=

∫ ∞
−∞

P(εk < Ui − Uk + εi, εi = ε)

=

∫ ∞
−∞

P(εk < Ui − Uk + ε)f(ε)dε

>

∫ ∞
−∞

P(εk < Uj − Uk + ε)f(ε)dε

= ρ(j|S′ ∪ {j}) .



This completes the proof.

We also have a more general theorem that characterizes the class of IID-RUMs, beyond those whose noise distribution has
continuous density function and support on the real line, that satisfy Borda consistency

Theorem 1.5. Consider an IID-RUM ρ. Fix a menu size m. If, for any pair of item i, j where Ui > Uj ,

• There exists a menu S ∈ C(m) : i, j ∈ S such that ρ(i|S) 6= ρ(j|S), or

• m ≥ 3 and there exists a menu S′ ∈ C(m−1) : i, j /∈ S such that ρ(i|S ∪ {i}) 6= ρ(j|S ∪ {j}),

then ρ satisfies Borda consistency.

Proof. Consider an IID-RUM ρ and a fixed menu size m. For any pair of items i, j where Ui > Uj , one can easily check
that

ρ(i|S) ≥ ρ(j|S)∀S ∈ C(m) : i, j ∈ S

and

ρ(i|S′ ∪ {i}) ≥ ρ(j|S′ ∪ {j})∀S′ ∈ C(m−1) : i, j /∈ S′ .

If there exists a menu S ∈ C(m) : i, j ∈ S where ρ(i|S) 6= ρ(j|S), then ρ(i|S) > ρ(j|S). Similarly, if there exists a menu
S′ ∈ C(m−1) : i, j /∈ S where ρ(i|S ∪ {i}) 6= ρ(j|S ∪ {j}) then ρ(i|S ∪ {i}) > ρ(j|S ∪ {j}). If either of these cases hold,
we have

τ
(m)
i =

1

|C(m)
i |

∑
S∈C(m)

i

ρ(i|S)

=
1

|C(m)
i |

( ∑
S:|S|=m,i,j∈S

ρ(i|S) +
∑

S:|S|=m,i∈S,j /∈S

ρ(i|S)

)

>
1

|C(m)
j |

( ∑
S:|S|=m,i,j∈S

ρ(j|S) +
∑

S:|S|=m,j∈S,i/∈S

ρ(j|S)

)
= τ

(m)
j .

This completes the proof.

1.2 SAMPLE COMPLEXITY FOR EXACT TOP-K RECOVERY

In this section we prove all theorems stated in Section 4 as well as the sample complexity for approximate top-K ranking of
the choice based Borda count algorithm.

Lemma 4.2. Consider an IID-RUM that satisfies Borda consistency per Definition 1. Assume input choice data with menu
size m is generated according to the sampling model described in Section 4.1. For any two items i and j where τ (m)

i > τ
(m)
j ,

the choice-based Borda count algorithm satisfies

P(Ŵj > Ŵi) ≤ exp

−3pR
(
n
m

)
m(τ

(m)
i − τ (m)

j )
2

8n(τ
(m)
i + τ

(m)
j )

 .

Proof. Let E denote the event {i ∈ S∗K , j /∈ S∗K}. We wish to prove that if τi − τj > ∆
(m)
K , then with sufficiently large p

and R, Ŵi is smaller than Ŵj with very small probability. The main external concentration inequality used in this proof
is Bernstein’s inequality (cf. Theorem 2.8.4 Vershynin [2018]). We start our proof by expanding on the probability of



misranking i and j.

P
(
Ŵj > Ŵi | E

)
= P

( R∑
r=1

∑
S∈C(m)

j

1[y
(r)
S = j]︸ ︷︷ ︸
Xj,r

S

−
R∑
r=1

∑
S∈C(m)

i

1[y
(r)
S = i]︸ ︷︷ ︸
Xi,r

S

> 0 | E
)

= P
( R∑
r=1

∑
S∈C(m)

j

Xj,r
S − E[Xj,r

S ] + E[Xj,r
S ]−

R∑
r=1

∑
S∈C(m)

i

Xi,r
S − E[Xi,r

S ] + E[Xi,r
S ] > 0 | E

)

= P
( R∑
r=1

∑
S∈C(m)

j

Xj,r
S − E[Xj,r

S ]−
R∑
r=1

∑
S∈C(m)

i

Xi,r
S − E[Xi,r

S ] >

R∑
r=1

∑
S∈C(m)

i

E[Xi,r
S ]−

R∑
r=1

∑
S∈C(m)

j

E[Xj,r
S ] | E

)

= P
( R∑
r=1

∑
S∈C(m)

j

Xj,r
S − E[Xj,r

S ]−
R∑
r=1

∑
S∈C(m)

i

Xi,r
S − E[Xi,r

S ] > pR

(
n− 1

m− 1

)
(τ

(m)
i − τ (m)

j )

)
.

(2)

In the last equality, we have used the fact that
∑R
r=1

∑
S∈C(m)

i
E[Xi,r

S ] −
∑R
r=1

∑
S∈C(m)

j
E[Xj,r

S ] = pR
(
n−1
m−1

)
(τ

(m)
i −

τ
(m)
j ) ≥ pR

(
n−1
m−1

)
(τ

(m)
i − τ (m)

j ). Now, we will expand the two terms on the LHS of the inequality as

P
(
Ŵj > Ŵj | E

)
= P

( ∑
S∈C(m)

j :i/∈S

R∑
r=1

[
Xj,r
S − E[Xj,r

S ]
]
−

∑
S∈C(m)

i :j /∈S

R∑
r=1

[
Xi,r
S − E[Xi,r

S ]
]

+
∑

S∈C(m):i,j∈S

R∑
r=1

[
(Xj,r

S −X
i,r
S )− (E[Xj,r

S −X
i,r
S ])

]
> pR

(
n− 1

m− 1

)
(τ

(m)
i − τ (m)

j )

)
.

(3)

Note that with the above decomposition, the terms {Xj,r
S }S∈C(m)

j :i/∈S , {X
i,r
S }S∈C(m)

i :j /∈S , {X
j,r
S −X

i,r
S }S∈C(m):i,j∈S are

all mutually independent. To apply Bernstein’s inequality, we need to evaluate (or upper bound) the following.

∑
S∈C(m)

j :i/∈S

R∑
r=1

E[(Xj,r
S )2] +

∑
S∈C(m)

i :j /∈S

R∑
r=1

E[(Xi,r
S )2] +

∑
S∈C(m):i,j∈S

R∑
r=1

E[(Xj,r
S −X

i,r
S )2] .

We can easily see that for S ∈ C(m)
j : i /∈ S,

Xj,r
S =

{
1 with probability p · ρ(j|S)

0 with probability 1− p · ρ(j|S)

and for S ∈ C(m) : i, j ∈ S,

Xj,r
S −X

i,r
S =


1 with probability p · ρ(j|S)

−1 with probability p · ρ(i|S)

0 with probability 1− p · ρ(j|S)− p · ρ(i|S)

.



As such E[(Xj,r
S )2] = p · ρ(j|S) and E[(Xj,r

S −X
i,r
S )2] = p · (ρ(j|S) + ρ(i|S)). We have

∑
S∈C(m)

j :i/∈S

R∑
r=1

E[(Xj,r
S )2] +

∑
S∈C(m)

i :j /∈S

R∑
r=1

E[(Xi, r
S )2] +

∑
S∈C(m):i,j∈S

R∑
r=1

E[(Xj,r
S −X

i,r
S )2]

=
∑

S∈C(m)
j :i/∈S

R∑
r=1

p · ρ(j|S) +
∑

S∈C(m)
i :j /∈S

R∑
r=1

p · ρ(i|S) +
∑

S∈C(m):i,j∈S

R∑
r=1

p · (ρ(j|S) + ρ(i|S))

=
∑

S∈C(m)
j

R∑
r=1

p · ρ(j|S) +
∑

S∈C(m)
i

R∑
r=1

p · ρ(i|S)

= pR

(
n− 1

m− 1

)
τ

(m)
i + pR

(
n− 1

m− 1

)
τ

(m)
j

= pR

(
n− 1

m− 1

)
(τ

(m)
i + τ

(m)
j ) .

Now, applying Bernstein’s inequality to (3) directly yields:

P
(
Ŵj > Ŵj | E

)

≤ exp

− (
pR
(
n−1
m−1

)
(τ

(m)
i − τ (m)

j )
)2

2(pR
(
n−1
m−1

)
(τ

(m)
i + τ

(m)
j ) +

pR(n−1
m−1)(τ

(m)
i −τ(m)

j )

3 )


= exp

− pR
(
n−1
m−1

)
(τ

(m)
i − τ (m)

j )
2

2(τ
(m)
i + τ

(m)
j ) +

2(τ
(m)
i −τ(m)

j )

3


≤ exp

(
−
pR
(
n−1
m−1

)
(τ

(m)
i − τ (m)

j )2

8/3(τ
(m)
i + τ

(m)
j )

)
.

This completes the proof.

Next we present the proof of Lemma 4.3.

Lemma 4.3. Consider an IID-RUM that satisfies Borda consistency per definition (1). Fix a K, we have

τ
(m)
K + τ

(m)
K+1

∆
(m)
K

2 = max
i∈S∗K ,j /∈S∗K

{
τ

(m)
i + τ

(m)
j

(τ
(m)
i − τ (m)

j )2

}
.

Proof. Firstly, it is easy to see that, fixing an i ∈ S∗K , for all j /∈ S∗K ,

τ
(m)
i + τ

(m)
K+1

(τ
(m)
i − τ (m)

K+1)2
≥

τ
(m)
i + τ

(m)
j

(τ
(m)
i − τ (m)

j )2
.

It remains to prove that for any i ∈ S∗K ,

τ
(m)
K + τ

(m)
K+1

(τ
(m)
K − τ (m)

K+1)2
≥

τ
(m)
i + τ

(m)
K+1

(τ
(m)
i − τ (m)

K+1)2
.

To declutter the notation, we’ll remove the superscript m. Let ∆iK = τi − τK for some i ∈ S∗K . For any i ∈ S∗K\{K}, we



have
τK + τK+1

∆2
K

≥ τi + τK+1

(τi − τK+1)2

⇔ τK + τK+1

∆2
K

≥ τK + ∆iK + τK+1

(∆iK + ∆K)2

⇔ τK + τK+1

∆2
K

≥ τK + ∆iK + τK+1

∆2
iK + ∆2

K + 2∆iK∆K

⇔ τK∆2
iK + τK∆2

K + 2τK∆iK∆K + τK+1∆2
iK+

τK+1∆2
K + 2τK+1∆iK∆K ≥ τK∆2

K + τK+1∆2
K + ∆iK∆2

K

⇔ τK∆2
iK + 2τK∆iK∆K + τK+1∆2

iK + 2τK+1∆iK∆K ≥ ∆iK∆2
K .

In deriving the last statement, the first two terms on the RHS get canceled out. Note that 2τK∆iK∆K ≥ 2∆K∆iK∆K ≥
∆iK∆2

K . This completes the proof.

Theorem 4.4. Assume the conditions of Lemma 4.2. Given sufficiently large p,R such that pR
(
n
m

)
≥ 8n logn

m∆
(m)
K

2 · (∆(m)
K +

2τ
(m)
K+1), the choice-based Borda count algorithm correctly identifies all of the top K items with probability at least

1−O( Kn2 ).

Proof. The exponential bound in Lemma 4.2 holds simultaneously for all pairs i ∈ S∗K , j /∈ S∗K given sufficiently large
p,R such that

pR

(
n− 1

m− 1

)
≥ max
i∈S∗K ,j /∈S∗K

8 log n

(τ
(m)
i − τ (m)

j )2
· (τ (m)

i + τ
(m)
j ) .

From Lemma (4.3), we have

max
i∈S∗K ,j /∈S∗K

τ
(m)
i + τ

(m)
j

(τ
(m)
i − τ (m)

j )2
=
τ

(m)
K + τ

(m)
K+1

∆
(m)
K

2 .

This means that if

pR

(
n− 1

m− 1

)
≥ 8 log n ·

τ
(m)
K + τ

(m)
K+1

∆
(m)
K

2

then
P(Ŵi < Ŵj) ≤

1

n3
.

Apply union bound over all pairs i, j such that i ∈ S∗K , j /∈ S∗K . Then the event

Ŵi > Ŵj ∀i ∈ S∗K , j /∈ S∗K

happens with probability at least 1−O( Kn2 ).

1.3 SAMPLE COMPLEXITY FOR APPROXIMATE TOP-K RECOVERY

In practice, some error in the top K estimate could be tolerable. This is known as approximate top-K ranking. The metric of
interest in approximate top-K ranking is the edit distance between the estimate ŜK and the true top K items S∗K :

D01(ŜK ,S∗K) = K − |ŜK ∪ SK | .

One can see that correctly separating the top K − h items and the bottom n−K − h items, i.e., unable to identify at most h
of the top K items, is sufficient to guarantee that the approximate loss is bounded by h. Considering this, the fundamental
quantity that determines the hardness of approximate top-K ranking is the gap between the generalized Borda Score of the
K − h item and that of the K + h+ 1 item. For convenience, let us denote such quantity as

∆
(m)
K,h = τ

(m)
K−h−1 − τ

(m)
K+h+1 .



Clearly, this quantity generalizes ∆
(m)
K as ∆

(m)
K,0 = ∆

(m)
K . We are interested in bounding the probability that, given an error

threshold h, Generalized Borda Count fails to output an estimate with loss bounded by h. Namely,

P(D01(ŜK ,S∗K) ≤ h) .

Building on Lemma 4.2, we obtain the following sample complexity of Generalized Borda Count for approximate top-K
ranking.

Theorem 1.6. Assume the conditions of Lemma 4.2. Fix an error threshold h. Given sufficiently large p,R such that

pR
(
n
m

)
≥ 8n logn

m∆
(m)
K,h

· (1 +
τ
(m)
K+h+1

∆
(m)
K,h

), the choice based Borda count algorithm outputs a set ŜK that satisfies

DH(S∗K , ŜK) ≤ h

with probability at least 1−O( Kn2 ).

Proof. Applying Lemma 4.2, we have for every pair i, j where i ∈ S∗K−h, j /∈ S∗K+h,

P(Ŵj > Ŵi) ≤ exp

(
−

3pR
(
n−1
m−1

)
(τ

(m)
i − τ (m)

j )2

8(τ
(m)
i + τ

(m)
j )

)
.

Following the same argument as in the proof of Theorem 4.4, one can show that

τK−h + τK+h+1

∆2
K,h

= max
i∈S∗K−h,j /∈S

∗
K+h

τ
(m)
i + τ

(m)
j

(τ
(m)
i − τ (m)

j )2
.

The rest of the proof follows by showing that given the condition on p,R in the theorem statement, the probability that
Generalized Borda Count wrongly flips the relative order of any two items i ∈ S∗K−h, j /∈ S∗K+h is upper bounded by
O( 1

n3 ). Applying union bound over all such pairs of i, j completes the proof.

In short, Generalized Borda Count has the following sample complexity for approximate top-K ranking

O

(
n log n

m∆
(m)
K,h

· (1 +
τ

(m)
K+h+1

∆
(m)
K,h

)
.

1.4 LOWER BOUND ON THE SAMPLE COMPLEXITY OF TOP-K RECOVERY

1.4.1 Preliminaries and notations

We first restate a version of Fano’s inequality Cover [1999] which will be useful to the construction of our lower bound:

Lemma 1.7 (Fano’s inequality). Consider a set of L distributions {P1, . . . ,PL}. Suppose that we observe a random variable
(or a set of random variables) Y that was generated by first picking an index A ∈ {1, . . . , L} uniformly at random and then
Y ∼ PA. Fano’s inequality states that any hypothesis test φ for this problem has an error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1−
maxa,b∈[L],a 6=bDKL(Pa(Y )‖Pb(Y )) + log 2

logL
.

To obtain a lower bound in the form of Theorem 5.1, we need to construct an IID-RUM such that any method requires
Ω(n log n) examples in order to accurately recover the top K items. For this purpose, we look for a model within the
Multinomial Logit family. It is well known that the MNL model is an instance of IID-RUM where the noise distribution is
the standard Gumbel distribution. While the MNL model has a random utility characterization, it is often more convenient to
describe the MNL model in terms of weighted probabilities. Specifically, an MNL model over n items can be parameterized
by a set of n positive real numbers w1, . . . , wn called weights. There is also a well defined relation between the weighted



probabilities representation and the utility partworth representations. Specifically, the resulting choice probability is defined
to be:

ρ(i|S) =
wi∑
k∈S wk

=
eUi∑
k∈S e

Uk

Now consider a special sub-class of MNL models that is defined by 3 parameters (v, δ,S∗K) for some 0 < δ < v and a set
S∗K of size K. The item-specific weights are then defined as follows.

wi =

{
v + δ if i ∈ S∗K
v otherwise

.

That is, all the top items have the same weights and all the bottom items have the same (but smaller) weight. For any
A ∈ [K, . . . , n] letMA be a special MNL model parametrized by (v, δ, {1, . . . ,K − 1, A}) as described above. One can
see that Fano’s inequality can be used to lower bound the error probability of any hypothesis test for the identity of A. That
is, to lower bound the probability that any estimator fails to correctly identify the K-th item.

Recall our uniform sampling model described in Section 4.1, let us use {Y rS }S∈C(m),r=1:R to denote the observed choice
data where:

Y rS =

{
y for some y ∈ S if menu S is offered in round r
0 if menu S is not offered in round r

.

As a short hand, denote ρa as the choice rule corresponding toMa and ρb corresponding toMb. Let Pa({Y rS }) denote the
likelihood of choice data {Y rS } under choice modelMa (define analogously forMb).

1.4.2 Exact top-K recovery

The following pair of lemma and theorem establish the lower bound for exact top-K recovery via showing an upper bound
on the KL divergence between any two modelsMa,Mb and then applying Fano’s inequality.

Lemma 1.8. Assuming the same sampling model as in Theorem 4.2, we have, for any a, b ∈ [K, . . . , n],

DKL(Pa({Y rS })‖Pb({Y rS })) ≤ 4pR

(
n− 1

m− 1

)
∆

(m)
K

2

τ
(m)
K

.

Theorem 5.1. Consider the sampling model described in Section 4.1. There exists a choice modelM∗ within the class of

Multinomial Logit Models (MNLs) such that for n ≥ 20, if pR
(
n
m

)
≤ n logn

8 · τ
(m)
K

m∆
(m)
K

2 then any statistical estimator fails to

correctly identify all of the top K items with probability at least 1
12 .

Once Lemma 1.8 has been established, we can prove Theorem 5.1 as follows. For any n ≥ 20, if ∆
(m)
K

2
≤ τ

(m)
K ·logn

8pR(n−1
m−1)

,

Fano’s inequality gives us a lower bound on the error of any estimator for finding the top K items underM(v, δ,S∗K):

P(ŜK 6= S∗K) ≥ 1− 0.5 log n+ log 2

log(n−K + 1)
≥ 1− 0.5 log n+ log 2

log(n/2 + 1)
≥ 0.086 .

The rest of the proof of Theorem 5.1 involves simple algebra, noting that
(
n
m

)
=
(
n−1
m−1

)
· nm . We now move on to the proof

of Lemma 1.8.

Proof. (Proof of Lemma 1.8). Let Ĉ(m,r) denote the set of menus of size m being picked in round r under the sampling



model described in Section 4.1. Let us first decompose DKL(Pa({Y rS })‖Pb({Y rS })) into a more manageable form.

DKL(Pa({Y rS })‖Pb({Y rS }))
[thanks to mutual independence among {Y rS }]

=

R∑
r=1

∑
S∈C(m)

DKL(Pa(Y rS )‖Pb(Y rS ))

=

R∑
r=1

∑
S∈C(m)

DKL(Pa(Y rS |S ∈ C(m,r)
r )Pa(S ∈ Ĉ(m))‖Pb(Y rS |S ∈ Ĉ(m,r))Pa(S ∈ Ĉ(m)))

=

R∑
r=1

∑
S∈C(m)

DKL(Pa(Y rS |S ∈ Ĉ(m,r))Pa(S ∈ Ĉ(m,r))‖Pb(Y rS |S ∈ Ĉ(m,r)
r )Pb(S ∈ Ĉ(m,r)))

[Using the fact that Pa(S ∈ Ĉ(m,r)) = Pb(S ∈ Ĉ(m,r)) = p]

= pR
∑

S∈C(m)

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1))) .

To handle the above sum, partition C(m) into 4 subsets {S ∈ C(m) : a, b /∈ S}, {S ∈ C(m) : a ∈ S, b /∈ S}, {S ∈ C(m) :
a /∈ S, b ∈ S}, {S ∈ C(m) : a, b ∈ S}. It is easy to see that for S : a, b /∈ S, the corresponding KL divergence terms are all
0. Hence, we only have to work with other 3 subsets. Before going into the details, let us define some shorthand notations:
let wa(S) denote the sum of the weights of the items in menu S underMa and S + a denote set union.

Subset 1: {S ∈ C(m) : a, b ∈ S}

∑
S∈C(m):a,b∈S

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1)))

[Note that ρa(x|S) = ρb(x|S) ∀x 6= a, b and wa(S) = wb(S) for all S : a, b ∈ S]

=
∑

S∈C(m):a,b∈S

ρa(a|S) log
ρa(a|S)

ρb(a|S)
+ ρa(b|S) log

ρa(b|S)

ρb(b|S)

=
∑

S∈C(m):a,b∈S

v + δ

wa(S)
log

v + δ

v
+

v

wa(S)
log

v

v + δ

=
∑

S∈C(m):a,b∈S

δ

wa(S)
log

v + δ

v
.

Subset 2: {S ∈ C(m) : a ∈ S, b /∈ S}. Firstly, it is easy to verify the following useful identities: wa(S′ + a) =
wb(S′ + b), wa(S′ + b) = wb(S′ + a)∀S′ : a, b /∈ S′. Furthermore, wa(x) = wb(x)∀x 6= a, b. Now we have

∑
S∈C(m):a∈S,b/∈S

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1)))

=
∑

S′∈C(m−1):a,b/∈S′

[( ∑
x∈S′

ρa(x|S′ + a) log
ρa(x|S′ + a)

ρb(x|S′ + a)

)
+ ρa(a|S′ + a) log

ρa(a|S′ + a)

ρb(a|S′ + a)

]

=
∑

S′∈C(m−1):a,b/∈S′

[( ∑
x∈S′

wa(x)

wa(S′ + a)
log

wb(S′ + a)

wa(S′ + a)

)
+

v + δ

wa(S′ + a)
log

v + δ

v
· w

b(S′ + a)

wa(S′ + a)

]

=
∑

S′∈C(m−1):a,b/∈S′

[( ∑
x∈S′

wa(x)

wa(S′ + a)
log

wa(S′ + b)

wa(S′ + a)

)
+

v + δ

wa(S′ + a)
log

v + δ

v
· w

a(S′ + b)

wa(S′ + a)

]
.



Subset 3: {S ∈ C(m) : a ∈ S, b /∈ S}. Following a very similar procedure to the 2nd subset, we obtain:∑
S∈C(m):a/∈S,b∈S

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1)))

=
∑

S′∈C(m−1):a,b/∈S′

[( ∑
x∈S′

wa(x)

wa(S′ + b)
log

wa(S′ + a)

wa(S′ + b)

)
+

v

wa(S′ + b)
log

v

v + δ
· w

a(S′ + a)

wa(S′ + b)

]
.

Focusing on the terms from the 2nd and 3rd subset and grouping them in an intelligent way gives us∑
S∈C(m):a/∈S,b∈S

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1)))

+
∑

S∈C(m):a∈S,b/∈S

DKL(Pa(Y 1
S |S ∈ Ĉ(m,1))‖Pb(Y 1

S |S ∈ Ĉ(m,1)))

=
∑

S′∈C(m−1):a,b/∈S

[( ∑
x∈S′

wa(x)

wa(S′ + a)
log

wa(S′ + b)

wa(S′ + a)

)
+

v + δ

wa(S′ + a)
log

v + δ

v
· w

a(S′ + b)

wa(S′ + a)

]

+
∑

S′∈C(m−1):a,b/∈S

[( ∑
x∈S′

wa(x)

wa(S′ + b)
log

wa(S′ + a)

wa(S′ + b)

)
+

v

wa(S′ + b)
log

v

v + δ
· w

a(S′ + a)

wa(S′ + b)

]

=
∑

S′∈C(m−1):a,b/∈S

[(
v + δ

wa(S′ + a)
− v

wa(S′ + b)

)
log

v + δ

v

]

+
∑

S′∈C(m−1):a,b/∈S

log
wa(S′ + a)

wa(S′ + b)
·
[ ∑
x∈S′

(
wa(x)

wa(S′ + b)
− wa(x)

wa(S′ + a)

)
+

v

wa(S′ + b)
− v + δ

wa(S′ + a)

]

=
∑

S′∈C(m−1):a,b/∈S

[(
v + δ

wa(S′ + a)
− v

wa(S′ + b)

)
log

v + δ

v

]
.

The last equality comes from recognizing that
∑
x∈S′

wa(x)
wa(S′+b) + v

wa(S′+b) = wa(S′+b)
wa(S′+b) = 1 and similarly

∑
x∈S′

wa(x)
wa(S′+a) +

v+δ
wa(S′+a) = wa(S′+a)

wa(S′+a) = 1 so they cancel out and the second term becomes 0. We now have the following much more
compact identity.

DKL(Pa({Y rS })‖Pb({Y rS }))

= pR · log
v + δ

v
·
( ∑
S∈C(m):a,b∈S

δ

wa(S)
+

∑
S′∈C(m−1):a,b/∈S

[
v + δ

wa(S′ + a)
− v

wa(S′ + b)

])
.

To make a connection between this and ∆
(m)
K , recognize that underMa, ∆

(m)
K = τ

(m)
a − τ (m)

b . We therefore have

∆
(m)
K = τ (m)

a − τ (m)
b

=
1(
n−1
m−1

) · ( ∑
S∈C(m):a∈S

ρa(a|S)−
∑

S∈C(m):b∈S

ρa(b|S)

)

=
1(
n−1
m−1

) · ( ∑
S∈C(m):a∈S

v + δ

wa(S)
−

∑
S∈C(m):b∈S

v

wa(S)

)

=
1(
n−1
m−1

) · ( ∑
S∈C(m):a,b∈S

v

wa(S)
+

∑
S∈C(m):a∈S,b/∈S

v + δ

wa(S)
−

∑
S∈C(m):a/∈S,b∈S

v

wa(S)

)

=
1(
n−1
m−1

) · ( ∑
S∈C(m):a,b∈S

δ

wa(S)
+

∑
S′∈C(m−1):a,b/∈S′

[
v + δ

wa(S′ + a)
− v

wa(S′ + b)

])
.

We thus have

DKL(Pa({Y rS })‖Pb({Y rS })) = pR log
v + δ

v

(
n− 1

m− 1

)
∆

(m)
K . (4)



We will now bound log v+δ
v in terms of ∆

(m)
K

τ
(m)
K

.

∆
(m)
K

τ
(m)
K

=

∑
S∈C(m):a,b∈S

wa(a)−wa(b)
wa(S)+2v+δ +

∑
S∈C(m−1):a,b/∈S

wa(a)
wa(S)+v+δ −

wa(b)
wa(S)+v∑

S∈C(m):a,b∈S
wa(a)

wa(S)+2v+δ +
∑
S∈C(m−1):a,b/∈S

wa(a)
wa(S)+v+δ

=

∑
S∈C(m):a,b∈S

δ
wa(S)+2v+δ +

∑
S∈C(m−1):a,b/∈S

δ(wa(S))
(wa(S)+v+δ)(wa(S)+v)∑

S∈C(m):a,b∈S
v+δ

wa(S)+2v+δ +
∑
S∈C(m−1):a,b/∈S

v+δ
wa(S)+v+δ

=

∑
S∈C(m):a,b∈S

1
wa(S)+2v+δ +

∑
S∈C(m−1):a,b/∈S

(wa(S))
(wa(S)+v+δ)(wa(S)+v)∑

S∈C(m):a,b∈S
1

wa(S)+2v+δ +
∑
S∈C(m−1):a,b/∈S

1
wa(S)+v+δ

· δ

v + δ

≥
∑
S∈C(m−1):a,b/∈S

1
wa(S)+v+δ ·

wa(S)
wa(S)+v∑

S∈C(m−1):a,b/∈S
1

wa(S)+v+δ

· δ

v + δ

≥
∑
S∈C(m−1):a,b/∈S

1
wa(S)+v+δ ·

(m−1)v
(m−1)v+v∑

S∈C(m−1):a,b/∈S
1

wa(S)+v+δ

· δ

v + δ

=
(m− 1)v

mv
· δ

v + δ

=
m− 1

m

δ

v + δ
≥ 1

2

δ

v + δ
.

We can now bound log v+δ
v as

log
v + δ

v
≤ δ

v
≤ 2δ

v + δ
≤

4∆
(m)
K

τ
(m)
K

.

Combining with equation (4) completes the proof.

1.4.3 Approximate top-K recovery

To obtain a lower bound on the sample complexity for approximate top-K recovery, we require a more nuanced construction
than that in the proof of Theorem 5.1. At a high level, we need to construct a multiset of K-size subsets {S1, . . . ,SL}.
Each K-size subset Sl corresponds to an MNL model whose top K items are exactly Sl. We need to carefully design this
multiset such that the pairwise edit distance between any two subsets is larger than 2h. This automatically ensures that any
top-K estimate is close in edit distance to at most one of the L subsets. At the same time, we also want the distance between
the distributions induced by any two models to be small in KL divergence sense. This would then allow us to invoke Fano’s
lemma to lower bound the probability that any statistical estimator outputs a top-K estimate set with small edit distance
error. Lastly, we also want L to be sufficiently large in order to obtain a good lower bound using Fano’s lemma.

We first present a reworded version of Lemma 9 of Shah and Wainwright [2017]. The original lemma, in turn, is based on a
result due to Levenshtein [1971] for fixed weighted binary codes.

Lemma 1.9. [Shah and Wainwright, 2017, lemma 9] Consider the regime where h < 2
3 min{K,

√
n, n−K}. For sufficiently

large n, there exists a multiset {s1, . . . , sL} with cardinality L ≥ exp
(

9
20h log n

)
and sl ⊆ [n2 , n] for l ∈ [L] such that

|sl| = 3h

2
∀l ∈ [L] and D01(sj , sl) = 2h+ 1 for all j 6= l ∈ [L] .

By the above lemma, there exists a multiset of cardinality exp
(

9
20h log n

)
, consisting of sets of size exactly 3h

2 , with
elements from [n2 , n]. For sl, let us construct a MNL model as follows: let u = {1, . . . ,K − 3h

2 } and SlK = u∪ sl be the set
of the top K items for model l ∈ [L]. Note that this construction is valid since h < 2K

3 . Following closely the description of
the special MNL model used in subsection (1.4.2), we assign v as weight for all items in [n]\SlK , v + δ/2 for all items in u
and v + δ for all items in sl for some v > δ > 0. In other words, vl is the set of the top 3h

2 items for the l-th model while u
is the set composing of the 3h

2 + 1-th, . . . ,K-th best item for model l.



We emphasize that by design,D01(SlK ,S
j
K) > 2h for any l 6= j ∈ [L]. This also means that for any estimate ŜK , there exists

at most one index a ∈ [L] such that D01(ŜK ,SaK) ≤ h. In other words, outputting an estimate with low edit distance error is
equivalent to exactly identifying the set of the top K items. All that remains is to prove that it is hard to distinguish between
any two models as their distributions over observed choice data have small KL divergence. Such a result is summarized in
the lemma below:

Lemma 1.10. Consider the construction described above, for any two models indexed by a, b ∈ [L] with a 6= b. Let Pa and
Pb be the distributions parametrized by SaK and SbK as described above, respectively. Under the sampling model described
in Section 4.1, we have

DKL(Pa({Y })‖Pb({Y })) ≤ 12hpR

(
n− 1

m− 1

)
∆

(m)
K,h

2

τ
(m)
K−h

Before proving Lemma 1.10, let us state and prove the sample complexity lower bound for approximate top-K ranking, the
proof of which directly makes use of the lemma.

Theorem 1.11. Consider the sampling model described in Section 4.1. There exists a choice modelM∗ within the class of

Multinomial Logit Models (MNLs) such that for n ≥ 20, if pR
(
n
m

)
≤ 1

96
n logn

m∆
(m)
K,h

· τ
(m)
K−h

∆
(m)
K,h

then any statistical estimator outputs

an estimate ŜK and

D01(ŜK ,S∗K) > h

with probability at least 1
5 .

Proof. Consider the regime when p,R are small enough such that

pR

(
n− 1

m− 1

)
≤ log n

96∆
(m)
K,h

2 · τ
(m)
K−h =

log n

96∆
(m)
K,h

2 · (τ
(m)
K−h + ∆

(m)
K,h)

and the multiset construction as described above. Invoking Fano’s inequality, we have the probability that any statistical
estimator failing to output an estimate ŜK such that D01(ŜK ,S∗K) ≤ h, is lower bounded as

1−
1
8h log n+ log 2

9
20h log n

≥ 1

5
for n ≥ 20 .

This finishes the proof.

We will now proceed to prove Lemma 1.10.

Proof. Following the same notation and argument as in the proof of Lemma 1.8, we have

DKL(Pa({Y })‖Pb({Y })) = pR
∑

S∈C(m)

DKL(Pa(y1
S |S ∈ Ĉ(m,1))‖Pb(y1

S |S ∈ Ĉ(m,1))) .

Similarly to the proof of Lemma 1.8, let us define some shorthand notations: let wa(S) denote the sum of the weights of the
items in menu S and wa(i) the weight of item i under the special MNL model whose top K items is SaK (similarly defined
for b 6= a). Expanding on the sum of the KL divergence terms and rearranging the summation order gives us



1

pR
DKL(Pa({Y })‖Pb({Y }))

=
∑

i∈Sa
K\Sb

K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wa(i) · wb(S)

wb(i) · wa(S)
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wa(i) · wb(S)

wb(i) · wa(S)

+
∑

i∈Sa
K∩Sb

K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wa(i)wb(S)

wb(i)wa(S)
+

∑
i∈[n]\(Sa

K∪Sb
K)

∑
S∈C(m)

i

wa(i)

wa(S)
log

wa(i)wb(S)

wb(i)wa(S)

=
∑

i∈Sa
K\Sb

K

∑
S∈C(m)

i

v + δ

wa(S)
log

(v + δ) · wb(S)

v · wa(S)
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)
log

v · wb(S)

(v + δ) · wa(S)

+
∑

i∈Sa
K∩Sb

K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)
+

∑
i∈[n]\(Sa

K∪Sb
K)

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)

=
∑

i∈Sa
K\Sb

K

∑
S∈C(m)

i

v + δ

wa(S)
log

v + δ

v
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)
log

v

v + δ

+
∑

i∈Sa
K\Sb

K

∑
S∈C(m)

i

v + δ

wa(S)
log

wb(S)

wa(S)
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)
log

wb(S)

wa(S)
(∗)

+
∑

i∈Sa
K∩Sb

K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)
+

∑
i∈[n]\(Sa

K∪Sb
K)

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)
.

In the second equality, we have made use of the fact that for any item i in SaK ∪SbK and SaK ∩SbK , wa(i) = wb(i). Focusing
on the first two summations,

∑
i∈Sa

K\Sb
K

∑
S∈C(m)

i

v + δ

wa(S)
log

v + δ

v
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)
log

v

v + δ

=

( ∑
i∈Sa

K\Sb
K

∑
S∈C(m)

i

v + δ

wa(S)
−

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)

)
log

v + δ

v

= (2h+ 1)

(
n− 1

m− 1

)
∆

(m)
K,h log

δ + v

v
< 3h

(
n− 1

m− 1

)
∆

(m)
K,h log

δ + v

v
.

The last equality comes from recognizing that |SaK\SbK | = |SbK\SaK | = D01(SaK ,SbK) = 2h + 1. We now simplify the



remaining four summation terms of (∗).

∑
i∈Sa

K\Sb
K

∑
S∈C(m)

i

v + δ

wa(S)
log

wb(S)

wa(S)
+

∑
i∈Sb

K\Sa
K

∑
S∈C(m)

i

v

wa(S)
log

wb(S)

wa(S)

+
∑

i∈Sa
K∩Sb

K

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)
+

∑
i∈[n]\(Sa

K∪Sb
K)

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)

=
∑
i∈[n]

∑
S∈C(m)

i

wa(i)

wa(S)
log

wb(S)

wa(S)

=
∑

S∈C(m)

∑
i∈S

wa(i)

wa(S)
log

wb(S)

wa(S)

=
∑

S∈C(m)

log
wb(S)

wa(S)

= log

∏
S∈C(m) wb(S)∏
S∈C(m) wa(S)

= log 1 = 0 .

The last equality comes from recognizing that the two models a and b only differ by the the identities of the items while the
weights are the same. Therefore, the two products in the log term are identical. We thus obtain

DKL(Pa({Y })‖Pb({Y })) < pR3h

(
n− 1

m− 1

)
∆

(m)
K,h log

δ + v

v
. (∗∗)

Following the same argument as in the proof of Lemma 1.8, we can bound

log
δ + v

v
≤ 4

∆
(m)
K,h

τ
(m)
K−h

.

Substituting this into (∗∗) completes the proof.

In short, the (matching) lower bound on the sample complexity for approximate top-K ranking is

Ω

(
n log n

m∆
(m)
K,h

·
(
1 +

τ
(m)
K+h+1

∆
(m)
K,h

)

)
.

1.5 EFFECT OF THE MENU SIZE ON THE SAMPLE COMPLEXITY

Theorem 6.1. Consider an MNL model with n ≥ 2 items and fix a K, we have

1

m∆
(m)
K

= θ

(
1

eUK − eUK+1
·
(
1 +

1

m− 1

)2)
,

τ
(m)
K+1

∆
(m)
K

= θ

(
eUK+1

eUK − eUK+1
·
(
1 +

1

m− 1

))
.

Proof. Part 1. We will prove that there exists a positive valued function l(m) such that m∆
(m)
K < l(m) and that l(m)

monotonically increases with m, and at diminishing rate. Once we have obtained l(m), we can set f1(m) = 1
l(m) . In

fact, we will prove a slightly more general result concerning any pair of items i, j where wi := eUi > eUj =: wj . Let



∆
(m)
ij = τ

(m)
i − τ (m)

j . Additionally, let wn := eUn = eUmin and w1 := eU1 = eUmax be two model-dependent constants.
We have

m∆
(m)
ij =

m(
n−1
m−1

) · ( ∑
S∈C(m)

i ∩C(m)
j

wi
wi + wj +

∑
k∈S wk

− wj
wi + wj +

∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

wi
wi +

∑
k∈S wk

− wj
wj +

∑
k∈S wk

)

=
m(wi − wj)(

n−1
m−1

) ( ∑
S∈C(m)

i ∩C(m)
j

1

wi + wj +
∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

1

wj +
∑
k∈S wk

·
∑
k∈S wk

wi +
∑
k∈S wk

)

≤ m(wi − wj)(
n−1
m−1

) ((
n− 2

m− 2

)
· 1

wi + wj + (m− 2)wn
+

(
n− 2

m− 1

)
1

wj + (m− 1)wn
· (m− 1)w1

wi + (m− 1)w1

)
=
m(wi − wj)

n− 1

(
(m− 1) · 1

wi + wj + (m− 2)wn
+ (n−m)

1

wj + (m− 1)wn
· (m− 1)w1

wi + (m− 1)w1

)
=

(wi − wj)
n− 1

(
n

m

[wj + (m− 1)wn]

(m− 1)w1

[wi + (m− 1)w1]

+m(m− 1) ·
[

1

wi + wj + (m− 2)wn
− mw1

[wi + (m− 1)w1][wj + (m− 1)wn]

])
=

(wi − wj)
n− 1

(
n

m

[mwn + wj − wn]

(m− 1)w1

[wi + (m− 1)w1]

+m(m− 1) · (w1 − wi)(wn − wj)
[(m− 2)wn + wi + wj ][(m− 1)wn + wj ][(m− 1)w1 + wi]

)
=

(wi − wj)
n− 1

(
n

m

[mwn + wj − wn]

(m− 1)w1

[wi + (m− 1)w1]

+
(w1 − wi)(wn − wj)

(m− 2)wn + wi + wj
· m

mwn + wj − wn
· (m− 1)

(m− 1)w1 + wi]︸ ︷︷ ︸
≤0

)

≤ (wi − wj) ·
n

n− 1
· m

[mwn + wj − wn]

(m− 1)w1

[wi + (m− 1)w1]

= (wi − wj) ·
n

n− 1
· (1− wj/wn − 1

m− 1 + wj/wn
) · (1− wi/w1

m− 1 + wi/w1
) .

It is easy to see that all of the terms containing m are positive and increase with m. Additionally, it is easy to show that all
of these terms increase with decreasing rate with respect to m. Though complicated, the above lower bound can somewhat
be simplified using big-O notations.

m∆
(m)
ij = Ω

(
(wi − wj) · (1−

1

m
)2

)
.

By modifying the above argument, we can also show a variational lower bound on m∆
(m)
ij .



m∆
(m)
ij =

m(
n−1
m−1

) · ( ∑
S∈C(m)

i ∩C(m)
j

wi
wi + wj +

∑
k∈S wk

− wj
wi + wj +

∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

wi
wi +

∑
k∈S wk

− wj
wj +

∑
k∈S wk

)

=
m(
n−1
m−1

) · ( ∑
S∈C(m)

i ∩C(m)
j

wi − wj
wi + wj +

∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

wi
wi +

∑
k∈S wk

− wj
wj +

∑
k∈S wk

)

=
m(
n−1
m−1

) · ( ∑
S∈C(m)

i ∩C(m)
j

wi − wj
wi + wj +

∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

(wi − wj)(
∑
k∈S wk)

(wi +
∑
k∈S wk)(wj +

∑
k∈S wk)

)

=
m(wi − wj)(

n−1
m−1

) ( ∑
S∈C(m)

i ∩C(m)
j

1

wi + wj +
∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

1

wi +
∑
k∈S wk

·
∑
k∈S wk

wj +
∑
k∈S wk

)

[Using the fact that
∑
k∈S wk

wj +
∑
k∈S wk

≥
∑
k∈S wn

wj +
∑
k∈S wn

∀S : j ∈ S]

≥ m(wi − wj)(
n−1
m−1

) ( ∑
S∈C(m)

i ∩C(m)
j

1

wi + wj +
∑
k∈S wk

+
∑

S′∈C(m−1):i,j /∈S

1

wi +
∑
k∈S wk

· (m− 1)wn
wj + (m− 1)wn

)

≥ m(wi − wj)(
n−1
m−1

) ((
n− 2

m− 2

)
1

wi + wj + (m− 2)w̄
+

(
n− 2

m− 1

)
1

wi + (m− 1)w̄
· (m− 1)wn
wj + (m− 1)wn

)
.

where w̄ = 1
n−2

∑
k 6=i,j wk. The last inequality comes from applying Jensen’s inequality. More precisely, one could treat the

sum
∑
k∈S wk as a random variable and the summation as the unnormalized ‘expectation’ over the uniform distribution of

the menus. As 1
x is a convex function in x for positive x, Jensen’s inequality applies. Furthermore, without loss of generality,

one can assume that w̄ = 1 (via scaling of the weights). Consequently, wn ≤ 1. Continuing with the expansion gives us



m∆
(m)
ij ≥

m(wi − wj)(
n−1
m−1

) ((
n− 2

m− 2

)
1

wi + wj + (m− 2)w̄
+

(
n− 2

m− 1

)
1

wi + (m− 1)w̄
· (m− 1)wn
wj + (m− 1)wn

)
=
m(wi − wj)

n− 1

(
m− 1

wi + wj + (m− 2)
+

n−m
wi + (m− 1)

· (m− 1)wn
wj + (m− 1)wn

)
=

(wi − wj)
n− 1

(
m(m− 1)

wi + wj + (m− 2)
+

m(n−m)

wi + (m− 1)
· (m− 1)wn
wj + (m− 1)wn

)
≥ (wi − wj)

n− 1

(
m(m− 1)

wi + wj + (m− 2)
+

(m− 1)(n−m)

wi + (m− 1)
· (m− 1)wn
wj + (m− 1)wn

)
≥ (wi − wj)

n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj
+

m(m− 1)

wi + wj + (m− 2)
− m(m− 1)(m− 1)wn

(wi +m− 1)(wj + (m− 1)wn)

)
≥ (wi − wj)

n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj

+m(m− 1)

(
1

wi + wj + (m− 2)
− (m− 1)wn

(wi +m− 1)(wj + (m− 1)wn)

))
[Expanding on the difference term]

≥ (wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj

+m(m− 1)

(
1

wi + wj + (m− 1)
− (m− 1)wn

(wi +m− 1)(wj + (m− 1)wn)

))
=

(wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj

+m(m− 1) · (wiwj + wi(m− 1)wn +mwj +m(m− 1)wn − wj − (m− 1)wn − wi(m− 1)wn − wj(m− 1)wn−

m(m− 1)wn + 1(m− 1)wn))/
(
(wi + wj + (m− 1))(wi +m− 1)(wj + (m− 1)wn)

))
=

(wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj

+m(m− 1) · mwj + wiwj − wj − wj(m− 1)wn
(wi + wj + (m− 1))(wi +m− 1)(wj + (m− 1)wn)

)
=

(wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj

+m(m− 1)wj ·
m+ wi − 1− (m− 1)wn

(wi + wj + (m− 1))(wi +m− 1)(wj + (m− 1)wn)

)
=

(wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj
+

m(m− 1)wj((m− 1)(1− wn) + wi)

(wi + wj + (m− 1))(wi +m− 1)(wj + (m− 1)wn)

)
≥ (wi − wj)

n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj
+

m(m− 1)wj((m− 1)(1− wn) + wi)

(wi + wj +m)(wi +m− 1)(wj + (m− 1)wn)

)
=

(wi − wj)
n− 1

(
n · m− 1

m− 1 + wi
· (m− 1)wn

(m− 1)wn + wj
+ wj ·

m

wi + wj +m
· m− 1

wj + (m− 1)wn
· wi + (m− 1)(1− wn)

wi + (m− 1)︸ ︷︷ ︸
≥0

)

≥ (wi − wj)
n− 1

(
n · (1− wi

m− 1 + wi
) · (1− wj

(m− 1)wn + wj
)

)
= (wi − wj) ·

n

n− 1
· (1− wi

m− 1 + wi
) · (1− wj/wn

m− 1 + wj/wn
) .



We thus have m∆ij = O((wi − wj) · 1− 1
m )2). Combining with the upper bound shown earlier, we get

m∆ij = θ

(
(wi − wj) · (1−

1

m
)2

)
.

Part 2. We will prove that there exists a positive valued function l(m) such that
∆

(m)
ij

τ
(m)
j

≥ l(m) and that l(m2) > l(m1) for

m2 > m1 ≥ 2. Consider for any two items i, j such that wi > wj . By definition

∆
(m)
ij

τ
(m)
j

=

∑
S∈C(m)

i ∩C(m)
j

wi−wj∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

wi

wi+
∑

k∈S wk
− wj

wj+
∑

k∈S wk∑
S∈C(m)

i ∩C(m)
j

wj∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

wj

wj+
∑

k∈S wk

=

∑
S∈C(m)

i ∩C(m)
j

wi−wj∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

(wi−wj)(
∑

k∈S wk)

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

wj∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

wj

wj+
∑

k∈S wk

=

∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

∑
k∈S wk

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

1
wj+

∑
k∈S wk

· wi − wj
wj

= (1−

∑
S∈C(m−1):i,j /∈S

wj

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

1
wj+

∑
k∈S wk

) · wi − wj
wj

.

The goal is to upper (and lower) bound the quantity

∑
S∈C(m−1):i,j /∈S

wj

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

1
wj+

∑
k∈S wk

.

For a lower bound, we can show that

∑
S∈C(m−1):i,j /∈S

wj

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

1
wj+

∑
k∈S wk

≥

(
n−2
m−1

)
1

(m−1)w1+wi

wj

wj+(m−1)w1(
n−2
m−2

)
· 1

(m−2)wn+wi+wj
+
(
n−2
m−1

)
· 1

(m−1)wn+wj

=
(n−m) · 1

(m−1)w1+wi

wj

wj+(m−1)w1

(m− 1) · 1
(m−2)wn+wi+wj

+ (n−m) · 1
(m−1)wn+wj

[Noting that (m− 2)wn + wi + wj = (m− 1)wn + wj + (wi − wn) ≥ (m− 1)wn + wj ]

≥
(n−m) · 1

(m−1)w1+wi

wj

wj+(m−1)w1

(m− 1) · 1
(m−1)wn+wj

+ (n−m) · 1
(m−1)wn+wj

=
n−m
n− 1

· 1

(m− 1)w1 + wi
· (m− 1)wn + wj

(m− 1)w1 + wj

≥ n−m
n− 1

· 1/w1

m− 1 + wi/w1
· wn
w1

.



For an upper bound, we can show that∑
S∈C(m−1):i,j /∈S

wj

(wi+
∑

k∈S wk)(wj+
∑

k∈S wk)∑
S∈C(m)

i ∩C(m)
j

1∑
k∈S wk

+
∑
S∈C(m−1):i,j /∈S

1
wj+

∑
k∈S wk

≤

(
n−2
m−1

)
1

(m−1)wn+wi

wj

wj+(m−1)wn(
n−2
m−2

)
· 1

(m−2)w1+wi+wj
+
(
n−2
m−1

)
· 1

(m−1)w1+wj

=
(n−m) · 1

(m−1)wn+wi

wj

wj+(m−1)wn

(m− 1) · 1
(m−2)w1+wi+wj

+ (n−m) · 1
(m−1)w1+wj

[Noting that (m− 2)w1 + wi + wj = (m− 1)w1 + wj + (wi − w1) ≤ (m− 1)w1 + wj ]

≤
(n−m) · 1

(m−1)wn+wi

wj

wj+(m−1)wn

(m− 1) · 1
(m−1)w1+wj

+ (n−m) · 1
(m−1)w1+wj

=
n−m
n− 1

· 1/wn
m− 1 + wi/wn

· w1

wn
.

In both cases, it is straight forward to check that both of the upper and lower bounds decrease with increasing m and at a
decreasing rate. Furthermore, they have the same asympotic dependency on m. Putting both bounds together, we have

∆
(m)
ij

τ
(m)
j

= θ

(
(1− n−m

n− 1
· 1

m
) · wi − wj

wj

)
= θ

(
n

n− 1
· (1− 1

m
) · wi − wj

wj

)
.

Simplifying the above expression by removing the dependency on n gives

∆
(m)
ij

τ
(m)
j

= θ

(
(1− 1

m
) · wi − wj

wj

)
.

This completes the proof.

1.6 CONNECTION AMONG MNL-MLE, GENERALIZED BORDA COUNT AND SPECTRAL RANKING

In this section, we will prove the theorems about the connections among the three algorithms. Here, we provide more general
results pertaining to ranking output (as opposed to just top K estimate).

Theorem 7.1. Consider the sampling model described in Section 4.1, for any p > 0, in the limit as R→∞, MNL-MLE
and choice-based Borda count will produce the same top K estimate. Moreover, this holds even if the data does not come
from the MNL model or any IID-RUM.

Proof. Notation: As a shorthand notation, we will use p(i|S) denote the probability of item i being chosen from menu S.
Note that this probability does not necessarily follow any parametric RUM. Let ord denote the ordering function whose
input is a set of real numbers and whose output is the full ordering of the indices of those numbers in increasing order. Under
our sampling model, in the limit as R →∞, all the possible menus in C(m) are observed given that p > 0. Furthermore,
given infinite data, the observed probability becomes exact. Consider the log likelihood function

L(U) =

n∑
i=1

( ∑
S∈C(m)

i

p(i|S) · log
eUi∑
j∈S e

Uj

)
.

The derivative of the log likelihood with respect to individual partworth parameter is given as

∇Ui
L(U) =

∑
S∈C(m)

i

(
−

∑
j∈S,j 6=i

p(j|S)
eUi∑
k∈S e

Uk
− p(i|S)

eUi∑
k∈S e

Uk
+ p(i|S)

)

=
∑

S∈C(m)
i

(
p(i|S)− eUi∑

k∈S e
Uk

)
.



As the log likelihood function is concave in U , the MLE estimate Û must satisfy:

∑
S∈C(m)

i

eÛi∑
j∈S e

Ûj

=
∑

S∈C(m)
i

p(i|S) ∀i .

On the other hand it can easily be shown that for any two items i 6= j,

Ûi > Ûj ⇒
∑

S∈C(m)
i

eÛi∑
k∈S e

Ûk

>
∑

S∈C(m)
j

eÛj∑
k∈S e

Ûk

.

Hence,

ord({Ûi}ni=1) = ord({
∑

S∈C(m)
i

eÛi∑
k∈S e

Ûk

}ni=1) = ord({
∑

S∈C(m)
i

p(i|S)}ni=1) .

Observing that the ordering given by the Borda Count algorithm is consistent with the ordering induced by
{
∑
S∈C(m)

i
p(i|S)}ni=1 completes the proof.

Theorem 7.2. Consider the sampling model described in Subsection 4.1. Assume that the underlying choice model
generating the data is in the class of IID-RUMs whose noise distribution has absolutely continuous density function with
support on the real line. For any p > 0, in the limit as R→∞, then Spectral Ranking, MNL-MLE and choice-based Borda
count produce the same top K estimate.

On the other hand, there exists a choice model where in the limit as R→∞, the spectral ranking algorithm produces a
different top K estimate from MNL-MLE/Borda count.

Proof. Following the argument as in the proof of Theorem 7.1, given p > 0 as R→∞, all possible menus of size m are
observed and all choice probabilities are exact. For the first part of the theorem it suffices to prove that under IID-RUMs, the
Spectral Ranking algorithm is consistent in recovering the true ordering among the items, as this will be the same ordering
as given by Generalized Borda Count/MLE.

The Spectral Ranking algorithm ranks the items by the stationary distribution of a Markov Chain constructed using choice
data. For analysis purpose, we follow the construction due to Negahban et al. [2017], Maystre and Grossglauser [2015]. Fix
a menu size m ≥ 2 and consider the following Markov Chain where for any two items i, j,

Mij =

{
1

(n−1
m−1)

∑
S∈C(m):i,j∈S ρ(j|S) if j 6= i

1−
∑
k 6=iMik if j = i

.

Consider any two items i, j such that Ui > Uj . Under IID-RUMs assumptions in the theorem statement, we have

ρ(i|S) > ρ(j|S) ∀S ∈ C(m) : i, j ∈ S

and
ρ(i|S′ ∪ {i}) > ρ(j|S′ ∪ {j}) ∀S′ ∈ C(m−1) : i, j /∈ S .

It is easy to show that
Mki >Mkj ∀k 6= i, j

and
Mii >Mjj .

Let π denote the stationary distribution of the Markov Chain constructed above. By definition, the stationary distribution of
the Markov Chain satisfies

πi =
∑
k∈[n]

πk ·Mki >
∑
k∈[n]

πk ·Mkj = πj .

For the second half of the theorem, let us consider the pairwise comparison setting (m = 2). We will construct a pairwise
choice model such that MNL-MLE/Generalized Borda Count give a different ordering among the items from Spectral



Ranking algorithm in the limit as R→∞. Consider an universe of 4 items with the following pairwise choice probability.
Note that Pij = P (j|{i, j}). Define

P =


0.5 0.6 0.55 0.55
0.2 0.5 0.85 0.60
0.45 0.40 0.5 0.95
0.45 0.45 0.15 0.5

 .
It is easy to check that τ4 > τ3 > τ2 > τ1. In the limit of infinite data, MLE/Borda Count will output the ordering 4, 3, 2, 1
(best item first). However, the Spectral Ranking algorithm will give the ordering 4, 2, 3, 1. This completes the proof.



2 ADDITIONAL EXPERIMENTS

2.1 DATASET DESCRIPTIONS

Table (1) shows the characteristics of the datasets used in our experiments: number of items, number of rankings available
and whether the data contains partial rankings.

Dataset n Num rankings Partial ranking?
APA 5 6000 No
Sushi 11 5000 No
Irish-North 12 44k Yes
Irish-West 9 30k Yes
Irish-Meath 14 64k Yes
F1 22 18 Yes

Table 1: Characteristics of the datasets used in our experiments.

Data preparation: Given menu sizem, to estimate choice probability from rankings and partial rankings, we first enumerate
all the possible menus of size m. For each menu S, and for each i ∈ S, we count the number of rankings where i is ranked
ahead of all the other items in S, a ’win’ for i. For a partial ranking where there are l items ranked as ‘equal’, we count
1
l -‘win’ for each item. Choice probability is obtained by normalizing the number of wins by the number of rankings.

Experiments: For each independent trial, we first generate all the data as specified by the maximum sample size. We then
feed increasing portion of this data to the algorithm and check if the algorithm correctly identifies all of the top K items. For
all experiments, we keep R = 100 and adjust p to obtain the appropriate expected sample size.

2.2 ADDITIONAL EXPERIMENTAL RESULTS

Figure 1: APA election dataset: Average training time (seconds) against sample size for m = 2, 3, 4.



Figure 2: Irish North dataset: Average training time (seconds) against sample size for m = 2, 4, 8.

Figure 3: Irish West dataset: Average training time (seconds) against sample size for m = 2, 4, 6.

Figure 4: Irish Meath dataset: Average training time (seconds) against sample size for m = 2, 4, 8.



Figure 5: SUSHI dataset: Average training time (seconds) against sample size for m = 2, 4, 8.

Figure 6: F1 dataset: Average training time (seconds) against sample size for m = 2, 4, 8.



Figure 7: APA election dataset: Exact top K accuracy against sample size



Figure 8: SUSHI dataset: Exact top K accuracy against sample size



Figure 9: Irish North dataset: Exact top K accuracy against sample size



Figure 10: Irish West dataset: Exact top K accuracy against sample sizes



Figure 11: Irish Meath dataset: Exact top K accuracy against sample size



Figure 12: F1 dataset: Exact top K accuracy against sample size.

References

Gordon M Becker, Morris H DeGroot, and Jacob Marschak. Stochastic models of choice behavior. Behavioral science, 8(1):
41–55, 1963.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Vladimir Iosifovich Levenshtein. Upper-bound estimates for fixed-weight codes. Problemy Peredachi Informatsii, 7(4):
3–12, 1971.

Lucas Maystre and Matthias Grossglauser. Fast and accurate inference of plackett–luce models. In Advances in neural
information processing systems, pages 172–180, 2015.

Sahand Negahban, Sewoong Oh, and Devavrat Shah. Rank centrality: Ranking from pairwise comparisons. Operations
Research, 65(1):266–287, 2017.

Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from pairwise comparisons. The Journal of
Machine Learning Research, 18(1):7246–7283, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge
university press, 2018.


	Proofs
	A closer look at IID-RUMs
	Sample complexity for exact top-K recovery
	Sample complexity for approximate top-K recovery
	Lower bound on the sample complexity of top-K recovery
	Preliminaries and notations
	Exact top-K recovery
	Approximate top-K recovery

	Effect of the menu size on the sample complexity
	Connection among MNL-MLE, Generalized Borda Count and Spectral Ranking

	Additional experiments
	Dataset descriptions
	Additional experimental results


