
Ordinal Causal Discovery: Supplementary Materials

Yang Ni1 Bani Mallick1

1Department of Statistics, Texas A&M University, College Station, Texas, USA

1 PROOF OF THEOREM 1

We need the notion of real analytic function.

Definition (Real Analytic Function) A real function is said to be analytic if it is infinitely differentiable and matches its
Taylor series in a neighborhood of every point.

Suppose X ∈ {1, . . . , S} and Y ∈ {1, . . . , L}. Consider two competing causal models pX→Y (X,Y |π,β,γ) and
pY→X(Y,X|ρ,α,η). We will show that these two causal models are in general not equivalent, i.e., PX→Y (X = s, Y =
`|π,β,γ) 6= PY→X(X = s, Y = `|ρ,α,η) for some s ∈ {1, . . . , S} and ` ∈ {1, . . . , L}, where S,L > 2. We prove it by
contradiction. Suppose for any s ∈ {1, . . . , S} and ` ∈ {1, . . . , L},

PX→Y (X = s, Y = `|π,β,γ) = PY→X(X = s, Y = `|ρ,α,η). (1)

The left-hand side of (1) is given by

PX→Y (X = s, Y = `|π,β,γ) = PX→Y (Y = `|X = s,β,γ)PX→Y (X = s|π)

= [PX→Y (Y ≤ `|X = s,β,γ)− PX→Y (Y ≤ `− 1|X = s,β,γ)]PX→Y (X = s|π)

= [F (γ` − βs)− F (γ`−1 − βs)]πs,

where F (x) is the logistic link function F (x) = ex

1+ex or the probit link function F (x) = Φ(x) with Φ(x) being the standard
normal cumulative distribution function. Similarly, the right-hand side of (1) is given by

PY→X(X = s, Y = `|ρ,α,η) = PY→X(X = s|Y = `,α,η)PY→X(Y = `|ρ) = [F (ηs − α`)− F (ηs−1 − α`)]ρ`.

Therefore, (1) leads to

[F (γ` − βs)− F (γ`−1 − βs)]πs = [F (ηs − α`)− F (ηs−1 − α`)]ρ` (2)

Note that the right-hand side of (2) is a telescoping series in s. Hence, summing up both sides of (2) over s from 1 to S, we
have

S∑
s=1

[F (γ` − βs)− F (γ`−1 − βs)]πs = [F (ηS − α`)− F (η0 − α`)]ρ`

= ρ`. (3)

The last equation is because ηS =∞ and η0 = −∞ and hence F (ηS − α`) = 1 and F (η0 − α`) = 0. Plug (3) into (2),

[F (γ` − βs)− F (γ`−1 − βs)]πs = [F (ηs − α`)− F (ηs−1 − α`)]

S∑
s=1

[F (γ` − βs)− F (γ`−1 − βs)]πs
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and hence

[F (γ` − βs)− F (γ`−1 − βs)]πs∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

= F (ηs − α`)− F (ηs−1 − α`) (4)

Now, consider s = 1 in (4) and note η0 = −∞ and η1 = 0,

[F (γ` − β1)− F (γ`−1 − β1)]π1∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

= F (η1 − α`)− F (η0 − α`)

= F (−α`).

Therefore,

α` = −F−1
{

[F (γ` − β1)− F (γ`−1 − β1)]π1∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

}
(5)

Sequentially plug (5) into (4) for s∗ = 2, . . . , S − 1 (note that one can at least plug in once for s∗ = 2 because S > 2),

ηs∗ = F−1

{∑s∗

s=1[F (γ` − βs)− F (γ`−1 − βs)]πs∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

}
− F−1

{
[F (γ` − β1)− F (γ`−1 − β1)]π1∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

}
, (6)

Because the left-hand side of (6) is independent of ` whereas the right-hand side of (6) depends on `, we have,

F−1

{∑s∗

s=1[F (γ` − βs)− F (γ`−1 − βs)]πs∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

}
− F−1

{
[F (γ` − β1)− F (γ`−1 − β1)]π1∑S
s=1[F (γ` − βs)− F (γ`−1 − βs)]πs

}

−F−1
{∑s∗

s=1[F (γ`∗ − βs)− F (γ`∗−1 − βs)]πs∑S
s=1[F (γ`∗ − βs)− F (γ`∗−1 − βs)]πs

}
+ F−1

{
[F (γ`∗ − β1)− F (γ`∗−1 − β1)]π1∑S
s=1[F (γ`∗ − βs)− F (γ`∗−1 − βs)]πs

}
= 0, (7)

for any ` 6= `∗. The link function F is an analytic function: (i) the logistic link F (x) = ex

1+ex is a composition of elementary
functions and hence is analytic; and (ii) the probit link F (x) = Φ(x) is analytic because the error function erf() is analytic.
Since F ′(x) is nowhere zero in either case, F−1(x) is analytic. Since the left-hand side of (7) is a composition of F , F−1,
sums, products, and reciprocals of γ`, γ`∗ , γ`−1, γ`∗−1, β1, . . . , βS , π1, . . . , πS , it is an analytic function [Krantz and Parks,
2002] and therefore its zero set must have Lebesgue measure zero [Mityagin, 2015]. In summary, we have proven that the
two causal models are not equivalent for almost all (π,β,γ) with respect to the Lebesgue measure. Note that although our
proof is for logistic or probit link, it is generalizable to other link functions as long as they are analytic functions and their
derivatives are nowhere zero.

2 ADDITIONAL EXPERIMENT RESULTS

2.1 SYNTHETIC DATA

Number of Categories L = 3 We investigate scenarios where the number of categories L = 3. The data are generated as
in the main text (n = 500, q = 10) except that the number of categories is now set to L = 3. Six scenarios with different
levels of signal strength are considered, σ = 0.25, 0.5, 0.75, 1, 1.25, 1.5. We report the SHD of OCD, BIC+, BIC, and BDe
in Table 1, which shows that OCD significantly outperforms competing methods.

Higher-Dimensional Synthetic Data As shown in Figure 1, for all tested signal strength σ ∈ {0.25, 0.5, 0.75, 1} and
number of nodes q = 10, . . . , 100, SHD and SID of OCD are uniformly better than the competing methods and in general,
OCD is quite stable as q increases when the signal strength is at least moderate σ ≥ 0.5 whereas the competing methods
quickly deteriorate with q regardless of the signal strength.

The CPU times of OCD in the synthetic data are shown in Figure 2, which appear to scale linearly in n and L, and
quadratically in q.



Signal Strength σ
0.25 0.5 0.75 1 1.25 1.5

OCD 5.2 1.6 1 0.8 0.2 0.2
BIC+ 6.4 5 3.6 3.8 3.8 3.6
BIC 7 5.8 4.6 4 3.2 3.8
BDe 7 6.8 6.2 5.2 5 4.6

Table 1: Structural hamming distance between the true graph and the estimated graphs from OCD, BIC+, BIC, and BDe.
The data are generated as in the main text with different levels of signal strength except that the number of categories is set
to L = 3.
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(b) SID in q (σ = 0.5)
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(c) SID in q (σ = 0.75)
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Figure 1: SID for OCD, BDe, BIC, and BIC+ as functions of q in the synthetic ordinal data with the sample size fixed at
n = 500 and different signal strength σ ∈ {0.25, 0.5, 0.75, 1}.

Synthetic Data with Denser Graphs We consider a scenario with n = 500 observations, q = 50 nodes, and L = 5
categories. We randomly generate graphs with 25, 50, and 100 edges (Figure 3). We report the Structural hamming distance
(SHD) between the true graph and the estimated graphs from OCD, BIC+, BIC, and BDe in Table 2. We find very minor
decrease in performance of OCD whereas the competing methods perform substantially worse and deteriorate much faster.

2.2 REAL DATA

Sensitivity to Small Added Noise to CEP Data Following the idea in Mooij et al. 2016, we test the sensitivity of the
best performing causal discovery methods (OCD with L = 15, SLOPE, and bQCD) to small added noises. Specifically, we
add independent centered Gaussian noise to X and Y with standard deviation τ ∈ {10−8, 10−7, . . . , 10−1}. We repeat the
simulation of noises 5 times under each noise level and the average ACC and AUC are shown in Figure 4. All methods have
stable performance for τ = 10−8 − 10−5. The performance of SLOPE starts deteriorating at τ = 10−4 whereas OCD and
bQCD are much more robust (significant drop in ACC at τ = 10−1). The robustness of OCD is expected because small
added noise will not significantly affect data discretization.

# of Edges
25 50 100

OCD 0 0 1
BIC+ 13 - -
BIC 25 48 92
BDe 23 40 75

Table 2: Structural hamming distance between the true graph and the estimated graphs from OCD, BIC+, BIC, and BDe.
The true graphs are generated randomly with 25, 50, and 100 edges. BIC+ is not applicable for 50 and 100 edges as it takes
150GB of memory.
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Figure 2: CPU times of OCD as functions of n, L, and q in the synthetic ordinal data.
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Figure 3: Simulation truth of denser graphs.
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Figure 4: Sensitivity to small added noise for the CEP data.
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