
Evaluating High-Order Predictive Distributions in Deep Learning
(Supplementary Material)

Ian Osband1 Zheng Wen1 Seyed Mohammad Asghari1 Vikranth Dwaracherla1 Xiuyuan Lu1

Benjamin Van Roy1

1DeepMind

A EVALUATING PREDICTIVE DISTRIBUTIONS

This section contains supplementary material for Section 2. Importantly, we provide the proof for Proposition 1and discuss
why dyadic sampling is sufficient for Gaussian process.

A.1 PROOF FOR PROPOSITION 1

Proposition 1 (Small τ approximately marginal). If the agent defined above is applied to Example 1 with τ �M ,

dτKL = d
τ

KL +O
(
τ3/M

)
.

Proof. Note that by definition, dτKL ≥ d
τ

KL. We now prove that dτKL ≤ d
τ

KL +O
(
τ3/M

)
. Note that

dτKL = E [log (P(Y1:τ |E , X0:τ−1))]− τ log

(
1

2

)
,

where τ log
(
1
2

)
is the log-likelihood under the uniform agent, and

d
τ

KL = E [log (P(Y1:τ |E , X0:τ−1))]− E [log (P(Y1:τ |X0:τ−1))] .

Consequently, we have
dτKL − d

τ

KL = τ log(2) + E [log (P(Y1:τ |X0:τ−1))] .

We define the event G as
G = {there are no repeated inputs in X0:τ−1}.

One key observation is that conditioning on G, the posterior predictive distribution is i.i.d. across inputs, and

log (P(Y1:τ |X0:τ−1)) = −τ log(2)

conditioning on G. Hence

E [log (P(Y1:τ |X0:τ−1))] = −P(G)τ log(2) + P(Ḡ)E
[
log (P(Y1:τ |X0:τ−1))

∣∣Ḡ]
≤ −P(G)τ log(2)

where Ḡ is the complement of G, and the inequality follows from log (P(Y1:τ |X0:τ−1)) ≤ 0. Hence we have

dτKL − d
τ

KL ≤ (1− P(G))τ log(2) = P(Ḡ)τ log(2).

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<iosband@deepmind.com>?Subject=Your UAI 2022 paper

Finally, note that

P(G) =

τ−1∏
k=1

(
1− k

M

)
= 1− 1

M

τ−1∑
k=1

k +O

(
1

M2

)
= 1− τ(τ − 1)

2M
+O

(
1

M2

)
.

Hence P(Ḡ) = O
(
τ2/M

)
and we have

dτKL − d
τ

KL ≤ O
(
τ3/M

)
.

The conclusion follows from
d
τ

KL ≤ dτKL ≤ d
τ

KL +O
(
τ3/M

)
.

A.2 DYADIC SAMPLING AND GAUSSIAN PROCESSES

In this section, we discuss why dyadic sampling is sufficient for Gaussian processes (GPs). In particular, we show that when
both the environment E and the imagined environment Ê of an agent follow GP, then with sufficiently large τ and under
suitable regularity conditions, performing well under dτ,κ=2

KL is sufficient to ensure that the posterior distribution of E and
the agent’s belief over Ê are close.

Assume that both E and Ê are GPs with the same finite domain X and that the training input distribution is uniform over X .
Specifically, under the environment E ,

Yt+1 = f(Xt) +Wt+1,

and under the imagined environment Ê ,
Ŷt+1 = f̂(Xt) + Ŵt+1,

where Wt+1’s and Ŵt+1’s are i.i.d. observation noises according to N(0, σ2), and f and f̂ are functions over X . We assume
that P(f ∈ ·|DT) = N(µ,Σ) and P(f̂ ∈ ·|θT) = N(µ̂, Σ̂). Note that by definition

dτ,κ=2
KL =E

[
E
[
dKL

(
P ∗
T+1:T+τ

∥∥∥P̂T+1:T+τ

)∣∣∣XT :T+τ−1 = X̃κ=2
T :T+τ−1

]]
=E

[
I
(
E ;YT+1:T+τ

∣∣∣DT , XT :T+τ−1 = X̃κ=2
T :T+τ−1

)]
︸ ︷︷ ︸

irreducible

+E
[
E
[
dKL

(
PT+1:T+τ

∥∥∥P̂T+1:T+τ

)∣∣∣XT :T+τ−1 = X̃κ=2
T :T+τ−1

]]
︸ ︷︷ ︸

d̃
τ,κ=2
KL

.

Note that the first term in the above equation is irreducible and independent of the agent, hence, performing well under
dτ,κ=2
KL is equivalent to performing well under d̃τ,κ=2

KL . Under suitable regularity conditions, for sufficiently large τ , we have

d̃τ,κ=2
KL ≈ E

[
dKL

(
P
(
f(X̃1:2) ∈ ·|DT , X̃1:2

) ∥∥∥P(f̂(X̃1:2) ∈ ·|θT , X̃1:2

))]
,

where X̃1:2 =
(
X̃1, X̃2

)
and X̃1 and X̃2 are i.i.d. sampled from PX . Thus, if the RHS of the above equation is small, then

it implies that

dKL

(
P
(
f(X̃1:2) ∈ ·|DT , X̃1:2

) ∥∥∥P(f̂(X̃1:2) ∈ ·|θT , X̃1:2

))
(1)

is small for all X̃1:2. Let µ(X̃1:2) ∈ <2 and Σ(X̃1:2) ∈ <2×2 respectively denote µ and Σ restricted to X̃1:2, and µ̂(X̃1:2)
and Σ̂(X̃1:2) are defined similarly, then we have

f(X̃1:2) ∼ N
(
µ(X̃1:2),Σ(X̃1:2)

)
and f̂(X̃1:2) ∼ N

(
µ̂(X̃1:2), Σ̂(X̃1:2)

)
.

Consequently, if equation 1 is small, then µ(X̃1:2) is close to µ̂(X̃1:2) and Σ(X̃1:2) is close to Σ̂(X̃1:2). Since this holds for
all X̃1:2, this further implies that µ is close to µ̂ and Σ is close to Σ̂. In other words, the posterior distribution of E and the
agent’s belief over Ê are close.

B LOGISTIC REGRESSION

This appendix provides supplementary details for Section 3. We include all of the code necessary to generate Figures 1 and
2 as part of our opensource submission github.com/deepmind/neural_testbed. Results are averaged over 10
random seeds per problem setting.

Figure 8 provides another kind of insight to the scaling observed in Figure 1. In these plots we show the KL ratio of a perfect
prior agent when compared to uniform. We can see that, for any input dimension, the empirical KL ratio decreases
with τ . However, as the input dimension grows reasonably large (D = 10), that even large τ = 10, 000 are not enough to
observe this ratio under 0.5. We know that, as τ →∞ this ratio will tend to zero for these two agents. By contrast, dyadic
sampling is able to clearly distinguish these agents even for moderate values of τ .

1 1e1 1e2 1e3 1e4
0

0.25

0.50

0.75

1

d K
L(p

rio
r)

/ d
KL

(u
ni

fo
rm

)

test: i.i.d. input_dim
1
2
3
4
5
6
7
8
9
101 1e1 1e2 1e3 1e4

test distribution order

test: dyadic (= 2)

Figure 1: Global input sampling can eventually separate prior samples from uniform, but the required τ grows exponentially
with input dimension. Local κ = 2 sampling can distinguish these agents without exponential τ .

Figure 9 provides some insight to the robustness of Algorithm 1 under varying number of agent samples. We make use
of the epistemic neural network notation introduced by Osband et al. [2021]. We can see that these monte carlo estimates
converge empirically as we increase the number of samples. Therefore, for the purposes of our experiments in this section
our choice of 10, 000 ENN samples is sufficient.

1e2 1e3 1e4 1e5

6.4

6.6

6.8

KL
 e

st
im

at
e

(
=

10
,

=
2)

agent: uniform

input_dim
1
10
100
1000

1e2 1e3 1e4 1e5

10

30

100

agent: marginal

1e2 1e3 1e4 1e5
number of agent samples

1

2

3

agent: prior

Figure 2: For the agents that we consider, 10,000 ENN samples is sufficient to get reasonable KL estimates across all input
dimensions.

C NEURAL TESTBED

This appendix provides supplementary details for Section 4

https://github.com/deepmind/neural_testbed

C.1 PROBLEM FORMULATION

We build on the opensource code of the Neural Testbed github.com/deepmind/neural_testbed. Our testbed
sweep is defined over input dimensions D ∈ {2, 10, 100}, number of training pairs T = λD for λ ∈ {1, 10, 100, 1000},
temperature ρ ∈ {0.01, 0.1, 0.5} with 5 random seeds in each setting. We replace the d10

KL evaluation with dyadic sampling
d10,κ=2
KL . We release all of our code and implementation at github.com/deepmind/neural_testbed.

C.2 BENCHMARK AGENTS

We make use of the benchmark agents introduced in Osband et al. [2022] and opensourced at
github.com/deepmind/neural_testbed. Since our testbed includes settings with number of training
pairs as small as 2 (when D = 2, λ = 1) and as large as 100,000 (when D = 100, λ = 1000), in order to improve agent
performance over all settings, we allow agents to adjust their number of training steps based on the problem setting. Agents
implementation can be found in our open source code under the path /agents/factories.

We make small alterations to the tuning sweeps proposed in Osband et al. [2022] in an effort to improve agent performance
in high dimension problems. This change strictly improved the agent performance as we only added hyperparameter choices
and did not restrict them. Our sweeps can be found in our open source code under the path /agents/factories/
sweeps/testbed, but we highlight the differences that helped to improve agent performance. For mlp, ensemble,
dropout, bbb, hypermodel, ensemble+ agents, we found out that their performance improves by allowing them to
adjust their default number of training steps based on the problem setting: increase it by 5x when λ = 1000 and decrease it
by 5x when λ = 1. For sgmcmc agent, we found out that we can improve the performance of this agent by allowing it to
increase prior variance parameter by 2x when D = 100.

C.3 OVERALL RESULTS

Figure 3 provides an overview of the agent performance on the testbed in terms of dKL. These numbers are normalized so
that the baseline MLP has a value of 1. In classification problems it is common to also consider the classification accuracy,
or the percentage of inputs for which the agent correctly labels the input. Figure 3 confirms that, after tuning, none of the
agents perform significantly differently from baseline MLP.

mlp ensemble dropout bbb hypermodel ensemble+ sgmcmc
agent

0.70

0.75

0.80

0.85

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy agent

mlp
ensemble
dropout
bbb
hypermodel
ensemble+
sgmcmc

Figure 3: After tuning, none of the agents perform signficantly differently from the baseline MLP in terms of classification
accuracy.

D REAL DATA

This section provides supplementary details regarding the experiments in Section ??. As before, we include full implementa-
tion and source code in our open source code under the path /real_data.

D.1 PROBLEM FORMULATION

Table 2 outlines the datasets included in our experiments. For each dataset, we perform a standard preprocessing on inputs to
be mean zero and unit variance. Full details are available in our open source code under the path /real_data/utils.py.

https://github.com/deepmind/neural_testbed
https://github.com/deepmind/neural_testbed
https://github.com/deepmind/neural_testbed
/agents/factories
/agents/factories/sweeps/testbed
/agents/factories/sweeps/testbed
/real_data
/real_data/utils.py

In the testbed we are able to evaluate a wide range of SNR regimes by varying temperature. This means that we can query a
given input Xt multiple times and potentially obtain different class labels Yt. For these fixed dataset there is only one testing
dataset, with deterministic labels given for each input. We map this setting to the low temperature limit (and high SNR)
setting of our testbed. As such, we evaluate the negative log-likelihood in place of dτKL. This is equivalent to assuming the
underlying world model was deterministic at these testing points, and is standard practice in deep learning.

We note that this ‘high SNR’ assumption appears to be reasonable in practice, since for all of the datasets considered in
Table 2 the benchmark mlp agent is able to obtain high classification accuracy on held out data. This would not be possible
if the underlying system was fundamentally stochastic, due to the irreducible error due to chance.

D.2 RESULTS

In this section we provide some supplementary results that analyze the performance of our benchmark agents on real data.
To allow for hyperparameter tuning separately on the testbed and real datasets, we included different sweeps for the testbed
and real datasets. Our sweeps for real data can be found in our open source code under the path /agents/factories/
sweeps/real_data.

One of the headline results in our paper is Figure 7, which shows that the quality of joint predictions on the testbed is highly
correlated with performance in real data. Figure 4 shows that this result is still true when you restrict the evaluation to the
‘full training data’ setting in each dataset. Further, this aggregate correlation is not driven by just one outlier dataset, but
actually occurs in each dataset individually. In fact, after bootstrapping only the results on Iris were not significant at the
95% confidence levels. This gives some additional reassurance that the relationship between joint performance on testbed
and real data is robust.

0.6 0.7 1

2

3

5

NL
L

on
 d

at
as

et
 (

=
10

,
=

2)

cifar10
correlation=0.91 (0.77,1.00)

agent
mlp
ensemble
dropout
bbb
hypermodel
ensemble+
sgmcmc

0.6 0.7 1

0.1

0.3

0.5

cmaterdb
correlation=0.74 (0.40,0.95)

0.6 0.7 1

0.05

0.1

0.3

emnist/digits
correlation=0.87 (0.69,0.98)

0.6 0.7 1

0.5

0.7

1

emnist/letters
correlation=0.90 (0.75,0.99)

0.6 0.7 1

0.5

0.7

1

fashion_mnist
correlation=0.96 (0.91,0.99)

0.6 0.7 1

3

5

7

german_credit_numeric
correlation=0.92 (0.80,0.99)

0.6 0.7 1

0.5

1

3

iris
correlation=0.51 (-0.09,0.88)

0.6 0.7 1

0.05

0.1

0.3

0.5
mnist

correlation=0.78 (0.41,0.96)

0.6 0.7 1

0.1

0.3

0.5

mnist_corrupted/shot_noise
correlation=0.70 (0.29,0.94)

0.6 0.7 1
KL estimate on testbed (= 10, = 2)

3

5

7
wine_quality

correlation=0.82 (0.61,0.99)

Figure 4: The quality of joint predictions on the testbed is highly correlated with performance in real data.

Our results in this paper allow for hyperparameter tuning separately on the testbed and real datasets. We believe that this is
reasonable practice, and reflects the way machine learning algorithms are usually used in practice. However, one natural
question might be if tuning an agent’s performance on the testbed leads to good hyperparameter settings on real data.
Figure 5 shows the results of this analysis across a wide range of agent-hyperparameter pairs. Agent-hyperparameter pairs
that perform better on the testbed generally also perform better on real data. This result is statistically significant in both
τ = 1 and τ = 10 dyadic sampling. However, we do see a stronger correlation in joint predictions rather than marginals. So
while we do not necessarily recommend tuning your agent for real datasets using the Neural Testbed, these results say that it
will provide a better answer on average than random chance.

/agents/factories/sweeps/real_data
/agents/factories/sweeps/real_data

0.2 0.3 0.4

0.6

0.7

1

NL
L

on
 re

al
 d

at
a

test: = 1
correlation=0.53 (0.41,0.65)

agent
mlp
ensemble
dropout
bbb
hypermodel
ensemble+
sgmcmc

1 3 5
KL on testbed

3

5

10

test: = 10, = 2
correlation=0.76 (0.68,0.84)

Figure 5: Agent-hyperparameter pairs that perform better on the testbed generally also perform better on real data.

References

Ian Osband, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi, Xiyuan Lu, and Benjamin Van Roy. Epistemic neural
networks. arXiv preprint arXiv:2107.08924, 2021.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Botao Hao, Morteza Ibrahimi, Dieterich Lawson,
Xiuyuan Lu, Brendan O’Donoghue, and Benjamin Van Roy. The neural testbed: Evaluating predictive distributions, 2022.

	Evaluating predictive distributions
	Proof for Proposition 1
	Dyadic sampling and Gaussian processes

	Logistic regression
	Neural Testbed
	Problem formulation
	Benchmark agents
	Overall results

	Real data
	Problem formulation
	Results

